JPS6322785B2 - - Google Patents

Info

Publication number
JPS6322785B2
JPS6322785B2 JP56008010A JP801081A JPS6322785B2 JP S6322785 B2 JPS6322785 B2 JP S6322785B2 JP 56008010 A JP56008010 A JP 56008010A JP 801081 A JP801081 A JP 801081A JP S6322785 B2 JPS6322785 B2 JP S6322785B2
Authority
JP
Japan
Prior art keywords
metal
inert gas
head space
lid
station
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56008010A
Other languages
Japanese (ja)
Other versions
JPS57122774A (en
Inventor
Morio Yamada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Seikan Group Holdings Ltd
Original Assignee
Toyo Seikan Kaisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Seikan Kaisha Ltd filed Critical Toyo Seikan Kaisha Ltd
Priority to JP56008010A priority Critical patent/JPS57122774A/en
Publication of JPS57122774A publication Critical patent/JPS57122774A/en
Publication of JPS6322785B2 publication Critical patent/JPS6322785B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Non-Alcoholic Beverages (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はジユース缶詰の製造方法に関し、さら
に詳しくは褐変の防止された天然果汁を含むジユ
ース缶詰の製造方法に関する。 みかん、桃、りんご等の天然果汁(みかんの場
合はさのうを含めて、本明細書においては天然果
汁とよぶ)単独、もしくは天然果汁と水より主と
してなるジユースは、従来約80〜95℃で加熱殺菌
された後、内面塗装されたぶりき、テインフリー
スチールもしくはアルミニウム(合金)等の金属
缶にヘツドスペース部を残して上記温度で充填さ
れ、直ちに蓋部を2重巻締して密封されていた。
このようにして通常の方法で製造されたジユース
缶詰は、ヘツドスペース部に残留した空気中の酸
素に起因するものと推定されるが、特に天然果汁
の濃度が高い場合に、経時による褐変が生じ易
く、商品的価値のあるジユース缶詰を得ることが
困難であつた。 本発明は以上のような従来技術に鑑みなされた
ものであつて、本発明の目的は褐変の防止された
天然果汁を含むジユース缶詰の製造方法を提供す
ることである。上記目的を達成するため、本発明
は天然果汁を15重量%以上含む約80〜95℃に加熱
されたジユースを金属缶にヘツドスペース部を残
して充填した後、直ちに蓋部を該金属缶の上に若
干の間隙をあけて係止し、直ちに該間隙を通つて
不活性ガスを該ヘツドスペース部に吹込んで、該
ヘツドスペース部における残留酸素量が実質的に
0になるまで該ヘツドスペース部の空気を該不活
性ガスと置換し、該吹込みを続けながら該蓋部を
該金属缶に載置した後、直ちに該蓋部を該金属缶
に2重巻締して該金属缶を密封することを特徴と
するジユース缶詰の製造方法を提供するものであ
る。 以下本発明について図面を参照しながら説明す
る。本発明におけるジユースは天然果汁を15〜
100重量%含み、好ましくは残りはすべて水より
なるが、必要に応じ、少量の添加剤、例えば酸、
糖類、ビタミン類、着色剤等を添加したものであ
つても差支えない。下限を15%としたのは、第1
表にも示されるように、天然果汁の濃度が15%よ
り低い場合は、従来の方法でも商業的問題となる
ほどの褐変を生じないからである。 上記ジユース1(第2図参照)は殺菌処理のた
め約80〜95℃(最適加熱温度はジユースのPH等に
よつて異なる)で所定時間加熱された後、同温度
で金属缶2にヘツドスペース部3を残して充填さ
れる。ヘツドスペース部3を残すのは、充填時お
よび充填後蓋部を2重巻締により密封するまでの
処理、搬送工程において、ジユースが缶外に零れ
るのを防止するためであつて、ヘツドスペース部
3の高さは缶種によつて異なるが、通常8〜12mm
程度である。 本発明においては、ヘツドスペース部3の空気
を不活性ガス(例えば窒素ガス、アルゴンガス
等。特に経済性および商業的に人手しうるガスの
純度の上から窒素ガスが好ましい)によつて置換
し、密封直後のヘツドスペース部3の残留酸素を
実質的に0にすることが重要である。ヘツドスペ
ース中の残留酸素を減少させる方法として、真空
密封法およびスチーム置換法が考えられるが、前
者の場合は、真空度を低くすると酸素が若干残留
することが避けられず、従つて十分に褐変を防止
することができず、また完全に酸素を除去しよう
として高真空にすると、金属缶の胴壁が凹み易
く、そのため比較的厚い金属板を使用しなければ
ならないという経済的問題を生ずる。後者の場合
も、褐変を防止するため、空気との置換を十分に
行なうと、缶内の真空度が高まり(例えば50〜60
cmHg)前者と同様な問題を生ずる。不活性ガス
置換の場合は、以上のような缶内真空化による凹
缶発生という問題は生じない。 不活性ガスによる置換は、例えば第1図、第2
図に示される装置によつて行なわれる。4は回転
移送盤であつて、複数(図では6個)の断面半円
状のポケツト部5aを有する上部デイスク5と、
複数(図では6個)の上昇可能な支持体6が嵌装
された下部デイスク7を備えている。回転移送盤
4は図示されない駆動機構により所定のタイミン
グで矢印方向に間欠回転運動を行なう、すなわち
ポケツト部5aが第1図の位置に達したとき停止
するように構成されている。第1図において、A
は装入ステーシヨン(不活性ガスの吹込みも行な
われる)、Bは不活性ガス吹込ステーシヨン、C
は巻締ステーシヨン、Dは送出ステーシヨンであ
る。上部デイスク5のポケツト部5aの上部には
円周方向ほぼ全体にわたつて、回転移送盤4の中
心とポケツト部5aの中心を結ぶ線にほぼ平行に
延びる多数の不活性ガス吹込孔8が開口してい
る。開口部8aは高さ方向に細長いほぼ長方形状
を呈している。ポケツト部5aの上部には蓋部9
の載置部10が形成されており、開口部8aは載
置部10の下端から金属缶2のフランジ部2aの
若干下方にまで延びており、フランジ部2a下方
より空気が不活性ガス吹込みのさい巻込まれるの
を防止するよう構成されている。吹込孔8は各ポ
ケツト部5a毎に隔設された溝部11に連接して
いる。各溝部11の外周線11aおよび内周線1
1bは夫々共通の同心円上に位置する。送入ステ
ーシヨンA、不活性ガス吹込ステーシヨンB、お
よび巻締ステーシヨンCに対応する溝部11の上
部は、平坦な下面よりなる固定シユー12によつ
て閉鎖されており、固定シユー12は図示されな
いスプリングによつて溝部11周辺上面に押しつ
けられて摺動気密性が保持されるようになつてい
る。装入ステーシヨンA、不活性ガス吹込ステー
シヨンBに対応する位置の溝部11(すなわち上
記各ステーシヨンで停止状態にある溝部)の下流
端部に対応する固定シユー12の部分は、夫々不
活性ガスの導管13aおよび13bと連通してお
り、導管13aおよび13bは図示されない不活
性ガス供給源(例えば窒素ガスボンベ)に接続す
る。 支持体6の中央下端部にはカムローラ14が設
けられており、カム溝15は不活性ガス吹込ステ
ーシヨンBから巻締ステーシヨンCの方向に高く
なつており、従つて金属缶2は巻締ステーシヨン
Cに近づくにつれて上昇し、巻締ステーシヨンC
の手前の当該金属缶2に対向する溝部11が導管
13bの開口部を通過し終る時点の直前に、フラ
ンジ部2aと蓋部9が接触するように構成されて
いる。また支持体6の下部には鍔部16が設けら
れており、巻締ステーシヨンCにおいてフランジ
部16の下面はプランジヤ(図示されない)によ
つて押上げられ、金属缶2の上に載置された蓋部
9が図示されない巻締装置のシーミングロールに
対向する位置まで支持体6が上昇するよう構成さ
れている。 以上の装置において、不活性ガスの置換および
密封は次のようにして行なわれる。 図示されない充填装置により約80〜95℃のジユ
ース1をヘツドスペース部3を残して充填された
金属缶2は、直ちにすなわち上記温度より冷却し
ない間に、装入ステーシヨンAにおいて停止した
ポケツト部5aに搬送、装入される。同時に蓋部
9も当該ポケツト部5a上部の載置部10上に図
示されない搬送機構によつて載置される。また回
転移送盤4が矢印方向の回動後、ほぼ停止すると
同時に、導管13aと装入ステーシヨンAに位置
する溝部11が接続するので(導管13には常時
不活性ガスが供給される)、吹込孔8を通つてほ
ぼ平行な不活性ガス流が、装入された金属缶2と
蓋部9の間の間隙を内側から外方に向つて、ヘツ
ドスペース部全体を覆うようにして吹込まれ、同
時にヘツドスペース部3の空気および蒸気が追出
される。また金属缶2の上方に蓋部9が載置され
るときには、両者間の隙間には不活性ガスが吹込
まれているので、高温のジユース1より蒸発する
蒸気が蓋部9のカール部9aの下面に水滴となつ
て凝結して、2重巻締後の密封性を阻害するおそ
れがない。 次に回転移送盤4が回動して、当該金属缶2が
不活性ガス吹込ステーシヨンBに運ばれる間、お
よび当該ステーシヨンBで停止している間、さら
に巻締ステーシヨンCに運ばれる間も上記吹込み
は継続する。そして巻締ステーシヨンCに接近す
ると、カム作用により当該金属缶2は上昇する。
そして巻締ステーシヨンCに達する寸前におい
て、金属缶2のフランジ部2a上に蓋部9が載置
され、同時に当該金属缶2への不活性ガスの吹込
みは終了する(吹込みが終了しても蓋部9が載置
されているので、巻締までの短時間における空気
の侵入は実質的にない)。巻締ステーシヨンCに
停止すると同時に、当該金属缶2はその上に載置
された蓋部9と共にプランジヤ(図示されない)
の作用により上昇し、2重巻締が行なわれて密封
される。次いで回転移送盤4の回動に伴い、送出
ステーシヨンDから次の冷却装置へ搬送される。
上記搬送のさいは、蓋部9上および吹込まれた不
活性ガス中の細菌類の滅菌を確実にするため、密
封缶を倒立することが望ましい。 不活性ガス吹込ステーシヨンBに運ばれるま
で、および不活性ガス吹込ステーシヨンBに停止
しているときの、金属缶2と蓋部9間の間隙は通
常好ましくは約6〜15mmである。約6mmより狭い
と、不活性ガスがヘツドスペース部3内に十分に
行きわたらず、一方約15mmより広いと外部よりの
空気が侵入し易くなつて、何れの場合も、空気と
の置換を完全に行なうことが困難になるからであ
る。不活性ガスとして窒素を用いる場合、商業的
に通常入手しうる窒素ガスの純度は極めて高い、
例えば99.999%であるので、置換を完全に行なえ
ば、ヘツドスペース部3における残留酸素量を実
質的に0にすることが可能である。不活性ガスの
吹込圧力(ゲージ圧)が約0.2〜0.5Kg/cm2、吹込
時間0.05秒以上で、通常は上記酸素量を実質的に
0にする置換が可能である。従つて毎分1200個と
いう高速充填従つて高速生産も可能である。 本発明のジユース缶詰の製造方法は、天然果汁
を15重量%以上含む褐変し易いジユースを充填
後、ヘツドスペース部の空気を、ヘツドスペース
部における残留酸素量が実質的に0になるまで、
不活性ガスによつて置換し、直ちに密封するの
で、缶詰のヘツドスペース部に残留する酸素量は
実質的に0になるので、ヘツドスペース部に残留
する酸素に起因すると推測される褐変現象が起ら
ないという効果を奏する。 さらに本発明は、約80〜95℃に加熱して殺菌処
理されたジユースを、金属缶に充填した後、直ち
に、すなわち上記温度より冷却しない間に、蓋部
と金属缶の間隙を通つて不活性ガスをヘツドスペ
ース部に吹込んで(このため不活性ガスの置換効
率が高い)、ヘツドスペース部も空気を不活性ガ
スと置換し、直ちに2重巻締して密封するのであ
るから、工程が簡単であり、かつ不活性ガスの完
全置換速度が大で、生産性に優れ、毎分1200缶と
いう高速生産も可能であるという効果を奏する。 また密封後のヘツドスペース部はほぼ常圧(ジ
ユースの約80〜95℃からの冷却により僅かに減圧
される、すなわち僅かに負圧となるが)であるの
で、真空充填法や水蒸気置換充填法の場合のよう
に凹缶を発生するおそれが、比較的薄い(約0.13
〜0.18mm)胴部金属板を用いても少ないという効
果を奏する。 以下具体例について説明する。 具体例 胴部内径52mm、高さ133mm、肉厚0.15mm、内容
積265c.c.の錫めつき鋼板(内面錫めつき量11.2
g/m2)、およびテインフリースチール(クロム
酸電解処理鋼板)よりなる2種類の内面塗装缶
(3ピース缶)を用意し、これらに90℃で加熱殺
菌処理された各種濃度の天然オレンジジユースを
ヘツドスペース部高さ12mmを残して充填した。直
ちに第1図、第2図の型式による装置での窒素ガ
ス置換、ならびに水蒸気置換を行なつた後、およ
び従来法通り置換を行なうことなしに、アルミニ
ウム合金製の蓋部(内面塗装あり)により2重巻
締法による密封を行なつた。これらの缶詰を室温
に保存し、経時的に褐変の度合を肉眼観察により
評価した。評価は各ロツトにつきn=5とし、評
価点は褐変の特に著るしいもの5点、著るしいも
の4点、やや著るしいもの3点、ややあるもの2
点、正常のもの1点として、その平均値をとり、
2以上を不良と判断した。結果を第1表に示す。 第1表から明らかのように、窒素置換の場合
は、水蒸気置換および置換なしの場合にくらべ
て、特に天然果汁濃度が15%以上の場合に、褐変
が起り難いことが分る。なお水蒸気置換の場合
は、試験缶詰の大部分の胴部に凹みが生じて、商
品的価値が低下した。また何れの場合も、錫めつ
き鋼板缶の方がテインフリースチール缶よりも褐
変が起り難いが、これは前者の場合溶出錫により
酸素が消費されることによるものと推測される。
従つて本発明は特にテインフリースチール缶に対
して適用した場合、より効果を挙げ得ることが分
る。
The present invention relates to a method for producing canned youth, and more particularly to a method for producing canned youth containing natural fruit juice that is prevented from browning. Natural fruit juices such as mandarin oranges, peaches, and apples (in the case of mandarin oranges, including canard, herein referred to as natural fruit juices) alone or mainly composed of natural fruit juice and water are conventionally produced at a temperature of approximately 80 to 95°C. After being heated and sterilized, the can is filled at the above temperature into a metal can made of painted tin, stain-free steel, or aluminum (alloy), leaving a head space, and the lid is immediately double-sealed to seal it. It had been.
Juice canned goods produced in this way by the usual method tend to brown over time, which is presumed to be due to the oxygen in the air remaining in the head space, especially when the concentration of natural fruit juice is high. It has been difficult to obtain canned youth products that are easy to use and have commercial value. The present invention has been made in view of the above-mentioned prior art, and an object of the present invention is to provide a method for producing canned youth containing natural fruit juice that is prevented from browning. In order to achieve the above object, the present invention has been developed by filling a metal can with juice heated to about 80 to 95°C containing 15% by weight or more of natural fruit juice, leaving a head space, and then immediately attaching the lid to the metal can. The headspace is locked with a slight gap at the top, and an inert gas is immediately blown into the headspace through the gap until the amount of residual oxygen in the headspace becomes substantially zero. After replacing the air with the inert gas and placing the lid on the metal can while continuing the blowing, immediately double-seal the lid to the metal can to seal the metal can. The present invention provides a method for producing canned youth products characterized by the following. The present invention will be explained below with reference to the drawings. The juice in the present invention is natural fruit juice from 15 to
100% by weight, preferably the rest consists of water, but if necessary, small amounts of additives such as acids,
There is no problem even if sugars, vitamins, coloring agents, etc. are added. The lower limit was set at 15% because of the first
This is because, as shown in the table, when the concentration of natural fruit juice is lower than 15%, even conventional methods do not cause browning to the extent that it becomes a commercial problem. The above-mentioned juice 1 (see Figure 2) is heated for a predetermined period of time at approximately 80 to 95°C (the optimum heating temperature varies depending on the pH of the juice, etc.) for sterilization, and then placed in a metal can 2 at the same temperature in a head space. All but part 3 is filled. The reason why the head space 3 is left is to prevent the juice from spilling out of the can during the filling process and the processing and transportation process until the lid is sealed by double seaming after filling. The height of 3 varies depending on the type of can, but is usually 8 to 12 mm.
That's about it. In the present invention, the air in the head space section 3 is replaced with an inert gas (for example, nitrogen gas, argon gas, etc. Nitrogen gas is particularly preferred from the viewpoint of economical efficiency and purity of gas that can be used commercially). It is important to reduce the residual oxygen in the head space 3 to substantially zero immediately after sealing. Vacuum sealing and steam replacement methods can be considered as methods to reduce residual oxygen in the head space, but in the former case, if the degree of vacuum is lowered, it is inevitable that some oxygen will remain, and therefore browning may occur. If high vacuum is applied in an attempt to completely remove oxygen, the body wall of the metal can is likely to dent, which creates an economical problem in that a relatively thick metal plate must be used. In the latter case, to prevent browning, replacing the can with sufficient air will increase the degree of vacuum inside the can (e.g. 50 to 60
cmHg) causes the same problem as the former. In the case of inert gas replacement, the above-mentioned problem of dented cans due to vacuuming inside the can does not occur. Replacement with inert gas can be performed, for example, in Figures 1 and 2.
This is done by the apparatus shown in the figure. Reference numeral 4 denotes a rotary transfer plate, which includes an upper disk 5 having a plurality (six in the figure) of pocket portions 5a each having a semicircular cross section;
It comprises a lower disk 7 in which a plurality (six in the figure) of liftable supports 6 are fitted. The rotary transfer plate 4 is configured to rotate intermittently in the direction of the arrow at predetermined timings by a drive mechanism (not shown), that is, to stop when the pocket portion 5a reaches the position shown in FIG. In Figure 1, A
is the charging station (where inert gas is also blown), B is the inert gas blowing station, and C is the inert gas blowing station.
is a tightening station, and D is a delivery station. A large number of inert gas blowing holes 8 are opened in the upper part of the pocket part 5a of the upper disk 5, extending almost parallel to the line connecting the center of the rotary transfer plate 4 and the center of the pocket part 5a, over almost the entire circumferential direction. are doing. The opening 8a has a substantially rectangular shape that is elongated in the height direction. A lid part 9 is provided at the top of the pocket part 5a.
The opening section 8a extends from the lower end of the mounting section 10 to slightly below the flange section 2a of the metal can 2, and air is blown into the inert gas from below the flange section 2a. It is designed to prevent you from getting caught in the accident. The blowing hole 8 is connected to a groove portion 11 that is spaced apart from each other for each pocket portion 5a. Outer circumference line 11a and inner circumference line 1 of each groove 11
1b are located on a common concentric circle. The upper part of the groove 11 corresponding to the feeding station A, the inert gas blowing station B, and the seaming station C is closed by a fixed shoe 12 having a flat lower surface, and the fixed shoe 12 is attached to a spring (not shown). Therefore, it is pressed against the upper surface of the periphery of the groove portion 11 to maintain sliding airtightness. Portions of the stationary shoe 12 corresponding to the downstream ends of the groove portions 11 at positions corresponding to the charging station A and the inert gas blowing station B (that is, the groove portions in a stopped state at each of the stations) are inert gas conduits, respectively. 13a and 13b, and the conduits 13a and 13b are connected to an inert gas supply source (for example, a nitrogen gas cylinder) not shown. A cam roller 14 is provided at the central lower end of the support 6, and the cam groove 15 becomes higher in the direction from the inert gas blowing station B to the seaming station C. Therefore, the metal can 2 is placed at the seaming station C. It rises as it approaches the seaming station C.
The flange portion 2a and the lid portion 9 are configured to come into contact with each other immediately before the groove portion 11 facing the metal can 2 in front of the metal can ends passing through the opening of the conduit 13b. Further, a flange portion 16 is provided at the lower part of the support body 6, and the lower surface of the flange portion 16 is pushed up by a plunger (not shown) at the seaming station C and placed on the metal can 2. The support body 6 is configured to rise to a position where the lid portion 9 faces a seaming roll of a seaming device (not shown). In the above apparatus, inert gas replacement and sealing are performed as follows. The metal can 2 filled with the juice 1 at about 80 to 95° C. leaving the head space 3 by a filling device (not shown) is immediately transferred to the pocket 5a stopped at the charging station A without cooling down below the above temperature. Transported and loaded. At the same time, the lid part 9 is also placed on the placing part 10 above the pocket part 5a by a transport mechanism (not shown). Furthermore, at the same time when the rotary transfer plate 4 almost stops after rotating in the direction of the arrow, the conduit 13a and the groove 11 located in the charging station A are connected (the conduit 13 is constantly supplied with inert gas). A substantially parallel flow of inert gas is blown through the holes 8 from the inside outward through the gap between the charged metal can 2 and the lid 9, covering the entire head space; At the same time, air and steam in the head space 3 are expelled. Furthermore, when the lid part 9 is placed above the metal can 2, inert gas is blown into the gap between the two, so that steam evaporated from the high-temperature juice 1 is absorbed into the curled part 9a of the lid part 9. There is no risk of water droplets condensing on the lower surface and impairing the sealing performance after double seaming. Next, the rotary transfer plate 4 rotates and the metal can 2 is transported to the inert gas blowing station B, while it is stopped at the station B, and also while it is transported to the seaming station C. The blowing will continue. When the metal can 2 approaches the seaming station C, the metal can 2 is raised by the cam action.
Then, just before reaching the seaming station C, the lid part 9 is placed on the flange part 2a of the metal can 2, and at the same time, the injection of inert gas into the metal can 2 ends (the injection ends). Since the lid portion 9 is also placed on the cover 9, there is virtually no air intrusion during the short period of time until the seaming is completed. At the same time as it stops at the seaming station C, the metal can 2 and the lid 9 placed thereon are moved together by a plunger (not shown).
It rises due to the action of , double seams are performed and sealed. Next, as the rotary transfer plate 4 rotates, the sample is transferred from the delivery station D to the next cooling device.
During the above-mentioned transportation, it is desirable to invert the sealed can in order to ensure the sterilization of bacteria on the lid 9 and in the inert gas blown into it. The gap between the metal can 2 and the lid 9 before being conveyed to the inert gas blowing station B and when it is stopped at the inert gas blowing station B is usually preferably about 6 to 15 mm. If it is narrower than about 6 mm, the inert gas will not be able to sufficiently spread into the head space 3, while if it is wider than about 15 mm, air from outside will easily enter, and in either case, it will not be possible to completely replace it with air. This is because it becomes difficult to do so. When using nitrogen as an inert gas, the purity of commercially available nitrogen gas is extremely high.
For example, it is 99.999%, so if the replacement is complete, the amount of residual oxygen in the head space 3 can be reduced to substantially zero. When the inert gas blowing pressure (gauge pressure) is about 0.2 to 0.5 Kg/cm 2 and the blowing time is 0.05 seconds or more, it is usually possible to perform the substitution to reduce the above oxygen amount to substantially zero. Therefore, high-speed filling and therefore high-speed production of 1200 pieces per minute is possible. The method for manufacturing canned youth of the present invention is that after filling the can with browning-prone canned youth containing 15% by weight or more of natural fruit juice, air is removed from the head space until the amount of residual oxygen in the head space becomes substantially 0.
Since the canned food is replaced with an inert gas and immediately sealed, the amount of oxygen remaining in the head space of the can is virtually zero, and the browning phenomenon that is assumed to be caused by the oxygen remaining in the head space occurs. It has the effect of not being used. Further, the present invention provides a method for filling the metal can with the youth sterilized by heating it to about 80 to 95°C, and then immediately passing it through the gap between the lid and the metal can without cooling it below the above temperature. The active gas is blown into the head space (therefore, the inert gas replacement efficiency is high), the air in the head space is also replaced with inert gas, and the product is immediately double-sealed to make the process easier. It is simple, has a high complete replacement rate of inert gas, has excellent productivity, and has the advantage of being able to produce as high as 1,200 cans per minute. In addition, since the head space after sealing is at almost normal pressure (although the pressure is slightly reduced by cooling the product from about 80 to 95°C, i.e., it becomes slightly negative pressure), vacuum filling method or steam displacement filling method can be used. The risk of causing a concave can is relatively small (approximately 0.13
~0.18mm) Even if a body metal plate is used, it has the effect of being small. A specific example will be explained below. Specific example: Tin-plated steel plate with internal diameter of 52 mm, height of 133 mm, wall thickness of 0.15 mm, and internal volume of 265 c.c. (inner surface tin plating amount: 11.2 mm)
g/m 2 ) and two types of internally coated cans (3-piece cans) made of stain-free steel (chromic acid electrolytically treated steel plate), which were heated and sterilized at 90°C with various concentrations of natural orange juice. The head space was filled leaving a height of 12 mm. Immediately after performing nitrogen gas replacement and water vapor replacement using the equipment shown in Figures 1 and 2, and without performing replacement as in the conventional method, the aluminum alloy lid (with internal coating) was used. Sealing was performed using the double seaming method. These canned goods were stored at room temperature, and the degree of browning was evaluated by visual observation over time. The evaluation was done with n=5 for each lot, and the evaluation points were 5 points for particularly noticeable browning, 4 points for very noticeable browning, 3 points for somewhat noticeable browning, and 2 points for slightly browning.
take the average value, taking one normal point,
A value of 2 or more was judged to be defective. The results are shown in Table 1. As is clear from Table 1, in the case of nitrogen substitution, browning is less likely to occur, especially when the concentration of natural fruit juice is 15% or more, compared to the cases of steam substitution and no substitution. In the case of steam displacement, most of the test cans had dents in their bodies, reducing their commercial value. In both cases, browning is less likely to occur in tin-plated steel cans than in tin-free steel cans, but this is presumed to be due to oxygen being consumed by eluted tin in the former case.
Therefore, it can be seen that the present invention is particularly effective when applied to stain-free steel cans.

【表】【table】

【表】【table】 【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の実施に使用される装置の例
の平面図、第2図は第1図の―線に沿う縦断
面図である。 1……ジユース、2……金属缶、3……ヘツド
スペース部、9……蓋部。
FIG. 1 is a plan view of an example of an apparatus used to carry out the present invention, and FIG. 2 is a longitudinal sectional view taken along the line -- in FIG. 1...Juse, 2...Metal can, 3...Head space section, 9...Lid section.

Claims (1)

【特許請求の範囲】[Claims] 1 天然果汁を15重量%以上含む約80〜95℃に加
熱されたジユースを金属缶にヘツドスペース部を
残して充填した後、直ちに蓋部を該金属缶の上に
若干の間隙をあけて係止し、直ちに該間隙を通つ
て不活性ガスを該ヘツドスペース部に吹込んで、
該ヘツドスペース部における残留酸素量が実質的
に0になるまで該ヘツドスペース部の空気を該不
活性ガスと置換し、該吹込みを続けながら該蓋部
を該金属缶に載置した後、直ちに該蓋部を該金属
缶に2重巻締して該金属缶を密封することを特徴
とするジユース缶詰の製造方法。
1. After filling a metal can with juice heated to approximately 80-95°C containing 15% or more of natural fruit juice, leaving a head space, immediately place the lid on top of the metal can with a slight gap. stopping and immediately blowing an inert gas into the headspace through the gap,
After replacing the air in the head space with the inert gas until the amount of residual oxygen in the head space becomes substantially 0, and placing the lid on the metal can while continuing the blowing, A method for producing a canned youth product, which comprises immediately double-sealing the lid to the metal can to seal the metal can.
JP56008010A 1981-01-23 1981-01-23 Preparation of canned juice Granted JPS57122774A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56008010A JPS57122774A (en) 1981-01-23 1981-01-23 Preparation of canned juice

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56008010A JPS57122774A (en) 1981-01-23 1981-01-23 Preparation of canned juice

Publications (2)

Publication Number Publication Date
JPS57122774A JPS57122774A (en) 1982-07-30
JPS6322785B2 true JPS6322785B2 (en) 1988-05-13

Family

ID=11681375

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56008010A Granted JPS57122774A (en) 1981-01-23 1981-01-23 Preparation of canned juice

Country Status (1)

Country Link
JP (1) JPS57122774A (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60248132A (en) * 1984-05-24 1985-12-07 Toyo Seikan Kaisha Ltd Green tea drink contained in closed container and production thereof
JPS61124361A (en) * 1984-11-19 1986-06-12 Toyo Seikan Kaisha Ltd Canned drink filled with nitrogen gas and having negative pressure, and preparation thereof
JPH0629066B2 (en) * 1985-02-15 1994-04-20 東洋製罐株式会社 Method for manufacturing canned beverage
JPS62135124A (en) * 1985-12-04 1987-06-18 東洋製罐株式会社 Method of filling can
FR2614005B1 (en) * 1987-04-15 1989-10-13 Bresse Bleu Ste Laitiere Coop APPARATUS FOR INJECTING NEUTRAL GAS INTO TRAYS, IN PARTICULAR OF FOOD PRODUCTS
JPH01317378A (en) * 1988-06-17 1989-12-22 Toyo Seikan Kaisha Ltd Canned low-acidic beverage and production thereof
CN1037146C (en) * 1993-05-15 1998-01-28 王健强 Health peach nectar and preparing method
KR101584165B1 (en) 2010-06-02 2016-01-11 도요세이칸 그룹 홀딩스 가부시키가이샤 Method and device for gas replacement of container

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4928627A (en) * 1972-07-13 1974-03-14
JPS49134856A (en) * 1973-05-10 1974-12-25
JPS51145686A (en) * 1975-06-09 1976-12-14 Mitsubishi Metal Corp Method of packing aluminium can with beverage
JPS564521A (en) * 1979-06-27 1981-01-17 Toyo Seikan Kaisha Ltd Liquid nitrogennfilled can producing method and nitrogen sealing apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4928627A (en) * 1972-07-13 1974-03-14
JPS49134856A (en) * 1973-05-10 1974-12-25
JPS51145686A (en) * 1975-06-09 1976-12-14 Mitsubishi Metal Corp Method of packing aluminium can with beverage
JPS564521A (en) * 1979-06-27 1981-01-17 Toyo Seikan Kaisha Ltd Liquid nitrogennfilled can producing method and nitrogen sealing apparatus

Also Published As

Publication number Publication date
JPS57122774A (en) 1982-07-30

Similar Documents

Publication Publication Date Title
US4703609A (en) Method of manufacturing pressurized sealed containered food
JPS6322785B2 (en)
US2380984A (en) Method of canning
US2047076A (en) Method of making a metal container for beer
JP3556063B2 (en) Aseptic beverage can manufacturing equipment
JP2001519748A (en) Method and apparatus for aseptic packaging
JPS61124361A (en) Canned drink filled with nitrogen gas and having negative pressure, and preparation thereof
JPS5815363B2 (en) Manufacturing method for canned food containing liquid nitrogen and nitrogen filling device
JP6083445B2 (en) Aseptic filling method and apparatus
US2296974A (en) Method of sterilizing containers
JP3623062B2 (en) Manufacturing method for canned beverages
JPH02242721A (en) Sterilizing method
US3598379A (en) Method of aseptically packaging metal containers
JPS5931411B2 (en) Steam pack method and steam seamer for can containers
JP3991571B2 (en) Aseptic filling negative pressure can manufacturing method and apparatus
JPH0541495B2 (en)
JP3621664B2 (en) Empty can sterilizer at aseptic beverage can manufacturing equipment
JP3623067B2 (en) Method for producing canned beverage containing carbon dioxide
RU2796519C2 (en) Device for pasteurization and vacuum processing of canned products in an electromagnetic field of ultrahigh frequency
JPH1143118A (en) Aseptic filling method for paper container for liquid
CN218025397U (en) Soft fog agent bottle embedment is rolled and is covered all-in-one
JP3651367B2 (en) Canned food manufacturing method and apparatus
JPS5873501A (en) Filling-sealing-heat treatment device for bag which cannot be erected by itself
US3349542A (en) Container seamer and enclosure therefor
JPS6036056A (en) Container sterilizing apparatus and method