JPS6322634B2 - - Google Patents

Info

Publication number
JPS6322634B2
JPS6322634B2 JP57142105A JP14210582A JPS6322634B2 JP S6322634 B2 JPS6322634 B2 JP S6322634B2 JP 57142105 A JP57142105 A JP 57142105A JP 14210582 A JP14210582 A JP 14210582A JP S6322634 B2 JPS6322634 B2 JP S6322634B2
Authority
JP
Japan
Prior art keywords
semiconductor layer
transparent conductive
conductive film
solar cell
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57142105A
Other languages
Japanese (ja)
Other versions
JPS5932178A (en
Inventor
Shinichi Muramatsu
Juichi Shimada
Sunao Matsubara
Akira Goto
Masatoshi Utaka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP57142105A priority Critical patent/JPS5932178A/en
Publication of JPS5932178A publication Critical patent/JPS5932178A/en
Publication of JPS6322634B2 publication Critical patent/JPS6322634B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/075Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PIN type
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/548Amorphous silicon PV cells

Description

【発明の詳細な説明】 本発明は非晶質シリコン薄膜を用いた太陽電池
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a solar cell using an amorphous silicon thin film.

近年、非晶質シリコン薄膜を発電部分とする太
陽電池が、低コストで大面積の素子が得られるこ
とから注目を集めている。そして、従来第1図の
断面構造を有する素子が検討されてきた。すなわ
ち、ガラス基板1上に透明電極2、その上にグロ
ー放電法により非晶質シリコンを、p型層3、i
型層4、n型層5の順に形成し、その上にオーミ
ツクコンタクト用電極6を形成した構造からな
る。この素子にガラス基板1側から光を入射する
と透明電極2とオーミツクコンタクト用電極6の
間に光起電力が生ずる。この効果を太陽電池とし
て用いるものである。しかし、この透明電極2に
は酸化インジウムと酸化スズからなるいわゆる
ITO(Indium Tin Oxide)膜を用いることが多
く、非晶質シリコン膜の堆積の際に水素を含むプ
ラズマ雰囲気にさらされると、非晶質シリコンと
反応し電池特性が劣化することが明らかになつて
きた。そのため、最近、ITO膜上に反応防止層と
してSnO2あるいはSiO2、Si3N4などの金属酸化
物、金属窒化物材料よりなる薄膜を被着し、その
上に非晶質シリコン層を形成した構造が提案され
ている。
In recent years, solar cells that use amorphous silicon thin films as the power generating portion have attracted attention because they can be produced at low cost and with a large area. Conventionally, elements having the cross-sectional structure shown in FIG. 1 have been studied. That is, a transparent electrode 2 is placed on a glass substrate 1, amorphous silicon is deposited thereon by a glow discharge method, and a p-type layer 3, i
It has a structure in which a type layer 4 and an n-type layer 5 are formed in this order, and an ohmic contact electrode 6 is formed thereon. When light is incident on this element from the glass substrate 1 side, a photovoltaic force is generated between the transparent electrode 2 and the ohmic contact electrode 6. This effect is used in solar cells. However, this transparent electrode 2 is made of indium oxide and tin oxide.
ITO (Indium Tin Oxide) films are often used, and it has become clear that if exposed to a plasma atmosphere containing hydrogen during the deposition of an amorphous silicon film, it will react with the amorphous silicon and deteriorate battery characteristics. It's here. Therefore, recently, a thin film made of a metal oxide or metal nitride material such as SnO 2 or SiO 2 or Si 3 N 4 is deposited as a reaction prevention layer on the ITO film, and an amorphous silicon layer is formed on top of it. A new structure has been proposed.

しかしながら、これら金属酸化物や金属窒化物
は水素を含むプラズマ中に放置すると必ず反応
し、酸素や窒素が非晶質シリコン中に導入され
る。特にp型層は100Å程度しかないため影響を
受けやすく、このような反応は無視できない要素
となる。また、特にSiO2、Si3N4は絶縁材料であ
り、薄膜を薄く形成する必要があるが、そうする
と本来の薄膜の目的である反応防止機能が弱くな
つてしまう。
However, when these metal oxides and metal nitrides are left in plasma containing hydrogen, they always react, and oxygen and nitrogen are introduced into amorphous silicon. In particular, since the p-type layer is only about 100 Å thick, it is easily affected, and such a reaction is a factor that cannot be ignored. Further, SiO 2 and Si 3 N 4 in particular are insulating materials, and it is necessary to form thin films therein, but this weakens the reaction prevention function, which is the original purpose of the thin film.

本発明の目的は水素を含むプラズマ雰囲気によ
つて影響を受けない、ITOと非晶質シリコン間の
バリヤ層を提供することにある。
It is an object of the present invention to provide a barrier layer between ITO and amorphous silicon that is unaffected by hydrogen-containing plasma atmospheres.

このため本発明においてはITO膜上に有機物薄
膜或いは炭素と水素を主成分として含む薄膜を、
ITOに影響を与えない方法で堆積し、その上から
非晶質シリコン層を堆積することにより、ITO、
非晶質シリコンのいずれの変質も防ぐものであ
る。前記の炭素と水素を主成分として含有する薄
膜としてはポリピロール、ポリアセチレン、ポリ
アクリロニトリル等があげられる。膜厚としては
100Å〜3000Å程度の範囲を用いている。
Therefore, in the present invention, an organic thin film or a thin film containing carbon and hydrogen as main components is formed on the ITO film.
ITO is deposited using a method that does not affect ITO, and then an amorphous silicon layer is deposited on top of it.
This prevents any deterioration of amorphous silicon. Examples of the thin film containing carbon and hydrogen as main components include polypyrrole, polyacetylene, and polyacrylonitrile. As for film thickness
A range of about 100 Å to 3000 Å is used.

以下、本発明の実施例を第2図により説明す
る。
Embodiments of the present invention will be described below with reference to FIG.

透光性ガラス基板10上に透明導電膜11を
1000Å形成した。透明導電膜としては酸化インジ
ウムあるいは酸化スズが考えられるが、ここでは
酸化インジウムと酸化スズからなる、いわゆる
ITO膜を用いた。この上に、ピロールをテトラア
ンモニウムテトラフルオロボレートを含むアセト
ニトリル中で電解酸化し、直接ポリピロール12
を100Åの膜厚に形成した。このときのポリピロ
ール12の電気伝導度は10-2Ω-1・cm-1であつ
た。次にその上にグロー放電法によつて非晶質シ
リコン層を、p型層13を100Å、ノンドープ層
14を5000Å、n型層15を500Åの厚さで形成
した。非晶質シリコン堆積の温度は250℃とした
が、ポリピロール12はまつたく変質しなかつ
た。最後にオーミツクコンタクト電極16を1μ
mのアルミニウムで形成した。本実施例ではポリ
ピロールの例を述べたが、他の導電性薄膜、たと
えばポリアセチレンでも同等の効果が得られた。
さらに、半絶縁性の高分子材料、ポリアクリロニ
トリルを塗布法により、50Å被着したところ、同
様な効果が見られた。このように半絶縁性の材料
の場合には膜厚を導電性薄膜の場合よりも薄くす
る必要があるが、炭素と水素を主成分とし、融点
が非晶質シリコン堆積温度より高い化合物はいず
れも用いることが可能である。なお、以上の実施
例においてシリコン膜は非晶質としたが、本発明
は非晶質膜に限られるものではなく、水素を含む
プラズマ雰囲気中で形成する半導体膜であれば多
結晶膜でも効果があることは明らかである。
A transparent conductive film 11 is placed on a transparent glass substrate 10.
1000Å was formed. Indium oxide or tin oxide can be considered as the transparent conductive film, but here we will use so-called indium oxide and tin oxide.
An ITO film was used. On top of this, pyrrole was electrolytically oxidized in acetonitrile containing tetraammonium tetrafluoroborate and directly polypyrrole 12
was formed to a film thickness of 100 Å. The electrical conductivity of polypyrrole 12 at this time was 10 -2 Ω -1 ·cm -1 . Next, amorphous silicon layers were formed thereon by a glow discharge method, with a p-type layer 13 having a thickness of 100 Å, a non-doped layer 14 having a thickness of 5000 Å, and an n-type layer 15 having a thickness of 500 Å. Although the temperature of amorphous silicon deposition was 250° C., polypyrrole 12 did not change in quality at all. Finally, attach the ohmic contact electrode 16 to 1μ
Made of m aluminum. Although polypyrrole was used as an example in this example, similar effects could be obtained with other conductive thin films, such as polyacetylene.
Furthermore, when polyacrylonitrile, a semi-insulating polymer material, was deposited to a thickness of 50 Å using a coating method, a similar effect was observed. In the case of semi-insulating materials, it is necessary to make the film thinner than in the case of conductive thin films, but compounds whose main components are carbon and hydrogen and whose melting point is higher than the amorphous silicon deposition temperature will eventually become thinner. It is also possible to use Although the silicon film was amorphous in the above embodiments, the present invention is not limited to amorphous films, and can be effectively applied to polycrystalline films as long as they are semiconductor films formed in a plasma atmosphere containing hydrogen. It is clear that there is.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来装置の断面図、第2図は本発明の
実施例を示す装置の主要部断面図である。 10……透明性ガラス、11……透明導電膜、
12……炭素と水素を主成分として含有する薄
膜、13……p型シリコン層、14……ノンドー
プシリコン層、15……n型シリコン層、16…
…オーミツクコンタクト電極。
FIG. 1 is a sectional view of a conventional device, and FIG. 2 is a sectional view of the main parts of the device showing an embodiment of the present invention. 10... Transparent glass, 11... Transparent conductive film,
12... Thin film containing carbon and hydrogen as main components, 13... P-type silicon layer, 14... Non-doped silicon layer, 15... N-type silicon layer, 16...
...Ohmic contact electrode.

Claims (1)

【特許請求の範囲】 1 透光性絶縁基板と、この透光性絶縁基板上に
形成されかつ酸化物を主成分とする透明導電膜
と、この透明導電膜上に堆積形成されpin若しく
はpn接合を有しかつシリコンを主成分とする非
晶質若しくは多結晶質の半導体よりなる半導体層
と、上記透明導電膜と上記半導体層との間に形成
され、炭素と水素を主成分として含有する非絶縁
性材料であつて融点が上記半導体層の堆積温度よ
り高い材料よりなる薄膜と、上記半導体層上に形
成された電極金属層とを有することを特徴とする
太陽電池。 2 特許請求の範囲第1項記載の太陽電池におい
て、前記透明電極はインジウム、スズ等の酸化物
を主成分とすることを特徴とする太陽電池。 3 特許請求の範囲第1項記載の太陽電池におい
て、前記薄膜は高分子材料よりなることを特徴と
する太陽電池。
[Claims] 1. A light-transmitting insulating substrate, a transparent conductive film formed on the light-transmitting insulating substrate and containing an oxide as a main component, and a pin or pn junction deposited on the transparent conductive film. and a non-crystalline semiconductor layer formed between the transparent conductive film and the semiconductor layer and containing carbon and hydrogen as the main components. 1. A solar cell comprising: a thin film made of an insulating material having a melting point higher than the deposition temperature of the semiconductor layer; and an electrode metal layer formed on the semiconductor layer. 2. The solar cell according to claim 1, wherein the transparent electrode has an oxide such as indium or tin as a main component. 3. The solar cell according to claim 1, wherein the thin film is made of a polymeric material.
JP57142105A 1982-08-18 1982-08-18 Solar battery Granted JPS5932178A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57142105A JPS5932178A (en) 1982-08-18 1982-08-18 Solar battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57142105A JPS5932178A (en) 1982-08-18 1982-08-18 Solar battery

Publications (2)

Publication Number Publication Date
JPS5932178A JPS5932178A (en) 1984-02-21
JPS6322634B2 true JPS6322634B2 (en) 1988-05-12

Family

ID=15307540

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57142105A Granted JPS5932178A (en) 1982-08-18 1982-08-18 Solar battery

Country Status (1)

Country Link
JP (1) JPS5932178A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5284525A (en) * 1990-12-13 1994-02-08 Canon Kabushiki Kaisha Solar cell

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56152275A (en) * 1980-04-25 1981-11-25 Teijin Ltd Thin film type solar cell

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56152275A (en) * 1980-04-25 1981-11-25 Teijin Ltd Thin film type solar cell

Also Published As

Publication number Publication date
JPS5932178A (en) 1984-02-21

Similar Documents

Publication Publication Date Title
US4315097A (en) Back contacted MIS photovoltaic cell
US20080105299A1 (en) Front electrode with thin metal film layer and high work-function buffer layer for use in photovoltaic device and method of making same
US20080047602A1 (en) Front contact with high-function TCO for use in photovoltaic device and method of making same
GB2034973A (en) Solar cell with multi-layer insulation
US4453173A (en) Photocell utilizing a wide-bandgap semiconductor material
US4781765A (en) Photovoltaic device
US4320248A (en) Semiconductor photoelectric conversion device
JPH0147025B2 (en)
JPH065774B2 (en) Solar cell
JPS5846074B2 (en) Method of manufacturing photovoltaic device
JP2009117463A (en) Thin-film photoelectric conversion device
JPS6322634B2 (en)
JPH0424878B2 (en)
JP3444700B2 (en) Solar cell
JPH0122991B2 (en)
US4672148A (en) Thin-film solar cells
JP2896793B2 (en) Method for manufacturing photovoltaic device
JPH06338623A (en) Thin-film solar cell
JP3249619B2 (en) Solar cell
JPH10294478A (en) Photoelectric conversion element
JPS6152992B2 (en)
JPH05145095A (en) Photovoltaic element
JPH0548127A (en) Amorphous silicon solar battery and its manufacture
JPS5975679A (en) Photoelectromotive force generating device
JPH0481350B2 (en)