JPS63228716A - Vapor growth equipment - Google Patents

Vapor growth equipment

Info

Publication number
JPS63228716A
JPS63228716A JP6301187A JP6301187A JPS63228716A JP S63228716 A JPS63228716 A JP S63228716A JP 6301187 A JP6301187 A JP 6301187A JP 6301187 A JP6301187 A JP 6301187A JP S63228716 A JPS63228716 A JP S63228716A
Authority
JP
Japan
Prior art keywords
region
growth
arsenic
source region
gallium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6301187A
Other languages
Japanese (ja)
Inventor
Osamu Aoki
修 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP6301187A priority Critical patent/JPS63228716A/en
Publication of JPS63228716A publication Critical patent/JPS63228716A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To form easily and surely a compound semiconductor layer with a desired composition ratio, by providing a source region separated from a growth region by a check valve with a purge gas supplying pipe and an exhaust pipe. CONSTITUTION:For example, in the case of forming a gallium and arsenic layer, gallium is mounted on a source stand 13 in the source region 11 of a reaction tube 1, and arsenic trichloride from a reaction gas supplying pipe 2 and hydrogen from a bypass tube 4 are supplied. The inside pressure of the region 11 is higher than that of a growth region 12, and so a check valve 5 separating the regions 11 and 12 opens to supply gallium and arsenic to the region 12. Thus, gallium and arsenic are grown in a substrate on a retainer 14. When arsenic reaches a supersaturation state and the supplying tube 2 is closed, the inside pressure of the region 11 decreases and the check valve 5 closes. As the reaction gas is not supplied to the region 12, the growth of a semiconductor stops, and a transition layer and the like are not formed. On the other hand, purge gas of low pressure is supplied through a purge gas supplying pipe 6, and the residual gas in the region 11 is discharged through an exhaust pipe 7. By this constitution, a compound semiconductor layer with a desired composition ratio can be easily and surely formed.

Description

【発明の詳細な説明】 〔概要〕 気相成長装置の改良である。[Detailed description of the invention] 〔overview〕 This is an improvement to the vapor phase growth apparatus.

反応管を、ソース領域と成長領域とに、逆止弁をもって
区切り、さらに、ソース領域には、ソース領域にパージ
用ガスを供給するパージガス供給管とソース領域からパ
ージ用ガスを排出するパージガス排出管とを付加した気
相成長装置である。
The reaction tube is divided into a source region and a growth region by a check valve, and the source region is further provided with a purge gas supply pipe for supplying purge gas to the source region and a purge gas discharge pipe for discharging purge gas from the source region. This is a vapor phase growth apparatus with additional features.

〔産業上の利用分野〕[Industrial application field]

本発明は、気相成長装置の改良に関する。 The present invention relates to an improvement in a vapor phase growth apparatus.

特に、反応ガスの切り替えをなしてペテロ接合を形成す
る場合、遷移層が発生せず、良好なペテロ接合を形成す
ることを可能にする改良に関する。
In particular, the present invention relates to an improvement that makes it possible to form a good Peter junction without generating a transition layer when switching reaction gases to form a Peter junction.

〔従来の技術〕[Conventional technology]

半導体装置の製造方法において、半導体エピタキシャル
層や各種絶縁物層等を形成するにあたり、広く気相成長
法が使用されており、この気相成長法の実施に、気相成
長装置が必須である。
2. Description of the Related Art In manufacturing methods for semiconductor devices, vapor phase growth is widely used to form semiconductor epitaxial layers, various insulator layers, etc., and a vapor growth apparatus is essential for implementing this vapor growth method.

従来技術に係る気相成長装置について、第3図を参照し
て説明する。
A vapor phase growth apparatus according to the prior art will be explained with reference to FIG.

図において、1は石英製反応管であり、ソース領域11
と成長領域12とよりなる0図において、右側がソース
領域11であり、左側が成長領域12である。ソース領
域11には反応ガス供給管2が設けられており、反応ガ
スが矢印Aの方向に供給される。3はガス排出管であり
、成長領域12からガスを排出する。4はバイパス管で
あり、成長領域12にキャリヤガスを供給する。
In the figure, 1 is a quartz reaction tube, and a source region 11
In FIG. 0, which includes a growth region 12 and a source region 11, the right side is the source region 11, and the left side is the growth region 12. A reactive gas supply pipe 2 is provided in the source region 11, and a reactive gas is supplied in the direction of arrow A. 3 is a gas exhaust pipe, which exhausts gas from the growth region 12. A bypass pipe 4 supplies carrier gas to the growth region 12.

この気相成長装置を使用して例えばガリウムヒ素層を形
成するには、ソース台13にガリウムを乗せ、反応ガス
供給管2から三塩化ヒ素を供給し、一方、バイパス管4
から水素等を供給する。ガリウムと三塩化ヒ素が分解し
て発生した塩素ガスはガス排出管3から排出される。
To form, for example, a gallium arsenide layer using this vapor phase growth apparatus, gallium is placed on the source stage 13, arsenic trichloride is supplied from the reaction gas supply pipe 2, and on the other hand, the bypass pipe 4
Hydrogen etc. will be supplied from Chlorine gas generated by decomposition of gallium and arsenic trichloride is discharged from the gas exhaust pipe 3.

この反応の進行とともに、ガリウムとヒ素とが、所望の
原子数比をもって成長領域12に供給されるようになる
。この時点で、基板支持器14にガリウムヒ素基板を乗
せて成長領域にもたらすと、この基板上にガリウムヒ素
層が堆積する。
As this reaction progresses, gallium and arsenic are supplied to the growth region 12 in a desired atomic ratio. At this point, the substrate support 14 carries the gallium arsenide substrate and brings it to the growth region, depositing a gallium arsenide layer thereon.

この成長反応が進行して暫くすると、ソース表面はガリ
ウムヒ素に覆われて、ソース過飽和の状態となり、成長
領域には、ガリウムとヒ素とが所望の原子数比をもって
供給されなくなるので、三塩化ヒ素の供給を一旦中止し
てソース過飽和の状態を解除する等、適切な制御をする
必要がある。
After a while after this growth reaction progresses, the source surface becomes covered with gallium arsenide, resulting in a source supersaturation state, and the growth region is no longer supplied with gallium and arsenic in the desired atomic ratio, so arsenic trichloride It is necessary to take appropriate control measures such as temporarily stopping the supply of source to release the source supersaturation state.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記せる従来技術に係る気相成長装置を使用してなす気
相成長法においては、上記せるとおり、堆積されるべき
物質が所望の原子数をもって成長領域に供給されるよう
に制御がなされているが、上記の成長工程と過飽和工程
との切り替え後暫くの間は、残留ガス(上記の例におい
ては三塩化ヒ素を過剰に含むガス)の影響が避は難く、
遷移層が形成される等の欠点が避は難い。
In the vapor phase growth method using the vapor phase growth apparatus according to the prior art mentioned above, as mentioned above, control is performed so that the substance to be deposited is supplied to the growth region with a desired number of atoms. However, for a while after switching between the growth process and the supersaturation process described above, it is difficult to avoid the influence of residual gas (in the above example, gas containing excessive arsenic trichloride).
Disadvantages such as the formation of a transition layer are inevitable.

本発明の目的は、このような欠点をともなわない気相成
長装置を提供することにあり、具体的には、所望の組成
比を正確に有する化合物半導体層等を容易・確実に形成
しうる気相成長装置を提供することにある。
The purpose of the present invention is to provide a vapor phase growth apparatus that does not have such drawbacks, and specifically, it is an object of the present invention to provide a vapor phase growth apparatus that can easily and reliably form a compound semiconductor layer having a desired composition ratio accurately. An object of the present invention is to provide a phase growth device.

〔問題点を解決するための手段〕[Means for solving problems]

上記の目的を達成するために本発明が採った手段は、気
相成長装置の反応管(1)を、ソース領域(11)と成
長領域(12)とに、逆上弁(5)をもって区切り、さ
らに、ソース領域(11)には、ソース領域(11)に
パージ用ガスを供給するパージガス供給管(6)とソー
ス領域(11)からバージ用ガスを排出するパージガス
排出管(7)とを付加したことにある。
The means taken by the present invention to achieve the above object is to divide the reaction tube (1) of the vapor phase growth apparatus into a source region (11) and a growth region (12) using a reverse valve (5). Furthermore, the source region (11) is provided with a purge gas supply pipe (6) for supplying purge gas to the source region (11) and a purge gas discharge pipe (7) for discharging purge gas from the source region (11). It's in the addition.

〔作用〕[Effect]

上記欠点の発生原因は、成長工程と過飽和工程との切り
替え後の暫くの期間に、成長領域に不所望の残留ガスが
残留することにある。そこで、本発明に係る気相成長装
置においては、成長工程と過飽和工程との切り替えと同
時に、残留ガスがr&長長域域供給されることを中止す
ることを可能にする構造としたものである。
The cause of the above drawback is that undesired residual gas remains in the growth region for some time after switching between the growth process and the supersaturation process. Therefore, the vapor phase growth apparatus according to the present invention has a structure that makes it possible to stop supplying the residual gas to the r&long region at the same time as switching between the growth process and the supersaturation process. .

〔実施例〕〔Example〕

以下、図面を参照しつ覧、本発明の一実施例に係る気相
成長装置についてさらに説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS A vapor phase growth apparatus according to an embodiment of the present invention will be further described below with reference to the drawings.

第1図参照 図において、lは石英製反応管であり、ソース領域11
と成長領域12とよりなる0図において、右側がソース
領域11であり、左側が成長領域12である。ソース領
域11には反応ガス供給管2が設けられており、反応ガ
スが矢印Aの方向に供給される。3はガス排出管であり
、成長領域12からガスを排出する。4はバイパス管で
あり、成長領域12にキャリヤガスを供給する。
In the diagram shown in FIG. 1, l is a quartz reaction tube, and the source region 11
In FIG. 0, which includes a growth region 12 and a source region 11, the right side is the source region 11, and the left side is the growth region 12. A reactive gas supply pipe 2 is provided in the source region 11, and a reactive gas is supplied in the direction of arrow A. 3 is a gas exhaust pipe, which exhausts gas from the growth region 12. A bypass pipe 4 supplies carrier gas to the growth region 12.

5が本発明の要旨に係る逆止弁であり、ソース領域11
の内圧が成長領域12の内圧より高いときは開放して、
ソース領域11から成長領域12にガスを給送するが、
成長領域12の内圧がソース領域11の内圧より高いと
きは閉止し、ガスがソース領域11から成長領域12に
供給されることを禁止する機能を有し、本例においては
、ソース領域11の内圧が大きいときはこれによって浮
止し、ソース領域11の内圧が小さいときは自重によっ
て降下して流路を閉塞する構造を示す、6はパージガス
供給管であり7はパージガス排出管である。
5 is a check valve according to the gist of the present invention, and the source region 11
When the internal pressure of is higher than the internal pressure of the growth region 12, it is opened,
Gas is supplied from the source region 11 to the growth region 12,
It has a function of closing when the internal pressure of the growth region 12 is higher than that of the source region 11 and prohibiting gas from being supplied from the source region 11 to the growth region 12. In this example, the internal pressure of the source region 11 is closed. 6 is a purge gas supply pipe, and 7 is a purge gas discharge pipe.

上記の構造の気相成長装置を使用して、例えばガリウム
ヒ素層を形成するには、ソース台13にガリウムを乗せ
、反応ガス供給管2から三塩化ヒ素を供給し、一方、バ
イパス管4から水素を供給し、ガリウムと三塩化ヒ素と
を反応させ、ガリウムソースの表面をガリウムヒ素層に
転換する。
To form, for example, a gallium arsenide layer using the vapor phase growth apparatus having the above structure, gallium is placed on the source stage 13, arsenic trichloride is supplied from the reaction gas supply pipe 2, and on the other hand, arsenic trichloride is supplied from the bypass pipe 4. Hydrogen is supplied, gallium and arsenic trichloride are reacted, and the surface of the gallium source is converted into a gallium arsenide layer.

この時点では、逆止弁5は開いており、上記の反応によ
って発生したガリウムとヒ素とが成長領域12に供給さ
れる。そこで、基板を成長領域12にもたらせばガリウ
ムヒ素が成長する。
At this point, the check valve 5 is open, and the gallium and arsenic generated by the above reaction are supplied to the growth region 12. Then, when the substrate is brought to the growth region 12, gallium arsenide grows.

工程が進行してヒ素過飽和状態に到達したら、反応ガス
供給管2を閉じて反応ガス(三塩化ヒ素)の供給を中止
し、パージガス排出管7を開いて、ヒ素を過剰に含む残
留ガスを排出し、ソース領域11の内圧を低下する。す
ると、逆止弁5が閉じて成長領域12には、バイパス管
4かも供給されるキャリヤガス以外は供給されなくなり
When the process progresses and arsenic supersaturation is reached, the reaction gas supply pipe 2 is closed to stop the supply of the reaction gas (arsenic trichloride), and the purge gas discharge pipe 7 is opened to discharge residual gas containing excessive arsenic. This reduces the internal pressure of the source region 11. Then, the check valve 5 closes, and the growth region 12 is no longer supplied with anything other than the carrier gas, which is also supplied by the bypass pipe 4.

基板上への半導体の成長は停止する。この状態では遷移
層等の形成がないことは明らかである。
Semiconductor growth on the substrate stops. It is clear that no transition layer or the like is formed in this state.

そこで、パージガス供給管6から低圧をもってパージガ
スを供給して、ソース領域11から完全にに残留ガスを
排出する。
Therefore, a purge gas is supplied at low pressure from the purge gas supply pipe 6 to completely exhaust the residual gas from the source region 11.

ソース領域11から残留ガスが完全に排出されたら、パ
ージガス供給管6を閉じ、さらにパージガス排出管7を
閉じ、反応ガス供給管2から三塩化ヒ素の供給を開始し
て、成長工程を再開する。
When the residual gas is completely exhausted from the source region 11, the purge gas supply pipe 6 is closed, the purge gas discharge pipe 7 is further closed, and the supply of arsenic trichloride is started from the reaction gas supply pipe 2, and the growth process is restarted.

この工程切り替えに際しても残留ガスが成長領域に供給
されることはないので、遷移層等が形成されることはな
い。
Even during this process switching, no residual gas is supplied to the growth region, so no transition layer or the like is formed.

なお、上記の逆止弁5の機構について、いくらか詳細に
説明する。
The mechanism of the check valve 5 described above will be explained in some detail.

第2図参照 51はフロー機構であり、その中に、漏斗状の下ストッ
パ52が設けられ、この下ストッパ52を塞ぐように球
体53が乗せられている。ソース領域11の内圧が高い
ときは漏斗状のストッパ52にそって球体53が浮上し
て、流路を開くが、ソース領域11の内圧が低くなると
、球体53は降下して流路を塞ぐ、54は上ストッパで
あり、球体53が反応領域12に飛ばされることを防止
する。
Reference numeral 51 in FIG. 2 is a flow mechanism, in which a funnel-shaped lower stopper 52 is provided, and a sphere 53 is placed so as to block this lower stopper 52. When the internal pressure of the source region 11 is high, the sphere 53 floats along the funnel-shaped stopper 52 and opens the flow path, but when the internal pressure of the source region 11 becomes low, the sphere 53 descends and blocks the flow path. 54 is an upper stopper, which prevents the sphere 53 from flying into the reaction area 12.

〔発明の効果〕〔Effect of the invention〕

以上説明せるとおり、本発明に係る気相成長装置を使用
して気相成長をなすと、成長領域に残留ガスが供給され
ないので、遷移層等が形成されることはなく、所望の組
成比を正確に有する化合物半導体層等を容易に形成する
ことができる。
As explained above, when vapor phase growth is performed using the vapor phase growth apparatus according to the present invention, residual gas is not supplied to the growth region, so a transition layer etc. is not formed, and the desired composition ratio can be maintained. It is possible to easily form a compound semiconductor layer or the like having an accurate shape.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の一実施例に係る気相成長装置の構造
図である。 第2図は、本発明の一実施例に係る気相成長装置に使用
されている逆止弁の構造図である。 第3図は、従来技術に係る気相成長装置の構造図である
。 1・・・反応管、 11−・・ソース領域、 12・・・成長領域、 2・・・反応ガス供給管、 311・・ガス排出管、 4・・・バイパス管、 5・・・逆止弁、 511・フロー機構、 52・・・下ストッパ、 53・―・球体、 54・争・上ストッパ、 6・・拳パージガス供給管、 7・・・パージガス排出管。
FIG. 1 is a structural diagram of a vapor phase growth apparatus according to an embodiment of the present invention. FIG. 2 is a structural diagram of a check valve used in a vapor phase growth apparatus according to an embodiment of the present invention. FIG. 3 is a structural diagram of a vapor phase growth apparatus according to the prior art. DESCRIPTION OF SYMBOLS 1... Reaction tube, 11-... Source region, 12... Growth region, 2... Reaction gas supply pipe, 311... Gas discharge pipe, 4... Bypass pipe, 5... Back check Valve, 511. Flow mechanism, 52.. Lower stopper, 53.. Sphere, 54. Upper stopper, 6.. Fist purge gas supply pipe, 7.. Purge gas discharge pipe.

Claims (1)

【特許請求の範囲】 ソース領域(11)と成長領域(12)とを有する反応
管(1)を有し、該反応管(1)は前記ソース領域(1
1)に反応ガスを供給する反応ガス供給管(2)と前記
成長領域(12)からガスを排出するガス排出管(3)
と前記成長領域(12)にキャリヤガスを供給するバイ
パス管(4)とを有する気相成長装置において、 前記ソース領域(11)と前記成長領域(12)とを区
切る逆止弁(5)が設けられ、前記ソース領域(11)
にパージ用ガスを供給するパージガス供給管(6)と前
記ソース領域(11)からパージ用ガスを排出するパー
ジガス排出管(7)とが設けられてなる ことを特徴とする気相成長装置。
Claims: A reaction tube (1) having a source region (11) and a growth region (12);
1), a reaction gas supply pipe (2) that supplies the reaction gas to the growth region (12), and a gas exhaust pipe (3) that discharges the gas from the growth region (12).
and a bypass pipe (4) for supplying a carrier gas to the growth region (12), the check valve (5) separating the source region (11) and the growth region (12). provided, said source region (11)
A vapor phase growth apparatus characterized in that a purge gas supply pipe (6) for supplying purge gas to the source region (11) and a purge gas discharge pipe (7) for discharging the purge gas from the source region (11) are provided.
JP6301187A 1987-03-18 1987-03-18 Vapor growth equipment Pending JPS63228716A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6301187A JPS63228716A (en) 1987-03-18 1987-03-18 Vapor growth equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6301187A JPS63228716A (en) 1987-03-18 1987-03-18 Vapor growth equipment

Publications (1)

Publication Number Publication Date
JPS63228716A true JPS63228716A (en) 1988-09-22

Family

ID=13216951

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6301187A Pending JPS63228716A (en) 1987-03-18 1987-03-18 Vapor growth equipment

Country Status (1)

Country Link
JP (1) JPS63228716A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5266127A (en) * 1990-10-25 1993-11-30 Nippon Mining Co., Ltd. Epitaxial process for III-V compound semiconductor
JP2015015469A (en) * 2013-07-03 2015-01-22 ラム リサーチ コーポレーションLam Research Corporation Chemical deposition apparatus having conductance control

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5266127A (en) * 1990-10-25 1993-11-30 Nippon Mining Co., Ltd. Epitaxial process for III-V compound semiconductor
JP2015015469A (en) * 2013-07-03 2015-01-22 ラム リサーチ コーポレーションLam Research Corporation Chemical deposition apparatus having conductance control

Similar Documents

Publication Publication Date Title
US4650698A (en) Method of forming a thin film of a metal or metal compound on a substrate
EP1119029A3 (en) Atomic layer epitaxy of compound semiconductor
JPH01136342A (en) Method of reducing self-burning oxde for sealing nitride deposition
US5818596A (en) Film thickness measuring apparatus
US3635771A (en) Method of depositing semiconductor material
JPS63228716A (en) Vapor growth equipment
Park et al. Growth of GaAs by Chemical Beam Epitaxy Using Unprecracked Arsine and Trimethylgallium
JP2528912B2 (en) Semiconductor growth equipment
JPH02230720A (en) Vapor growth method and apparatus for compound semiconductor
JP3006776B2 (en) Vapor growth method
JPH08288225A (en) Gas introduction pipe device
JP3335671B2 (en) Method of forming quantum wires and quantum boxes by atomic layer growth
JP2001093848A (en) Method for manufacturing semiconductor device
JPS5948785B2 (en) Thin film crystal growth equipment
Sedgwick et al. THE USE OF LOW-TEMPERATURE EPITAXIAL GROWTH TO DECO-RATE OXYGEN RELATED DEFECTS ON SI SURFACES
JPH01212723A (en) Method for refinning of material for source of molecular beam and molecular beam epitaxial growth method
JPS62296415A (en) Vapor growth of iii-v compound semi-conductor
JPS63248796A (en) Molecular beam epitaxy and its device
JP2005109367A (en) Method for maintaining phosphorus trap
JPH04145619A (en) Vapor growth device
JPS5816329B2 (en) Hika Gallium
JPH06172085A (en) Vapor-phase growth method
JPS60180996A (en) Epitaxial vapor growth method and its device
JPH02117128A (en) Manufacture of compound semiconductor device
JPS6194319A (en) Evaporator of volatile matter