JPS63226B2 - - Google Patents

Info

Publication number
JPS63226B2
JPS63226B2 JP54160542A JP16054279A JPS63226B2 JP S63226 B2 JPS63226 B2 JP S63226B2 JP 54160542 A JP54160542 A JP 54160542A JP 16054279 A JP16054279 A JP 16054279A JP S63226 B2 JPS63226 B2 JP S63226B2
Authority
JP
Japan
Prior art keywords
potassium titanate
laminate
prepreg
printed circuit
nonwoven fabric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54160542A
Other languages
Japanese (ja)
Other versions
JPS5682242A (en
Inventor
Noryuki Shimizu
Akiji Harada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikkan Industries Co Ltd
Original Assignee
Nikkan Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikkan Industries Co Ltd filed Critical Nikkan Industries Co Ltd
Priority to JP16054279A priority Critical patent/JPS5682242A/en
Publication of JPS5682242A publication Critical patent/JPS5682242A/en
Publication of JPS63226B2 publication Critical patent/JPS63226B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は熱硬化性樹脂を接着剤として用い熱圧
成形されてなる積層板による電気回路用プリント
基板の改良に関する。 従来から、ガラス繊維を基材とし、これに熱硬
化性樹脂を接着剤として熱圧成形した積層板が知
られている。この積層板は打ち抜き加工性がよい
ので、プリント回路基板として広く用いられてい
る。しかし、この積層板は熱膨脹による寸法変化
が大きい欠点がある。これは、積層板表面、特に
スルーホールの内面に金属メツキを施してハンダ
付等の熱衝撃を加えると、メツキ部と基板との間
に熱膨脹の差があり、メツキ部が破断する等の不
都合となる。このため、ハンダ付に際しての熱衝
撃を極力小さくすること等により制御されている
が、良品率になお影響を与えている。 これを改良するために、従来からいくつかの試
みがなされている。熱膨脹に支配的な要素である
樹脂の割合を小さくするものはその一例であり、
無機質充填剤を熱硬化性樹脂に混入して均一に介
在させたものが知られている。従来知られたこの
ための無機質充填剤は、タルク、マイカ、アスベ
スト、水酸化アルミニウム、焼成クレー、焼成ア
ルミナ、シリカ粉末、ガラス粉末、酸化チタン、
珪藻土、三酸化アンチモン、ガラスビーズ等であ
る。これらの混合比にもさまざまなものが検討さ
れてきたが、熱膨脹を小さくするためには、総じ
て、積層板の有機質成分に対して1倍量から3倍
量の無機質充填剤を加えることが必要であつて、
積層板の機械的特性、特に打ち抜き加工性、ある
いは充填物の種類によつては耐湿性が劣化するこ
とになり、必ずしも十分でない。 本発明はこのような背景のもとに、行われたも
ので、熱硬化性樹脂を接着剤とし熱圧成形された
積層板の優れた機械的特性、打ち抜き加工性ある
には耐湿性を損なうことなく、熱膨脹の小さいプ
リント基板を得ることを目的とするものである。 本発明者らは、熱硬化性樹脂および基材に混合
する材料を各方面にわたり研究する過程で、繊維
状のチタン酸カリウムを均一に介在させることに
より、優れた特性が現われることに気付いた。 ここで、チタン酸カリウム繊維とは、 K2O・nTiO2 あるいは K2O・nTiO2・mH2O なる化学式で表わされる物質であつて、繊維状
(径に対して長さが10倍以上)であるものをいう。
ただし上記n、mは必ずしも整数でなくてもよ
い。 この種のチタン酸カリウム繊維は近年安価に量
産される製法が開発されている。繊維径に対する
繊維長の比が1000以上もあるものも容易に得られ
るようになつている。特に、酸化カリウムおよび
二酸化チタンその他の原料を含むペレツトを焼成
する過程で、そのペレツトの表面にチタン酸カリ
ウム繊維がホイスカとして成長することが知られ
ていて、この方法により優れた繊維状物質が得ら
れる。 チタン酸カリウム繊維は、耐熱性に優れ、その
融点は約1300℃である。また耐薬品性に優れ使用
状態で化学変化が起きない。さらに繊維の引張強
度が強く、これはガラス繊維の約3倍にも及ぶ性
質がある。 本発明は、熱硬化性樹脂を接着剤として熱圧成
形された積層板と、この積層板の少なくとも一方
の表面に密着形成された金属膜とを含む電気回路
用プリント基板において、その積層板はガラス繊
維不織布を基材とし、その基材中にチタン酸カリ
ウム繊維を総重量に対して5〜50重量%、好まし
くは7〜35重量%含むことを特徴とする。 熱硬化性樹脂はあらゆる熱硬化性樹脂により可
能であるが、エポキシ、フエノール、ポリイミ
ド、不飽和ポリエステル、BTまたはこれらの変
性樹脂を含むものが好ましい。 樹脂を硬化させるための加熱乾燥の温度はそれ
ぞれの熱硬化性樹脂の特性に応じて選ばれ、通常
は80〜250℃である。雰囲気は乾燥空気である。 熱圧成形の条件は熱硬化性樹脂の性質および基
材の性質に応じて選ばれ、通常は80〜250℃で、
5〜200Kg/cm2である。積層の枚数は任意である。
異なる種類のものを積層することもできる。 チタン酸カリウム繊維の混入の方法について
は、基材への混入または接着剤への混入のいずれ
でもよいが、接着剤に混入する方法は分布が均一
になる点で好ましい結果を得た。基材であるガラ
ス不織布にチタン酸カリウム繊維を混抄した形で
樹脂を含浸させこれを積層しても、同様に本発明
を実施することができる。 本発明の構成による電気回路用プリント基板は
熱膨脹係数が小さい。特に、電気回路用プリント
基板の厚さ方向の熱膨脹は、従来品の約半分であ
つて、電気回路用プリント基板に設けられたスル
ーホールの内壁に施される金属メツキが、ハンダ
付により破損する現象が著しく少なくなる。ま
た、本発明の構成によれば電気回路用プリント基
板の打ち抜き加工性が極めてよいことが認められ
る。 本発明による電気回路用プリント基板は、ハン
ダ付工程において優れた良品率を示す。 チタン酸カリウム繊維の混入量については各種
のパラメタを変更しながら実験的検討を行つたと
ころ、総重量に対して3重量%から熱膨脹が小さ
くなる効果が見られる。混入量が25%以上の場合
に熱膨脹に対する効果は顕著であるが、さらに混
入量を増大してゆくと、打ち抜き加工性が劣るこ
とになり、50重量%を越えるものは好ましい状態
ではない。本発明による電気回路用プリント基板
は、打ち抜きスルーホールの数および大きさによ
り、上記混入量の適当なものを選ぶことがよい
が、標準的な状態では7〜35重量%を含むものが
よい結果を得る。 本発明の構成は、従来品が無機質充填剤を熱硬
化性樹脂の1倍量から3倍量程度必要としたこと
に比べると、少量の混入により熱膨脹を小さくす
る効果がある。これは、チタン酸カリウム繊維の
結晶構造が8面体であつて、熱硬化性樹脂との食
いつきがよく、しかも繊維の引張強度がガラス繊
維の約3倍程大きいためと考えられる。無機質充
填剤の混入量が小さいことにより、熱硬化性樹脂
の本来の特性を失うことがなく、優れた性質を兼
ね備えることになる。 本発明の電気回路用プリント基板は、熱膨脹が
小さく、打ち抜き加工性を損なうことなく、耐湿
性が優れたものとなる。本発明の電気回路用プリ
ント基板はハンダ付による金属メツキの破損が著
しく減少する効果がある。 チタン酸カリウム繊維は上記したように K2O・nTiO2 あるいは K2O・nTiO2・mH2O(水和物) として表わされるが、このうち水(H2O)を含
まないものが、積層板を絶縁材料として用いる場
合の電気的な特性がよい。すなわち、チタン酸カ
リウム繊維の生成過程において、その焼成温度お
よび時間等の条件により上記nおよびmの値が異
なることが知られている。また焼成後に空気中に
放置すると、空気中の水分を取込み一部が水和物
となることが知られている。また、一旦水和物と
なつたチタン酸カリウム繊維を再度焼成すること
によつて、水を除くことができる。 各種の試行の結果は、焼成直後のチタン酸カリ
ウム繊維を使用することにより、誘電特性、特に
tanδ特性が向上することがわかつた。 なお、チタン酸カリウム繊維を酸処理し焼成を
行うと、二酸化チタン繊維に変化することが知ら
れている。従つて、上述のように遊離のカリウム
イオンを除く処理と水和物の水を除く処理を行う
ことによつて、一部のチタン酸カリウム繊維が二
酸化チタン繊維に変化していることが考えられ
る。実験によれば焼成を強く行つた繊維を混入す
ることによつてよい結果を得ているので、本発明
のチタン酸カリウム繊維を、チタン酸カリウム繊
維および二酸化チタン繊維の混合物とすること、
あるには大部分を二酸化チタンとすることによつ
ても、同様の作用効果があるものと考えられる。 次に本発明の態様を明確にするため、実施例
と、比較例を示し説明する。ここに示す実施例は
あくまでも一例であつて、これにより本発明の範
囲を限定するものではない。 〔実施例 1〕 下記のエポキシ樹脂ワニス(配合例1)に繊維
径1μm以下、平均繊維長約10μmのチタン酸カリ
ウム繊維を7重量%加えてよく撹拌し、メチルエ
チルケトン(MEK)を混入することにより粘度
を適当に調整して、ガラス不織布(本州製紙製
GMC―50B)に含浸させ、これを約160℃にて加
熱乾燥させて、プリプレグを作る。 一方下記(配合例1)のエポキシ樹脂ワニスを
ガラス織布(日東紡製WE―18KBZ―2)に含浸
させ、これを約160℃にて加熱乾燥させて、表面
材プリプレグを作る。 上記プリプレグを8枚中間層として重ね、この
上下両表面に上記表面材プリプレグを配置し、さ
らにその上下両表面に厚さ35μmの銅箔(古河サ
ーキツト製TAI処理)を載置して、約160℃、約
40Kg/cm2で熱圧成形する。でき上りの積層板は
1.6mm厚である。 樹脂ワニス配合(配合例1) 1 AER―711(旭化成製) 100部 2 ジシアンジアミド 4部 3 ジメチルホルムアミド 20部 4 ベンジルジメチルアミン 0.3部 5 メチルエチルケトン 100部 〔実施例 2〕 繊維径10μm以下、平均繊維長1mmのチタン酸
カリウム繊維と、ガラス繊維とを1対1の比率に
混抄し、1m平方当り約100gの不織布を得る。こ
の不織布に上記配合例1のエポキシ樹脂ワニスを
含浸し、約160℃で加熱乾燥しプリプレグを作る。
このプリプレグを6枚重ね合せ熱圧成形(約160
℃、約40Kg/cm2)し、厚さ1.6mmの積層板を得た。 〔実施例 3〕 繊維径10μm以下、平均繊維長1mmのチタン酸
カリウム繊維を用い、1m平方当り約125gのチタ
ン酸カリウム繊維不織布を得る。 この不織布に上記配合例1のエポキシ樹脂ワニ
スを含浸し、約160℃で加熱乾燥し、プリプレグ
を作る。このプリプレグを6枚重ね合わせ熱圧成
形し(約160℃、約40Kg/cm2)、厚さ1.6mmの積層
板を得る。 〔実施例 4〕 下記の不飽和ポリエステル樹脂ワニス(配合例
2)に、繊維径1μm以下、平均繊維長50μmのチ
タン酸カリウム繊維を20重量%混入し、よく撹拌
して粘長性のあるワニスを作る。これをSMC方
式により、ガラス不織布(日東紡製MS―300A―
186)に含浸させ、約160℃で加熱乾燥してプリプ
レグを得る。このプレプレグを2枚重ね、片面に
厚さ35μmの銅箔(古河サーキツト製TAI処理)
を載置し、熱圧成形する。得られた積層板の厚さ
は1.6mmである。 樹脂ワニス配合(配合例2) 1 ポリマール×392(武田薬品製) 100部 2 ターシヤルブチルパーベンゾエイト 1部 〔比較例 1〕 上記実施例1と対応させるものであつて、チタ
ン酸カリウム繊維を含まない積層板を作る。すな
わち、上記配合例1のエポキシ樹脂ワニスをガラ
ス不織布(本州製紙製GMC―50B)に含浸させ、
実施例1と同等の条件で乾燥させて、プリプレグ
を作る。一方、同エポキシ樹脂ワニスをガラス織
布(日東紡製WE―18KBZ―2)に含浸させ、こ
れを実施例1と同等の条件で乾燥させて、表面材
プリプレグを作る。 上記基材プリプレグを8枚中間層として重ね、
この上下両表面に上記表面材プリプレグを配置
し、さらにその上下両表面に厚さ35μmの銅箔
(古河サーキツト製TAI処理)を載置して、実施
例1と同等の条件で熱圧成形する。 〔比較例 2〕 上記配合例1のエポキシ樹脂ワニスに無機質充
填剤として、粒子径2μm以下の焼成クレーを50重
量%混入し、よく撹拌してガラス不織布(本州製
紙製GMC―50B)に含浸させ、実施例1と同等
の条件で乾燥させてプリプレグを作る。このプレ
プレグと比較例1の表面材プリプレグとを用い比
較例1と同等の構成で、積層板を得る。 〔比較例 3〕 チタン酸カリウム繊維を含まないガラス不織布
を用いて、実施例2および実施例3と対応する積
層板を作る。すなわち、上記配合例1のエポキシ
樹脂ワニスをガラス不織布(本州製紙製GMC―
100B)に含浸させ、実施例2と同等の条件で乾
燥しプリプレグを作る。このプリプレグを6枚重
ね合せ、実施例2と同等の条件で熱圧成形する。 〔比較例 4〕 実施例4に対応するものであつて、チタン酸カ
リウム繊維を含まない積層板を作る。すなわち、
配合例2の不飽和ポリエステル樹脂ワニスをガラ
ス不織布(日東紡製MS―300A―186)に含浸さ
せ、実施例4と同等の条件で加熱乾燥してプリプ
レグを作る。このプリプレグを2枚重ね、片面に
厚さ35μmの銅箔(古河サーキツト製TAI処理)
を載置し、実施例4と同等の条件で熱圧成形す
る。 〔試験結果〕 上記実施例および比較例について、各特性を試
験した結果を表に示す。なお、厚さ方向の熱膨脹
係数の測定は熱分析装置を使用し、測定温度範囲
は130〜200℃である。打ち抜き加工性について
は、0.8mmφ、1.0mmφ、1.2mmφのスルーホールを
1cm2当り9個の割合で、試験用金型で打ち抜き、
目視により観察した。 誘電率特性はJISC―6481に基づき変成器ブリ
ツジにより測定した。C―90/20/65、およびC
―90/20/0.5+D―48/50は同JIS規格の処理を
示す。
The present invention relates to an improvement in a printed circuit board for electric circuits using a laminate formed by hot pressure molding using a thermosetting resin as an adhesive. BACKGROUND ART Laminated plates made of glass fiber as a base material and heat-press-molded with thermosetting resin as an adhesive have been known. This laminated board has good punching workability, so it is widely used as a printed circuit board. However, this laminate has the drawback of large dimensional changes due to thermal expansion. This is because when metal plating is applied to the surface of a laminate, especially the inner surface of a through hole, and a thermal shock is applied such as when soldering, there is a difference in thermal expansion between the plating part and the board, causing problems such as breakage of the plating part. becomes. For this reason, although the thermal shock during soldering is controlled by minimizing it as much as possible, it still affects the quality of products. Several attempts have been made to improve this problem. An example is one that reduces the proportion of resin, which is a dominant factor in thermal expansion.
It is known that an inorganic filler is mixed into a thermosetting resin so that it is uniformly interposed therein. Conventionally known inorganic fillers for this purpose include talc, mica, asbestos, aluminum hydroxide, calcined clay, calcined alumina, silica powder, glass powder, titanium oxide,
These include diatomaceous earth, antimony trioxide, and glass beads. Various mixing ratios have been studied, but in general, it is necessary to add 1 to 3 times the amount of inorganic filler to the organic component of the laminate in order to reduce thermal expansion. And,
Depending on the mechanical properties of the laminate, particularly the punching workability, or the type of filler, the moisture resistance may deteriorate, and is not necessarily sufficient. The present invention was carried out against this background, and the present invention was developed by using a thermosetting resin as an adhesive to form a laminate that has excellent mechanical properties, punching workability, and moisture resistance. The purpose of this is to obtain a printed circuit board with low thermal expansion. In the process of researching various aspects of materials to be mixed into thermosetting resins and base materials, the present inventors realized that excellent properties can be obtained by uniformly interposing fibrous potassium titanate. Here, potassium titanate fiber is a substance expressed by the chemical formula K 2 O・nTiO 2 or K 2 O・nTiO 2・mH 2 O, and is fibrous (with a length of 10 times or more relative to the diameter). ).
However, the above n and m do not necessarily have to be integers. In recent years, a manufacturing method has been developed for mass producing this type of potassium titanate fiber at low cost. It has become easy to obtain fibers with a ratio of fiber length to fiber diameter of 1000 or more. In particular, it is known that potassium titanate fibers grow as whiskers on the surface of pellets during the firing process of pellets containing potassium oxide, titanium dioxide, and other raw materials, and this method yields excellent fibrous materials. It will be done. Potassium titanate fiber has excellent heat resistance, and its melting point is approximately 1300°C. It also has excellent chemical resistance and does not undergo chemical changes during use. Furthermore, the tensile strength of the fibers is strong, about three times that of glass fibers. The present invention relates to a printed circuit board for an electric circuit, which includes a laminate formed by thermo-pressure molding using a thermosetting resin as an adhesive, and a metal film closely formed on at least one surface of the laminate. It is characterized by using a glass fiber nonwoven fabric as a base material, and containing potassium titanate fibers in the base material in an amount of 5 to 50% by weight, preferably 7 to 35% by weight based on the total weight. The thermosetting resin can be any thermosetting resin, but those containing epoxy, phenol, polyimide, unsaturated polyester, BT, or modified resins thereof are preferred. The heating and drying temperature for curing the resin is selected depending on the characteristics of each thermosetting resin, and is usually 80 to 250°C. The atmosphere is dry air. The conditions for thermoforming are selected depending on the properties of the thermosetting resin and the base material, and are usually 80 to 250℃.
It is 5-200Kg/ cm2 . The number of laminated sheets is arbitrary.
It is also possible to stack different types. Regarding the method of mixing potassium titanate fibers, either mixing into the base material or mixing into the adhesive may be used, but the method of mixing into the adhesive gave preferable results in terms of uniform distribution. The present invention can be carried out in the same manner by impregnating a glass nonwoven fabric as a base material with a resin in the form of a mixed paper of potassium titanate fibers and then laminating them. The printed circuit board for electric circuits configured according to the present invention has a small coefficient of thermal expansion. In particular, the thermal expansion in the thickness direction of printed circuit boards for electrical circuits is about half that of conventional products, and the metal plating applied to the inner walls of through holes provided in printed circuit boards for electrical circuits is damaged by soldering. The phenomenon is significantly reduced. Further, it is recognized that according to the configuration of the present invention, the punching workability of the printed circuit board for electric circuits is extremely good. The printed circuit board for electric circuits according to the present invention exhibits an excellent yield rate in the soldering process. Experimental studies were conducted while varying various parameters regarding the amount of potassium titanate fiber mixed in, and an effect of reducing thermal expansion was observed from 3% by weight based on the total weight. When the content is 25% or more, the effect on thermal expansion is remarkable, but as the content is further increased, the punching processability becomes poor, and if the content exceeds 50% by weight, this is not a desirable state. For the printed circuit board for electric circuits according to the present invention, it is preferable to select an appropriate amount of the above-mentioned mixture depending on the number and size of the punched through holes, but under standard conditions, it is best to use one containing 7 to 35% by weight. get. The structure of the present invention has the effect of reducing thermal expansion by incorporating a small amount of inorganic filler, compared to conventional products that require an inorganic filler in an amount of about 1 to 3 times the amount of thermosetting resin. This is thought to be because the potassium titanate fiber has an octahedral crystal structure, which allows it to stick well to the thermosetting resin, and the tensile strength of the fiber is about three times higher than that of glass fiber. Since the amount of inorganic filler mixed in is small, the thermosetting resin does not lose its original properties and has excellent properties. The printed circuit board for electric circuits of the present invention has small thermal expansion, does not impair punching workability, and has excellent moisture resistance. The printed circuit board for electric circuits of the present invention has the effect of significantly reducing damage to metal plating due to soldering. As mentioned above, potassium titanate fibers are expressed as K 2 O・nTiO 2 or K 2 O・nTiO 2・mH 2 O (hydrate), but among these, those that do not contain water (H 2 O) are Good electrical properties when the laminate is used as an insulating material. That is, it is known that in the production process of potassium titanate fibers, the values of n and m vary depending on conditions such as firing temperature and time. It is also known that when left in the air after firing, it absorbs moisture from the air and partially becomes a hydrate. In addition, water can be removed by firing the potassium titanate fibers once hydrated again. The results of various trials showed that by using potassium titanate fibers immediately after firing, the dielectric properties, especially
It was found that the tanδ characteristics were improved. It is known that when potassium titanate fibers are acid-treated and fired, they change into titanium dioxide fibers. Therefore, it is possible that some of the potassium titanate fibers are converted to titanium dioxide fibers by the treatment of removing free potassium ions and the treatment of removing hydrated water as described above. . According to experiments, good results have been obtained by mixing strongly fired fibers, so the potassium titanate fiber of the present invention is a mixture of potassium titanate fiber and titanium dioxide fiber,
It is thought that similar effects can be obtained by using titanium dioxide as the major portion. Next, in order to clarify aspects of the present invention, examples and comparative examples will be shown and explained. The embodiments shown here are merely examples, and do not limit the scope of the present invention. [Example 1] By adding 7% by weight of potassium titanate fibers with a fiber diameter of 1 μm or less and an average fiber length of about 10 μm to the following epoxy resin varnish (formulation example 1), stirring well, and mixing methyl ethyl ketone (MEK). Adjust the viscosity appropriately and make glass nonwoven fabric (manufactured by Honshu Paper Industries).
GMC-50B) and heat-dried it at about 160℃ to make prepreg. On the other hand, a glass woven fabric (WE-18KBZ-2 manufactured by Nittobo Co., Ltd.) is impregnated with the epoxy resin varnish shown below (formulation example 1), and this is heated and dried at about 160°C to prepare a surface material prepreg. Eight sheets of the above prepreg are stacked as an intermediate layer, the above surface material prepreg is placed on both the upper and lower surfaces, and 35 μm thick copper foil (TAI treatment made by Furukawa Circuits) is placed on both the upper and lower surfaces. ℃, approx.
Hot pressure molding at 40Kg/cm 2 . The finished laminate is
It is 1.6mm thick. Resin varnish formulation (formulation example 1) 1 AER-711 (manufactured by Asahi Kasei) 100 parts 2 Dicyandiamide 4 parts 3 Dimethylformamide 20 parts 4 Benzyldimethylamine 0.3 parts 5 Methyl ethyl ketone 100 parts [Example 2] Fiber diameter 10 μm or less, average fiber length A 1 mm potassium titanate fiber and a glass fiber are mixed in a 1:1 ratio to obtain a nonwoven fabric weighing about 100 g per 1 m square. This nonwoven fabric is impregnated with the epoxy resin varnish of Formulation Example 1 above and dried by heating at about 160°C to produce a prepreg.
Six sheets of this prepreg are stacked together and hot-press molded (approximately 160
℃, about 40 Kg/cm 2 ), and a laminate with a thickness of 1.6 mm was obtained. [Example 3] Using potassium titanate fibers with a fiber diameter of 10 μm or less and an average fiber length of 1 mm, a potassium titanate fiber nonwoven fabric of about 125 g per square meter was obtained. This nonwoven fabric is impregnated with the epoxy resin varnish of Formulation Example 1 above and dried by heating at about 160°C to produce a prepreg. Six sheets of this prepreg were stacked and hot-press molded (approximately 160° C., approximately 40 kg/cm 2 ) to obtain a laminate with a thickness of 1.6 mm. [Example 4] 20% by weight of potassium titanate fibers with a fiber diameter of 1 μm or less and an average fiber length of 50 μm were mixed into the following unsaturated polyester resin varnish (formulation example 2) and stirred well to obtain a viscous varnish. make. This is processed using the SMC method using glass nonwoven fabric (Nittobo MS-300A-).
186) and heat-dried at approximately 160°C to obtain prepreg. Two sheets of this prepreg are stacked, and one side has a 35μm thick copper foil (TAI treatment made by Furukawa Circuits).
is placed and hot-press molded. The thickness of the obtained laminate is 1.6 mm. Resin varnish formulation (formulation example 2) 1 Polymer x 392 (manufactured by Takeda Pharmaceutical Co., Ltd.) 100 parts 2 Tertiary butyl perbenzoate 1 part [Comparative example 1] Corresponding to Example 1 above, potassium titanate fiber was Make a laminate that does not contain That is, a glass nonwoven fabric (GMC-50B manufactured by Honshu Paper Industries) was impregnated with the epoxy resin varnish of Formulation Example 1 above,
A prepreg is prepared by drying under the same conditions as in Example 1. On the other hand, a glass woven fabric (WE-18KBZ-2 manufactured by Nittobo Co., Ltd.) was impregnated with the same epoxy resin varnish and dried under the same conditions as in Example 1 to prepare a surface material prepreg. Layering 8 sheets of the above base material prepreg as an intermediate layer,
The above-mentioned surface material prepreg is placed on both the upper and lower surfaces, and 35 μm thick copper foil (TAI treatment manufactured by Furukawa Circuits) is placed on both the upper and lower surfaces, and hot pressure molding is performed under the same conditions as in Example 1. . [Comparative Example 2] 50% by weight of calcined clay with a particle size of 2 μm or less was mixed as an inorganic filler into the epoxy resin varnish of Formulation Example 1 above, and the mixture was thoroughly stirred and impregnated into a glass nonwoven fabric (GMC-50B manufactured by Honshu Paper Industries). , to prepare a prepreg by drying under the same conditions as in Example 1. Using this prepreg and the surface material prepreg of Comparative Example 1, a laminate is obtained with the same configuration as Comparative Example 1. [Comparative Example 3] A laminate corresponding to Example 2 and Example 3 is made using a glass nonwoven fabric that does not contain potassium titanate fibers. That is, the epoxy resin varnish of Formulation Example 1 above was mixed with a glass nonwoven fabric (GMC manufactured by Honshu Paper Industries).
100B) and dried under the same conditions as in Example 2 to produce a prepreg. Six sheets of this prepreg were stacked and hot-press molded under the same conditions as in Example 2. [Comparative Example 4] A laminate corresponding to Example 4 but containing no potassium titanate fibers was produced. That is,
A glass nonwoven fabric (Nittobo MS-300A-186) is impregnated with the unsaturated polyester resin varnish of Formulation Example 2, and heated and dried under the same conditions as in Example 4 to produce a prepreg. Two sheets of this prepreg are stacked, and one side has a 35 μm thick copper foil (TAI treatment made by Furukawa Circuits).
was placed and hot-press molded under the same conditions as in Example 4. [Test Results] The results of testing each characteristic for the above Examples and Comparative Examples are shown in the table. Note that the thermal expansion coefficient in the thickness direction is measured using a thermal analyzer, and the measurement temperature range is 130 to 200°C. Regarding punching workability, through holes of 0.8 mmφ, 1.0 mmφ, and 1.2 mmφ were punched out using a test die at a rate of 9 holes per 1 cm2.
Observation was made visually. The dielectric constant characteristics were measured using a transformer bridge based on JISC-6481. C-90/20/65, and C
-90/20/0.5+D-48/50 indicates processing according to the same JIS standard.

【表】【table】

【表】【table】

Claims (1)

【特許請求の範囲】 1 熱硬化性樹脂を接着剤として用い熱圧成形さ
れた積層板と、この積層板の少なくとも一方の表
面に密着形成された金属膜とを含む電気回路用プ
リント基板において、 上記積層板はガラス繊維不織布を基材とし、そ
のガラス繊維不織布の中にその結晶構造が8面体
であるチタン酸カリウム繊維を7〜35重量%含む ことを特徴とする電気回路用プリント基板。 2 チタン酸カリウム繊維は接着剤中に含まれる
特許請求の範囲第1項に記載の電気回路用プリン
ト基板。
[Scope of Claims] 1. A printed circuit board for an electric circuit comprising a laminate formed by thermo-pressure molding using a thermosetting resin as an adhesive, and a metal film closely formed on at least one surface of the laminate, A printed circuit board for an electric circuit, wherein the laminate has a glass fiber nonwoven fabric as a base material, and the glass fiber nonwoven fabric contains 7 to 35% by weight of potassium titanate fibers whose crystal structure is octahedral. 2. The printed circuit board for an electric circuit according to claim 1, wherein the potassium titanate fiber is contained in the adhesive.
JP16054279A 1979-12-11 1979-12-11 Laminated board Granted JPS5682242A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16054279A JPS5682242A (en) 1979-12-11 1979-12-11 Laminated board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16054279A JPS5682242A (en) 1979-12-11 1979-12-11 Laminated board

Publications (2)

Publication Number Publication Date
JPS5682242A JPS5682242A (en) 1981-07-04
JPS63226B2 true JPS63226B2 (en) 1988-01-06

Family

ID=15717226

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16054279A Granted JPS5682242A (en) 1979-12-11 1979-12-11 Laminated board

Country Status (1)

Country Link
JP (1) JPS5682242A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5987142A (en) * 1982-11-10 1984-05-19 ニツカン工業株式会社 Laminated board
JPS59100128A (en) * 1982-12-01 1984-06-09 Toshiba Chem Corp Epoxy resin composition
JPS59226082A (en) * 1983-06-06 1984-12-19 Otsuka Chem Co Ltd Thermoplastic heat-resistant adhesive
JPS61251187A (en) * 1985-04-30 1986-11-08 ニツカン工業株式会社 Flexible substrate and flexible printed circuit board and manufacture thereof
JPS61252157A (en) * 1985-04-30 1986-11-10 ニツカン工業株式会社 Laminated board

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5019870A (en) * 1973-06-21 1975-03-03
JPS543858A (en) * 1977-06-13 1979-01-12 Toray Ind Inc Vibration damper

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5019870A (en) * 1973-06-21 1975-03-03
JPS543858A (en) * 1977-06-13 1979-01-12 Toray Ind Inc Vibration damper

Also Published As

Publication number Publication date
JPS5682242A (en) 1981-07-04

Similar Documents

Publication Publication Date Title
US4559264A (en) Synthetic mica products
JPS63226B2 (en)
JPS6159330B2 (en)
JPH0197633A (en) Manufacture of laminated plate for printed circuit
JPS597044A (en) Laminated board
CN114103307A (en) Low-warpage thermosetting resin copper-clad plate and preparation method thereof
JPS6072931A (en) Production of paper-base phenolic resin laminate
JPS5971332A (en) Resin-impregnated laminated paper board and its manufacture
JPH02258337A (en) Manufacture of laminate for printed circuit
JPH05318640A (en) Laminated sheet
JPS62254484A (en) Manufacture of dielectric board for radio frequency circuit
JP2819360B2 (en) Non-woven fabric for printed circuit boards
JPH0521957A (en) Multilayered copper-clad board
JPH05154960A (en) Production of laminated sheet for printed circuit board
JPS6365092B2 (en)
JPH01152138A (en) Production of laminate for printed circuit
JP2742124B2 (en) Manufacturing method of printed circuit board
JPS62270333A (en) Copper-lined laminated board
JPH02160998A (en) Raw material for electrical insulation laminate
JPH04259543A (en) Manufacture of laminated board for printed circuit
JPH08174736A (en) Laminated sheet
JPH04215492A (en) Manufacture of laminated board for printed circuit
JPS63211400A (en) Paper base material for laminated board
JPH0334677B2 (en)
JPH05327150A (en) Laminated plate for printed circuit