JPS63226080A - Composite assembly of light emitting diode - Google Patents

Composite assembly of light emitting diode

Info

Publication number
JPS63226080A
JPS63226080A JP62046999A JP4699987A JPS63226080A JP S63226080 A JPS63226080 A JP S63226080A JP 62046999 A JP62046999 A JP 62046999A JP 4699987 A JP4699987 A JP 4699987A JP S63226080 A JPS63226080 A JP S63226080A
Authority
JP
Japan
Prior art keywords
frame member
green sheet
light emitting
light
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62046999A
Other languages
Japanese (ja)
Inventor
Takeshi Tsukada
塚田 雄志
Toshio Yoshihara
俊雄 吉原
Yoshiaki Taniguchi
義章 谷口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nidec Copal Corp
Original Assignee
Nidec Copal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nidec Copal Corp filed Critical Nidec Copal Corp
Priority to JP62046999A priority Critical patent/JPS63226080A/en
Publication of JPS63226080A publication Critical patent/JPS63226080A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L24/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00014Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details

Abstract

PURPOSE:To obtain an LED matrix display and an LED array with extremely reduced dimensions and a high density by a method wherein at least the surface layer of a substrate which is solidified by simultaneous sintering is made of white ceramics and, at the same time, a sectioning frame member is made of colored ceramics which absorbs the colored light emitted by a light emitting diode. CONSTITUTION:A substrate/sectioning frame laminated ceramic member 1 is composed of a large number of green sheets which are sintered and completely solidified after hot-press lamination and a circuit substrate 2 and a sectioning frame member 3 are provided in it. The green sheet for the circuit substrate 2 is made of slurry produced by mixing alumina powder, glass frit and the like, organic binder and solvent so as to have a thickness of 0.05-1.0 mm by a doctor-blade method. Connection patterns 7 are formed by sintering after Au paste is applied by screen printing and the green sheet produced through a sintering process becomes white ceramics. The green sheet for the sectioning frame member 3 is produced by the same method except that a proper quantity of transition element ions whose (d) shell is not filled are mixed in the glass component and the green sheet baked afterwards becomes colored ceramics.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、発光ダイオード(以下LEDと称す)複合組
立体、特に例えば、LEDマトリックスディスプレイ、
LED除電アレイ等のように、多数のLEDをマトリッ
クス状、或はアレイ状に近接配置するLED複合組立体
に間する。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a light emitting diode (hereinafter referred to as LED) composite assembly, particularly for example an LED matrix display,
An LED composite assembly in which a large number of LEDs are arranged close to each other in a matrix or an array, such as an LED static elimination array, is used.

〈従来技術〉 第8図および第9図は従来のLEDマトリックスディス
プレイを示しており、第8図、はディスプレイユニット
の斜視図、第9図はその要部断面図である。
<Prior Art> FIGS. 8 and 9 show a conventional LED matrix display, in which FIG. 8 is a perspective view of a display unit, and FIG. 9 is a sectional view of a main part thereof.

同図において、51は、セラミック基板等の回路基板で
、該回路基板51上には、例えば緑色発色光のLED5
2が、等間隔にマトリックス状に配設されており、図示
していないがダイボンデインクとワイヤボンディングと
によって回路基板51上の所定の導電パターンに各々接
続されている。
In the same figure, 51 is a circuit board such as a ceramic board, and on the circuit board 51, for example, an LED 5 that emits green light is mounted.
2 are arranged in a matrix at equal intervals, and are each connected to a predetermined conductive pattern on the circuit board 51 by die bonding and wire bonding (not shown).

53は、回路基板51上に取り付けられた区分枠部(オ
て、上記LED52を各々収納する窓部(小室)53a
が形成されている。この区分枠部材53は、例えば白色
の合成樹脂より一体成形されており、その表面には、上
記窓部53aに合致する部位を白色半透明の光拡散部5
4aとし他の部位を適宜手段によって遮光部54bとし
た化粧シート兼用、の拡散シート部材54が、接着剤に
よって貼着されている。55は、回路基板51の裏面側
に取り付けられる放熱板を兼ねる支持板で、回路基板5
1の裏面に形成される外部接続用のパターン部を除いた
部位、即ち絶縁コートされた部位に密着している。なお
、56は、前記区分枠部材53を上記支持板55に密着
強度をもたせて取り付けるためのネジである。
Reference numeral 53 indicates a partitioning frame portion (a window portion (small chamber) 53a for housing each of the LEDs 52) mounted on the circuit board 51.
is formed. This partitioning frame member 53 is integrally molded from, for example, white synthetic resin, and has a white translucent light diffusing portion 5 on its surface that matches the window portion 53a.
A diffusion sheet member 54, which also serves as a decorative sheet, is attached with an adhesive. Reference numeral 55 denotes a support plate that also serves as a heat sink and is attached to the back side of the circuit board 51.
It is in close contact with a portion other than a pattern portion for external connection formed on the back surface of 1, that is, a portion coated with an insulating coating. Note that 56 is a screw for attaching the division frame member 53 to the support plate 55 with tight adhesion strength.

上記した構成のLEDマトリックスディスプレイユニッ
トは、縦、横に密接して複数個が組み合わされて、例え
ば駅、空港等において案内メツセージ等を表示するよう
な用途に用いられる。第8図においては、ディスプレイ
ユニットのLED52群が選択的に発光されて「駅」と
いう文字を発光表示した状態を示している。
A plurality of LED matrix display units having the above-mentioned configuration are combined vertically and horizontally in close proximity and used for displaying guidance messages, etc. at stations, airports, etc., for example. FIG. 8 shows a state in which the LEDs 52 of the display unit are selectively emitted to display the word "STATION".

〈発明の解決しようとする問題点〉 ところで上述の従来構成においては、前記区分枠部材5
3を取り付けるために、ネジ56を取り付は強度上必要
としているが、該ネジ56のために前記回路基板51に
は複数個の透孔を穿設せざるを得す、このため回路基板
51上の微細な高密度のパターン設計の自由度を阻害す
るという問題があった。特にディスプレイの発色ドツト
が高密度化するとこの傾向は顕著となり、ディスプレイ
の縮小化の大きな障害となった。また、発色ドツトが高
密度化すると、前記区分枠部材53の前記窓部53a間
の壁の厚みも薄くなり、実質上ネジ56が挿通不能にな
ることも予想される。
<Problems to be Solved by the Invention> By the way, in the above-mentioned conventional configuration, the partition frame member 5
3, screws 56 are required for strength reasons, but a plurality of through holes must be drilled in the circuit board 51 for the screws 56. There is a problem in that the degree of freedom in designing the above-mentioned fine, high-density patterns is hindered. This tendency became particularly noticeable as the density of colored dots in displays increased, and became a major obstacle to miniaturization of displays. It is also expected that if the density of colored dots increases, the thickness of the wall between the window portions 53a of the partitioning frame member 53 will become thinner, making it virtually impossible to insert the screw 56 therethrough.

この点を避けるため、前記区分枠部材53を接着剤によ
って回路基板51に固着することも考えられるが、前記
多数のLED52群の点滅による過酷な温度条件に曝さ
れるため、回路基板51と区分枠部材53との熱膨張係
数の違いによりソリ等が発生し易く、両者51.53の
密着強度の信頼性に問題があった。
In order to avoid this problem, it is conceivable to fix the division frame member 53 to the circuit board 51 with an adhesive, but since it is exposed to severe temperature conditions due to the flashing of the large number of LEDs 52, Due to the difference in thermal expansion coefficient between the frame member 53 and the frame member 53, warpage and the like tend to occur, and there is a problem in the reliability of the adhesion strength between the two members 51 and 53.

一方、前記したように合成樹脂製の区分枠部材53は、
成型条件上の制約、或は機械的強度からその厚み(高さ
)を所定量以下にすることができない。このため、前記
LED52と前記光拡散部54aとの間の距離が比較的
遠くなり照射効率が低下するため、前述したように区分
枠部材53を反射率のよい白色材で形成しているが、こ
うするとLEDディスプレイが高密度化すると区分枠部
t第53における前記窓部53a間の壁が薄くなり、隣
接窓部53aへの光漏れが生じ表示品質を大幅に低下さ
せろという問題があった。そして、この光漏れ対策のた
め、前記窓部53a側壁を傾斜面としてここに金属薄膜
を蒸着することも考えられるが、何れにせよ、多数の窓
部53aを区分枠部材53に一体成型で精度良く作成す
るには、小型・高密度化の点て、一定の限雰のあるもの
てあった。
On the other hand, as described above, the synthetic resin division frame member 53 is
The thickness (height) cannot be reduced below a predetermined amount due to constraints on molding conditions or mechanical strength. For this reason, the distance between the LED 52 and the light diffusing portion 54a becomes relatively long, and the irradiation efficiency decreases. Therefore, as described above, the division frame member 53 is made of a white material with good reflectance. In this case, when the density of the LED display increases, the wall between the windows 53a in the 53rd division frame section t becomes thinner, causing light leakage to the adjacent window 53a, resulting in a problem that the display quality is significantly reduced. In order to prevent this light leakage, it is conceivable to make the side wall of the window portion 53a an inclined surface and deposit a metal thin film thereon. In order to make it well, there are certain limitations in terms of size and density.

更にはまた、LED52と前記光拡散部54aとの間に
所定量以上の距離があるため、所謂視野角α(第9図)
が小さくなり、ディスプレイを斜めから見た場合の視認
性にも問題のあるものであった。
Furthermore, since there is a distance of more than a predetermined distance between the LED 52 and the light diffusion section 54a, the so-called viewing angle α (FIG. 9)
The size of the display was small, and there was also a problem with visibility when viewing the display from an angle.

なお、以上の問題は視認性の点を除き、ドツト間のキレ
の良さが要求されるLED除電アレイにおいても同様の
問題をはらむものであった。
It should be noted that the above-mentioned problems, except for visibility, are similar to those of LED static eliminator arrays that require sharpness between dots.

〈目的〉 従って本発明の解決すべき技術的課題は上述した?に来
欠点の解消にあり、その目的とするところは、超小型・
高密度化したLEDマトリックスディスプレイ、LED
アレイを提供可能にすると共に、隣接ドツト間同志で光
1■れのない、且つデイスプレィにあっては視野角を大
きくてきる製品を提供可能とすることにある。
<Purpose> Therefore, the technical problems to be solved by the present invention are as described above. The aim is to eliminate the disadvantages of
High-density LED matrix display, LED
In addition to making it possible to provide an array, it is also possible to provide a product that does not allow any light to fall between adjacent dots, and that allows for a wide viewing angle in the case of a display.

く問題点を解決するための手段〉 本発明の上記した目的は、基板上に配置・接続される多
数のチップ状の発光ダイオードを、区分枠部材の窓部内
に1個もしくは数個づつ配設したLED複合組立体にお
いて、前記基板及び前記区分枠部材をグリーンシート積
Z焼結法によって同時焼結して一体構造化し、前記基板
の少なくとも表面層は白色セラミックスとすると共に、
前記区分枠部材は前記発光ダイオードの発光色を吸収す
る有色セラミックスとしたことによって達成される。
Means for Solving the Problems> The above-mentioned object of the present invention is to arrange a large number of chip-shaped light emitting diodes arranged and connected on a substrate, one or several pieces at a time, in the window portion of the partitioning frame member. In the LED composite assembly, the substrate and the dividing frame member are simultaneously sintered to form an integral structure by a green sheet stacking Z sintering method, and at least the surface layer of the substrate is made of white ceramic, and
This is achieved by making the division frame member made of colored ceramics that absorbs the color of light emitted from the light emitting diode.

〈 1乍用 〉 回路基板用と区分枠部材用とに分けてグリーンシートが
ドクターブレード法等によって各々作成される。そして
、前者のグリーンシートには、スルーホールの穿孔、導
体の印刷等が施されこれが複数枚積層され、後者のグリ
ーンシートはこれを複数枚積層した状態で多数の窓部が
穿孔される。
<For 1 piece> Green sheets are prepared separately for the circuit board and for the division frame members by a doctor blade method or the like. The former green sheet is punched with through-holes, printed with conductors, etc., and then laminated with a plurality of sheets, while the latter green sheet is laminated with a plurality of sheets and a large number of windows are punched therein.

この後、回路基板用の複数枚のグリーンシート群と区分
枠部材用の複数枚のグリーンシート群とは位置合わせし
てホットプレスくラミネーション)され、然る後焼結し
て一体化される。こうしてグリーンシート積I′!焼結
法によって作成された基板・区分枠重合セラミックス部
材は、その窓部内にLEDが配置・ボンディングされる
Thereafter, the plurality of green sheet groups for the circuit board and the plurality of green sheet groups for the division frame members are aligned, laminated by hot pressing, and then sintered to be integrated. Thus, the green sheet area I'! In the substrate/section frame polymeric ceramic member created by the sintering method, an LED is placed and bonded within the window portion.

よって、回路基板と区分枠部材とが完全に一体化したセ
ラミックス材であるので、両者を結合するためのネジ止
め、接着等の手段を必要としない。
Therefore, since the circuit board and the partitioning frame member are made of a completely integrated ceramic material, there is no need for means such as screwing or adhesion to connect the two.

また、グリーンシートを積層して区分枠部材とするので
、窓部間隔を小さくして高密度化を計ることも容易であ
る上、区分枠部材の厚みを可及的に小さくすることが出
来る。
Furthermore, since the green sheets are laminated to form the dividing frame member, it is easy to increase the density by reducing the window interval, and the thickness of the dividing frame member can be made as small as possible.

また、アルミナと混合されるガラス成分中に、Cu”、
 Mn”、 Co”、 N r2”、 T i ”、 
V”+Cr3°、Fe2°、Fe”等の遷移元素イオン
を酸(ピ物の形で添加し、これによって作成された区分
枠部材は、LEDの発光色を選択的に吸光もしくは可視
光を総べて吸光する有色セラミックスとなり、隣接窓部
間における光漏れを完全に防止できろ。
In addition, in the glass component mixed with alumina, Cu”,
Mn”, Co”, Nr2”, T i”,
Transition element ions such as V"+Cr3°, Fe2°, Fe" are added in the form of acids (particles), and the division frame members created by this can selectively absorb the emitted light color of the LED or completely absorb visible light. All of the windows are colored ceramics that absorb light, completely preventing light leakage between adjacent windows.

〈実施例〉 以下本発明をLEDマトリックスディスプレイに適用し
た実施例に基づき説明する。第1図はLEDマトリック
スディスプレイの要部拡大断面図、第2図は製造過程の
要部拡大断面図、第3図は第2図の状態の要部拡大平面
図である。
<Example> The present invention will be described below based on an example in which the present invention is applied to an LED matrix display. FIG. 1 is an enlarged sectional view of the main part of an LED matrix display, FIG. 2 is an enlarged sectional view of the main part in the manufacturing process, and FIG. 3 is an enlarged plan view of the main part in the state shown in FIG.

同各図において、符号1で総括的に示したのは、基板・
区分枠重合セラミックス8JiSt2C以下重合セラミ
ックス体と称す)で、多数枚のグリーンシートをホット
プレス重合した後、焼結されて完全に一体化されており
、回路基板2と区分枠部材3とを備えている。
In each figure, what is generally indicated by reference numeral 1 is the board/
A segmented frame polymerized ceramic (8JiSt2C hereinafter referred to as a polymerized ceramic body) is made of a large number of green sheets that are hot-press polymerized and then sintered to be completely integrated, and includes a circuit board 2 and a segmented frame member 3. There is.

4は、上記区分枠部材3に縦・横に等間隔に形成された
3部で、例えば直径1.5〜2.5mm程度の大きさの
ものが、2〜3 mmピッチで区分枠部材3の各辺近傍
まで高密度に設けられている。5は、上記各3部4に各
々位置付けられたチップ状のしEDで、例えば0.3〜
0.5mm角、高さ0.25〜0.4關程度の小型のも
のが選定されている。
Reference numeral 4 denotes three parts formed on the dividing frame member 3 at equal intervals vertically and horizontally, for example, those having a diameter of about 1.5 to 2.5 mm are attached to the dividing frame member 3 at a pitch of 2 to 3 mm. are provided in high density near each side of the area. 5 is a chip-shaped cutting edge ED located in each of the three parts 4, for example, 0.3~
A small size of about 0.5 mm square and 0.25 to 0.4 inches in height has been selected.

上記LED5は、自動供給機によって2部4内の所定位
置に載置され、前記回路基板2上の接続パターン6.7
に接続される。即ち、公知の手法によって、LED5は
、その方ソートを上記接続パターン6にダイボンディン
グされ、そのアノードを上記接続パターン7にワイヤ8
ボンデイングされる。なお、図示した実施例においては
、各窓部4内にLED5を1個づつ配置しているが、各
窓部4内に例えば赤色発光色のLEDチップと緑色発色
光のLEDチップとを対にして2個づつ配設することも
可能である。
The LED 5 is placed at a predetermined position in the second part 4 by an automatic feeding machine, and the connection pattern 6.7 on the circuit board 2 is
connected to. That is, by a known method, the LED 5 is die-bonded to the connection pattern 6, and its anode is die-bonded to the connection pattern 7 by a wire 8.
Bonded. In the illustrated embodiment, one LED 5 is arranged in each window 4, but for example, a pair of an LED chip emitting red light and an LED chip emitting green light may be arranged in each window 4. It is also possible to arrange two pieces at a time.

前記した回路基板2用のグリーンシートと、区分枠部材
3用のグリーンシートは、各々別途に作成されるも、両
者は略同−焼成温度条件の低温焼成用の材料が選定され
ている。
Although the green sheet for the circuit board 2 and the green sheet for the division frame member 3 are prepared separately, materials for low-temperature firing under substantially the same firing temperature conditions are selected for both.

即ち、前記回路基板2用のグリーンシートは、アルミナ
粉末、ガラスフリット等と有機バインダ及び溶剤を混合
して作成したスラリーから、公知のドクターブレード法
によって0.05〜1.0mmの厚みをもつものに形成
される。こうして作成された各グリーンシートには、夫
々配設される層に応してスルーホール穿孔やメタライズ
処理が施される。該実施例においては、メタライズ処理
は、前記LED5がワイヤボンディングされる前記した
接続パターン7を除き、他の部位はAg−Pd系ペース
トをスクリーン印刷することによってなされており、前
記接続パターン7はAuペーストをスクリーン印刷する
ことによってなされている。
That is, the green sheet for the circuit board 2 is made from a slurry prepared by mixing alumina powder, glass frit, etc. with an organic binder and a solvent, and has a thickness of 0.05 to 1.0 mm by a known doctor blade method. is formed. Each of the green sheets thus created is subjected to through-hole drilling and metallization treatment depending on the layer to be provided. In this embodiment, except for the connection pattern 7 to which the LED 5 is wire-bonded, the other parts are metalized by screen printing Ag-Pd paste, and the connection pattern 7 is made of Au. It is made by screen printing the paste.

こうして作成されたグリーンシートは後述する焼結工程
を経て白色セラミックスとなる。なお、第1.2図にお
いて、9、lOは上記Ag−Pd系ペーストによって形
成されたパターン並びにスルーホール内導体を示してい
る。
The green sheet thus created becomes white ceramics through a sintering process to be described later. In FIG. 1.2, 9 and 1O indicate the pattern formed by the Ag--Pd paste and the conductor in the through-hole.

一方、前記した区分枠部材3用のグリーンシートも、ア
ルミナ粉末、ガラスフリット等と有機バインダ及び溶剤
を混合して作成したスラリーから、同様手法によって0
.05〜1.0間の厚みに形成される。但し、このグリ
ーンシート作成用材料の上記ガラス成分中には、d殻の
満たされていないに、 FS元素イオン、即ちCu24
. Mn3−、 Co”。
On the other hand, the above-mentioned green sheet for the partition frame member 3 is also made from a slurry made by mixing alumina powder, glass frit, etc. with an organic binder and a solvent, using the same method.
.. The thickness is between 0.05 and 1.0. However, in the above-mentioned glass component of this material for producing green sheets, FS element ions, that is, Cu24, are present even though the d-shell is not filled.
.. Mn3−, Co”.

N  i”、  T  i”、V”+  Cr”、F 
e”、F e”等を酸化物の形て′I!1量混入しであ
る。こうすることによって、後に焼成されるこのグリー
ンシートは着色セラミックスとなり、前記LED5の発
光色に対し吸光特性をもつものとなる。従って、カラス
成分中に混入される遷移元素イオンの種類は、用いられ
ろ前記LED5の発光色に応じて選定されるか、或は可
視光領域総べてに吸光特性をもつものが選定され、1種
単独或は必要に応し複数種が混合して用いられる。この
遷移元素イオンが単独で用いられる場合は、ガラス成分
中に酸化物の形で混入される遷移元素イオンの量は重要
なファクターで、ガラス成分と該遷移元素イオン酸化物
の混合物全体を100重量部とした時、遷移元素イオン
酸化物は10wt%以下とされる。こうする所以は10
wt%を超えると、区分枠部材3用のグリーンシートと
前記回路基板2月のグリーンシートとの収縮率に無視て
きめ差異が生して、後述する両者2.3月のグリーンシ
ートの同時焼成工程においてソリが避けられないためで
ある。なお、ガラス成分中に混入される遷移元素イオン
酸化物の下限は、用いられるil移元素イオンの吸光度
等の相違によって左右され、ガラス成分と該遷移元素イ
オン酸化物の混合物全体を100重量部とした時、これ
に対し望ましくは0.5〜2.5wt%程度以上とする
と、充分な吸光特性を持たせることができる。
N i”, T i”, V”+Cr”, F
e", F e", etc. in the form of oxide 'I! One amount is mixed in. By doing so, this green sheet, which is fired later, becomes a colored ceramic and has a light-absorbing property with respect to the color of the emitted light from the LED 5. Therefore, the type of transition element ion mixed into the glass component is selected depending on the emitted light color of the LED 5 used, or one that has light absorption characteristics in the entire visible light region is selected. One type can be used alone or a plurality of types can be used in combination as necessary. When this transition element ion is used alone, the amount of transition element ion mixed in the glass component in the form of an oxide is an important factor, and the entire mixture of the glass component and the transition element ion oxide is %, the transition element ion oxide is 10 wt % or less. 10 reasons to do this
If it exceeds wt%, there will be a negligible difference in shrinkage rate between the green sheet for the classification frame member 3 and the circuit board February green sheet, and the simultaneous firing of both February and March green sheets, which will be described later, will occur. This is because warpage is unavoidable in the process. The lower limit of the transition element ion oxide mixed into the glass component depends on the difference in absorbance, etc. of the il-transition element ions used, and the total mixture of the glass component and the transition element ion oxide is 100 parts by weight. In this case, if the content is desirably about 0.5 to 2.5 wt% or more, sufficient light absorption characteristics can be obtained.

上述の区分枠部材3用のグリーンシートのガラス成分に
混入される遷移元素イオンのfii類は、前述したよう
にLED5の発光色によって決定される。第7図は代表
的なLEDの発光特性を示しており、例えばピーク波長
650nmの赤色発光色のGaAsP−LED、或は、
ピーク波長700nmの赤色発光色のGaP−LEDに
は、これに対する吸光特性を発揮する例えばCu2″″
を用いることが出来、ピーク波長565nmの緑色発光
色のG a P −L E D、  或は、第7図には
示していないがピーク波長589nmの黄色発光色のG
aAsP−LEDには、これに対する吸光特性を発揮す
る例えばco2′″、Ni”を用いことが出来、この0
02′、Ni”の場合は比較的少ない添加量てその効果
を発揮する。また、可視光領域総へでに吸光特性をもた
せる場合には、例えばMn”、Cr”を用いることが出
来、Mn”の場合は比較的少ない添加量でその効果を発
揮する。即ち、前記した窓部4内に2つの異なる発光色
のLEDが配設される場合、例えば赤色発光色と緑色発
光色のLEDが対となって配設されるような場合には、
M n 3°が有効である。
The fii type of transition element ions mixed into the glass component of the green sheet for the above-mentioned partitioning frame member 3 is determined by the emitted light color of the LED 5 as described above. FIG. 7 shows the emission characteristics of typical LEDs, such as GaAsP-LEDs that emit red light with a peak wavelength of 650 nm, or
For GaP-LEDs that emit red light with a peak wavelength of 700 nm, for example, Cu2'''' exhibits light absorption characteristics.
G a P - L E D, which emits green light with a peak wavelength of 565 nm, or G a P - L E D, which emits yellow light with a peak wavelength of 589 nm, which is not shown in FIG.
For the aAsP-LED, for example, co2'', Ni'', which exhibits light absorption characteristics for this, can be used, and this 0
In the case of 02', Ni'', the effect can be achieved with a relatively small amount of addition.Also, in order to provide light absorption characteristics to the entire visible light region, for example, Mn'' and Cr'' can be used; ”, the effect can be achieved with a relatively small amount added. That is, when LEDs with two different emission colors are disposed within the window 4, for example, when a pair of red and green LEDs is disposed,
M n 3° is valid.

なお、遷移元素イオンは酸化物の形でガラス中に混合さ
れ、このガラスの成分の如何によって多少吸光特性カー
ブがシフトすることがあるので、ガラスの成分との兼合
いも多少考慮に入れるへきである。更にこれよりも重要
で考慮に入れるべきことは、回路基板2用のグリーンシ
ートと区分枠部材3用のグリーンシートとの収縮率で;
 例えば、ガラス中にCu”がある場合これを含むグリ
ーンシートは、白基板(回路基板2)用のグリーンシー
トよりも収縮率が大きくなり、また、ガラス中にMn”
がある場合これを含むグリーンシートは、白基板用のグ
リーンシートよりも収縮率が小さくなる。よって、Cu
2°とM n 3“とを混合添加したガラスを含ませた
区分枠部材3用のグリーンシートは、回路基板2用のグ
リーンシートとの収縮率の相違を改善するのに有効であ
る。なお、この収pt! z改善のための、異種遷移元
素イオンの組合せは種々変更可能である。
Note that transition element ions are mixed in the glass in the form of oxides, and the absorption characteristic curve may shift slightly depending on the composition of the glass, so the balance with the composition of the glass should be taken into consideration. be. Furthermore, what is more important and should be taken into consideration is the shrinkage rate of the green sheet for the circuit board 2 and the green sheet for the partition frame member 3;
For example, if there is Cu'' in the glass, a green sheet containing Cu'' will have a higher shrinkage rate than a green sheet for white substrates (circuit board 2), and Mn'' in the glass.
If there is, a green sheet containing this will have a smaller shrinkage rate than a green sheet for white substrates. Therefore, Cu
The green sheet for the division frame member 3 containing glass mixed with 2° and M n 3" is effective in improving the difference in shrinkage rate from the green sheet for the circuit board 2. , the combination of different transition element ions can be changed in various ways to improve this apt!z.

斯様にして作成された区分枠部材3用のグリーンシート
には、前記8部4用の透孔が前述した大きさ、ピッチで
パンチングされる。このパンチングはグリ−シー)1枚
づつに行っても良いが、該実施例においては、複数枚(
数枚〜10数枚〉を区分枠部材3の厚み(高さ)に見合
うまで積層した状態で行われる。この区分枠部材3は焼
結後の状態で、その厚みが0.8〜1.6mmとなるよ
うに設定されている。
In the thus produced green sheet for the dividing frame member 3, through holes for the 8 parts 4 are punched at the above-mentioned size and pitch. This punching may be performed for one sheet at a time (Greasy), but in this embodiment, it is punched for a plurality of sheets (
This is done by stacking several sheets to more than 10 sheets until the thickness (height) corresponds to the thickness (height) of the partitioning frame member 3. The thickness of the dividing frame member 3 after sintering is set to be 0.8 to 1.6 mm.

そして、前述の如く作成された回路基板2用のグリーン
シートは所定枚数が所定順序で位置合わせして積層され
、この上に上述した複数枚の区分枠部材3用のグリーン
シート群が位置合わせして積層され、両グリーンシート
群はホットプレス(ラミネーション)される。ホットプ
レス条1牛は、40〜70°C150〜300 kg 
/ cm 2 が適当である。
Then, a predetermined number of green sheets for the circuit board 2 created as described above are aligned and stacked in a predetermined order, and on top of this, a group of green sheets for the plurality of partition frame members 3 described above are aligned and stacked. Both groups of green sheets are then hot pressed (laminated). One hot-pressed cow weighs 40-70°C, 150-300 kg
/ cm 2 is appropriate.

ラミネーションされた回路基板2用のグリーンシートと
区分枠部材3用のグリーンシートは、比較的低温の焼結
温度、即ち、850〜1000℃のピーク焼結温度で同
時に焼結されて一体化され、前述した重合セラミックス
体1が得られる。
The laminated green sheet for the circuit board 2 and the green sheet for the partition frame member 3 are simultaneously sintered and integrated at a relatively low sintering temperature, that is, a peak sintering temperature of 850 to 1000°C, The polymerized ceramic body 1 described above is obtained.

然る後、重合セラミックス体1の各窓部4において露呈
した前記接続パターン6上に、ディスペンサーによって
導電性接着剤(図示せず)が塗布され、この上に公知の
ダイボンディングマシンによって持ちきたらされたLE
D5が位置決め・ボンディングされる。そして、この後
ワイヤボンディングマシンによるAu線を用いたワイヤ
ボンディングが行われる。第2図及び第3図はこの工程
終了後の状態を示している。
After that, a conductive adhesive (not shown) is applied by a dispenser onto the connection pattern 6 exposed in each window 4 of the polymerized ceramic body 1, and then a conductive adhesive (not shown) is applied by a known die bonding machine. LE
D5 is positioned and bonded. Thereafter, wire bonding using an Au wire is performed using a wire bonding machine. FIGS. 2 and 3 show the state after this process is completed.

上記の如く窓部4内に位置付けられたLED5は、必要
に応じ、第1図に示すように窓部4内にLED5を覆う
程度に充填された透光性樹脂11によって埋設される。
The LED 5 positioned within the window 4 as described above is embedded, if necessary, with a translucent resin 11 filled within the window 4 to an extent that covers the LED 5, as shown in FIG.

該透光性樹脂は、例えば透明もしくは白色半透明のシリ
コン系樹脂等が用いられており、LED5の光をその内
部で拡散できるようになっている。12は、化粧シート
兼用の光拡散フィルムで、接着剤13によって前記区分
枠部材3の上面に貼着されている。このように2重に上
記した光拡散部材11.12を設けると、LED5から
区分枠部材3の上面までの距離が短くても、各ドツトの
発光は均一なものとして視認できる。また、LED5と
光拡散フィルム12との開が極く短いので、発光効率は
従前に比して極めて良好なものとなる上、前記した視野
角も第1図示のように従前よりも大きな視野角βとなり
、ディスプレイを斜めから見た時の視認性も高まるよう
になっている。
The light-transmitting resin is, for example, a transparent or white semi-transparent silicone resin, and is capable of diffusing the light from the LED 5 inside. Reference numeral 12 denotes a light diffusion film which also serves as a decorative sheet, and is adhered to the upper surface of the partitioning frame member 3 with an adhesive 13. By providing the above-mentioned light diffusing members 11 and 12 in duplicate in this way, even if the distance from the LED 5 to the upper surface of the dividing frame member 3 is short, the light emitted from each dot can be visually recognized as uniform. In addition, since the distance between the LED 5 and the light diffusion film 12 is extremely short, the luminous efficiency is much better than before, and the viewing angle is also larger than before, as shown in the first diagram. β, which also improves visibility when viewing the display from an angle.

なお第1図において、14は、アルミ等の金属製の放熱
板を兼ねる支持板で、前記回路基板2の裏面に適宜手段
で取付られていて、回路基板2の裏面に形成される外部
接続用のパターン部を除いた部位、即ち、絶縁コートさ
れた部1立に密着している。
In FIG. 1, reference numeral 14 denotes a support plate made of metal such as aluminum that also serves as a heat dissipation plate, and is attached to the back surface of the circuit board 2 by appropriate means, and is used for external connections formed on the back surface of the circuit board 2. It is in close contact with the part other than the pattern part, that is, the insulating coated part.

上述したように本発明によれば回路基板2と区分枠部材
3とがグリーンシート!J¥層焼結法によって一体とな
っているので、区分枠部材3の厚みを可及的に薄くし、
且つ窓部4の配設ピッチを細かくしてもこの形成は容易
であり、また8v械的強度も保証できる。よって、従前
に較べて光ドットの配列を飛躍的に向上でき、高解像度
のマトリックスディスプレイが提供できる。また、この
ように高密度化した結果、隣接窓部4.4間の壁は薄く
なるが、区分枠部材3が用いられるLED5の発光色に
対する光吸収特性をもつ有色セラミックスであるので、
隣接8部間で光が漏れる虞もなく表示品質を劣化させる
こともない。
As described above, according to the present invention, the circuit board 2 and the division frame member 3 are green sheets! Since it is integrated by the J\ layer sintering method, the thickness of the dividing frame member 3 is made as thin as possible,
Moreover, even if the arrangement pitch of the window portions 4 is made fine, this formation is easy, and 8V mechanical strength can be guaranteed. Therefore, the arrangement of optical dots can be dramatically improved compared to before, and a high-resolution matrix display can be provided. Furthermore, as a result of this high density, the walls between the adjacent window parts 4.4 become thin, but since the dividing frame member 3 is made of colored ceramics that have light absorption characteristics for the emitted light color of the LED 5,
There is no risk of light leaking between the eight adjacent sections, and there is no deterioration of display quality.

(実験例−1) 回路基板2用のグリーンシートの材料として、アルミナ
粉末50iif1部、ガラスフリット39重量部、バイ
ンダとしてのアクリル酸系樹脂1o!置部、溶剤として
のキシレン50重量部、可塑剤としてのDBP (ジブ
チルフタレート)2.5 重量部、分散剤1重量部を用
意し、これらをボールミルにて充分に混練してスラリー
を作成した。上記ガラスフリットはSiC2、Pb0、
CaOを主成分とするものを用いた。
(Experimental Example-1) As materials for the green sheet for the circuit board 2, 1 part of alumina powder 50IIF, 39 parts by weight of glass frit, and 1O of acrylic acid resin as a binder! 50 parts by weight of xylene as a solvent, 2.5 parts by weight of DBP (dibutyl phthalate) as a plasticizer, and 1 part by weight of a dispersant were prepared and thoroughly kneaded in a ball mill to prepare a slurry. The above glass frit is SiC2, Pb0,
A material containing CaO as a main component was used.

上記スラリーをドクターブレード法によってキャリアフ
ィルム上に塗付し、これを固化させてグリーンシートを
作製した。このグリーンシートの厚みは、焼結後1枚が
0.2mm厚となるように設定された。作製されたグリ
ーンシートは各層用毎に、パンチングによってガイド穴
とスルーホールが穿設された後、Ag−Pd系ペースト
によるスクリーン印刷によって選択的メタライズを施し
た。
The above slurry was applied onto a carrier film by a doctor blade method and solidified to produce a green sheet. The thickness of each green sheet was set to be 0.2 mm after sintering. Guide holes and through holes were formed in each layer of the produced green sheet by punching, and then selective metallization was performed by screen printing using Ag-Pd paste.

但し、前述したワイヤボンディング用の接続パターン部
分のみは、Auペーストによる印刷を施した。
However, only the connection pattern portion for wire bonding described above was printed with Au paste.

一方、区分枠部材3用のグリーンシートの材料として、
前記したガラスフリット以外は、総べて回路基板2用の
グリーンシートと同一材料を同一重量部で3組用意した
。これに加えるガラスフリッI・は前述と同様組成のも
のに、CuO粉末を添加し、ガラス成分とCuOを加え
たものを100ffij1部とした時、CuOが2.5
wt%、5 wt%、10wt%としたものを3種用意
した。これを前記組成、重量部の他の成分中に、CuO
を2.5wt%含むガラスフリットについては38.5
 重量部、同しくCuOを5wt%含むガラスフリット
については38重量部、同しくCuOをiowt%含む
ガラスフリットについては37重量部を混合し、同一手
法で別途混練して31千類のスラリーを作成した。この
3種類のスラリーから同一手法によって3種類のグリー
ンシートを作成した。各グリーンシートの厚みは焼結後
に1枚の厚みが0.2mm厚となるように設定した。各
種類のグリーンシートは各々ガイド穴を穿設後、各種類
毎に5枚づつを積層した状態で前記窓部4を穿設した。
On the other hand, as a material for the green sheet for the division frame member 3,
Except for the glass frit mentioned above, three sets of green sheets made of the same material as the green sheet for the circuit board 2 and the same weight parts were prepared. The glass frit I added to this is the same composition as above, with the addition of CuO powder, and when the glass component and CuO are added to 1 part of 100ffij, CuO is 2.5
Three types were prepared: wt%, 5 wt%, and 10 wt%. This was added to the above composition, parts by weight of other components, CuO
38.5 for glass frit containing 2.5 wt%
38 parts by weight for a glass frit containing 5 wt% of CuO and 37 parts by weight for a glass frit containing iowt% of CuO were mixed separately using the same method to create 31,000 types of slurry. did. Three types of green sheets were created from these three types of slurry using the same method. The thickness of each green sheet was set so that each green sheet had a thickness of 0.2 mm after sintering. After drilling guide holes in each type of green sheet, the window portion 4 was punched in a state in which five sheets of each type were stacked.

窓部4の直径は2IIIII+とし、各窓部4は縦横2
.’5mmピッチで等間隔に穿設した。
The diameter of the window portion 4 is 2III+, and each window portion 4 has a length and a width of 2.
.. The holes were drilled at equal intervals with a pitch of 5 mm.

上述した如く作成した回路基Fi2用のグリーンシート
を所定順序に位置合せにして5枚積層したものそれぞれ
に、前記5枚合せにした3種類のグリーンシート群をそ
れぞれ位置合せして積層し、50℃、150kg/am
2の条件でホットプレスし、ラミネーションを行なった
。この後、 10枚のグリーンシートが一体化した積層
グリーンシート群を外形抜きした後、第4図に示す温度
プロファイル、即ち、 500℃・・・50分、ピーク
温度900℃・・・10分の条件で焼結した。
Five green sheets for the circuit board Fi2 prepared as described above were aligned in a predetermined order and laminated, and three types of green sheet groups made up of the five sheets were aligned and laminated, respectively. °C, 150kg/am
Hot pressing was performed under the conditions of 2 and lamination was performed. After that, after cutting out the outer shape of the laminated green sheet group in which 10 green sheets were integrated, the temperature profile shown in Fig. 4 was applied, namely, 500°C...50 minutes, peak temperature 900°C...10 minutes. Sintered under the following conditions.

こうして得られた回路基板2と区分枠部材3とが完全一
体化された前記した重合セラミック体1は、徹細ピッチ
の窓部4配列のものが精度良く形成され、且つ機械的強
度も充分保証できた。但し、カラス中に前記CuOが1
0wt%あるものを用いたものは、回路基板2用と区分
枠部材3用の両グリーンシートの収縮率の差により実用
上無視できぬソリが発生するケースが多かった。他の2
種類は、ソリについては概ねクリアできた。
The thus obtained polymeric ceramic body 1 in which the circuit board 2 and the partitioning frame member 3 are completely integrated has a highly precise arrangement of 4 windows with a fine pitch, and has sufficient mechanical strength. did it. However, if the CuO in the crow is 1
In the case where 0 wt% was used, there were many cases in which warpage, which could not be ignored in practice, occurred due to the difference in shrinkage rate between the green sheets for the circuit board 2 and the partition frame member 3. the other 2
As for the types, I was able to clear most of the sleds.

また、こうして作成した3種類の重合セラミックス体l
の区分枠部材3はCu0O量が増すにつれて濃くなる青
色を呈し、白基板(回路基板2)の光透過率を100%
とした時、ガラス中に前記した割合てCuOを含む各区
分枠部材3の光透過率は第5図に示したような特性とな
った。第5図から明らかなように光透過率のもつとも大
きい、ガラス中にCuOを2.5 wt%含む区分枠部
t第3にあっても、600nm以上の長波長域ではその
光透過率は20%以下であり、赤色領域では充分にその
吸光性を発揮することが確認できた。
In addition, the three types of polymerized ceramic bodies created in this way
The division frame member 3 exhibits a blue color that becomes darker as the amount of Cu0O increases, and the light transmittance of the white board (circuit board 2) is 100%.
When this was done, the light transmittance of each division frame member 3 containing CuO in the above-mentioned proportion in the glass had characteristics as shown in FIG. As is clear from Fig. 5, even in the third division frame part t, which has a high light transmittance and contains 2.5 wt% of CuO in the glass, its light transmittance is 20% in the long wavelength range of 600 nm or more. % or less, and it was confirmed that the light absorbing property was sufficiently exhibited in the red region.

上記したガラス中にCuOを2.5’vVt%もしくは
5wt%含む区分枠部材3をもつ各重合セラミック体l
の各窓部4内において、0.5mm角、高さ0.3mm
の赤色発光のGaP−LED (チップ)5を公知手法
のダイボンディングとワイヤボンディングにより、前記
接続パターン6.7に接続し、各窓部4内にシリコーン
樹脂よりなる前記透光性樹脂11を充填し、然る後、光
拡散フィルム12を貼着してLEDマトリクスディスプ
レイとして仕上げた。
Each polymeric ceramic body l having a dividing frame member 3 containing 2.5'vVt% or 5wt% of CuO in the above-mentioned glass.
In each window part 4, 0.5 mm square and 0.3 mm high.
A red-emitting GaP-LED (chip) 5 is connected to the connection pattern 6.7 by known methods of die bonding and wire bonding, and each window portion 4 is filled with the translucent resin 11 made of silicone resin. After that, a light diffusion film 12 was attached to complete the LED matrix display.

得られたマトリクスディスプレイは、何れも隣接ドツト
開において光漏れのない、超小型・高密度のディスプレ
イとなり、視野角も拡がった。
The resulting matrix displays are ultra-compact, high-density displays with no light leakage between adjacent dots, and have wide viewing angles.

(実験例−2) 回路基板2用のグリーンシートは、前記実験例−1と同
一材料、同一組成比にて厚みを含め総べて同等に仕上げ
た。
(Experimental Example 2) The green sheet for the circuit board 2 was made of the same material and the same composition ratio as in Experimental Example 1, and was finished to be the same in all aspects including the thickness.

区分枠部材3用のグリーンシートの材料として、カラス
フリット以外は総べて回路基板2用のそれと同一材料を
同一重量部で2組用意した。これに加えるガラスフリッ
トは前述した5I02、PbO1CaOを主成分とした
ものに、Mn2O3粉末を添加し、ガラス成分とMn2
O3を加えたものを100重量部とした時、Mn、、0
3が2wt%、同しく7.7wt%としたものを2種用
意した。これを前ga組成、重量部の他の成分中に、M
n203を2 W t%含むガラスフリットについては
、 38.5  !j1部、同じくMn2O3を7.7
W t%含むカラスフリッI・については37重量部を
混合し、同一手法にて別途2種類のスラリーを作成した
。各スラリー毎に実験例−1と同様にグリーンシートを
前記と同一厚みて作成し、2種のグリーンシートを5枚
づつ積層して、実験例−1と同一の窓部4を穿設した。
As the material for the green sheet for the partitioning frame member 3, two sets of the same material and the same weight parts as those for the circuit board 2 except for the crow frit were prepared. The glass frit to be added to this is made by adding Mn2O3 powder to the above-mentioned 5I02, PbO1CaO as the main component, and combining the glass components and Mn2
When O3 is added to 100 parts by weight, Mn, 0
Two types were prepared in which 3 was 2 wt% and 7.7 wt%. M
For a glass frit containing 2 W t% n203, 38.5! j1 part, also 7.7 Mn2O3
37 parts by weight of Karasu Frit I. containing Wt% were mixed and two types of slurries were separately prepared using the same method. For each slurry, green sheets were prepared with the same thickness as in Experimental Example 1, five of each of the two types of green sheets were laminated, and the same windows 4 as in Experimental Example 1 were bored.

以下、実験例−1と総べて同一条件のラミネーション、
焼結工程を経て、10枚重ねの2種の前記重合セラミッ
クス体1を得た。得られた重合セラミック体1は、微細
ピッチの窓部4が精度良く形成されており、機械的強度
も充分に保証できた。
Below, lamination under all the same conditions as Experimental Example-1,
Through the sintering process, two kinds of the above-mentioned polymeric ceramic bodies 1 were obtained in a stack of 10 sheets. In the obtained polymeric ceramic body 1, the window portions 4 with fine pitches were formed with high precision, and the mechanical strength was also sufficiently guaranteed.

但し、ガラス成分中に前記Mn2O3が7.7 wt%
あるものは、若干のソリが発生した。
However, the Mn2O3 content in the glass component is 7.7 wt%.
Some warping occurred.

こうして作製された2種類の重合セラミックス体10区
分枠部材3は、Mn2O3が増すにつれて濃くなる赤色
を呈し、白基板(回路基板2)の光透過率を100%と
した時、ガラス中に前記した割合でMn2O3を含む2
種の区分枠部材3の光透過特性は第6図示のような特性
となった。同図から明らかなように、ガラス中にMn2
O3を2wt%含むものであっても、可視光域ては略3
%以下の光透過率となって、可視光域総べてに充分以上
の光吸光性があることが確認された。よってMn2O3
の添加量はこれ以下の数値であっても吸光度(アブソー
バンス)に関しては充分であると予想できる。
The thus produced two types of polymeric ceramic body 10 division frame member 3 exhibits a red color that becomes deeper as the Mn2O3 content increases, and when the light transmittance of the white board (circuit board 2) is 100%, the above-mentioned color in the glass is displayed. 2 containing Mn2O3 in proportion
The light transmission characteristics of the seed sorting frame member 3 were as shown in FIG. As is clear from the figure, Mn2 in the glass
Even if it contains 2wt% O3, the visible light range is about 3%.
% or less, and it was confirmed that there was more than sufficient light absorption in the entire visible light range. Therefore, Mn2O3
It can be expected that even if the amount of addition is less than this value, it will be sufficient in terms of absorbance.

また以下実験例と同様にLED5 (但し、各発光色の
LED5をとり混ぜて)を、ボンディングした後、透光
性樹脂11を充填し、光拡散フィルム12を貼着してデ
ィスプレイとして仕上げた。
Further, in the same manner as in the experimental example, the LEDs 5 (however, LEDs 5 of each emission color were mixed) were bonded, then filled with a translucent resin 11, and a light diffusion film 12 was attached to complete the display.

得られたディスプレイは可視光域て異なる発光色のLE
D総てについて、隣接ドツト間で光漏れのない、且つ超
小型・高密度で視野角の広いものとなった。
The resulting display is an LE display with different luminescent colors in the visible light range.
For all D dots, there was no light leakage between adjacent dots, and the dots were ultra-compact, high-density, and had a wide viewing angle.

なお、以上の実施例、実験例においては、LEDマトリ
クスディスプレイについて述べたが、本発明をLED除
電アレイ等に適用し得ること勿論である。
Note that in the above embodiments and experimental examples, an LED matrix display was described, but it goes without saying that the present invention can be applied to an LED static eliminator array and the like.

〈効果〉 以上のように本発明によれば、超小型・高密度のLED
7トリツクスデイスプレイ、LEDアレイ等を精度良く
提供でき、また、隣接ドツト間で光漏れのない、且つデ
ィスプレイにあっては視野角の広い製品を提供でき、そ
の産業的価値は多大である。
<Effects> As described above, according to the present invention, an ultra-small and high-density LED
It is possible to provide 7-trix displays, LED arrays, etc. with high precision, and it is also possible to provide products with no light leakage between adjacent dots and a wide viewing angle for displays, which has great industrial value.

【図面の簡単な説明】[Brief explanation of drawings]

第1図〜第6図は本発明の実施例に係り、第1図はLE
Dマトリクスディスプレイの要部拡大断面図、第2図は
製造過程の要部拡大断面図、第3図は第2図の状態の要
部拡大平面図、第4図は実験例における焼結温度条件を
示す説明図、第5図および第6図は異なる実験例による
区分枠部材の光透過率特性を示すグラフ図、第7図は代
表的なLEDの発光特性を示すグラフ図、第80および
第9図は従来のLEDマトリクスディスプレイに係り、
第8図は斜視図、第9図は要部拡大断面図である。 1・・・・・・基板・区分枠重合セラミックス部材(重
合セラミックス体) 2・・・・・・回路基板 3・・・・・・区分枠部材 4・・・・・・窓部 5・・・・・・発光ダイオード(LED)6.7・・・
・・・接続パターン 11・・・・・・透光性樹脂
1 to 6 relate to embodiments of the present invention, and FIG. 1 is an LE
Figure 2 is an enlarged cross-sectional view of the main parts of the D-matrix display, Figure 2 is an enlarged cross-sectional view of the main parts of the manufacturing process, Figure 3 is an enlarged plan view of the main parts in the state shown in Figure 2, and Figure 4 is the sintering temperature conditions in the experimental example. 5 and 6 are graphs showing the light transmittance characteristics of dividing frame members according to different experimental examples. FIG. 7 is a graph showing the light emission characteristics of typical LEDs. Figure 9 relates to a conventional LED matrix display.
FIG. 8 is a perspective view, and FIG. 9 is an enlarged sectional view of main parts. 1...Substrate/dividing frame polymeric ceramic member (polymerized ceramic body) 2...Circuit board 3...Dividing frame member 4...Window part 5... ...Light emitting diode (LED)6.7...
... Connection pattern 11 ... Translucent resin

Claims (4)

【特許請求の範囲】[Claims] (1)基板上に配置・接続される多数のチップ状の発光
ダイオードを、区分枠部材の窓部内に1個もしくは数個
づつ配設した構成において、前記基板及び前記区分枠部
材をグリーンシート積層焼結法によって同時焼結して一
体構造化し、前記基板の少なくとも表面層は白色セラミ
ックスとすると共に、前記区分枠部材は前記発光ダイオ
ードの発光色を吸収する有色セラミックスとしたことを
特徴とする発光ダイオード複合組立体。
(1) In a configuration in which a large number of chip-shaped light emitting diodes are arranged and connected on a substrate, one or several chip-shaped light emitting diodes are arranged in each window of a partitioning frame member, and the substrate and the partitioning frame member are laminated with green sheets. The light emitting device is characterized in that the substrate is simultaneously sintered to form an integral structure by a sintering method, and at least the surface layer of the substrate is made of white ceramics, and the partition frame member is made of colored ceramics that absorbs the color of light emitted from the light emitting diode. Diode composite assembly.
(2)前記区分枠部材は、アルミナと混合されるガラス
成分中に、可視光領域に吸収分光特性をもつ遷移元素イ
オンを酸化物の形で含むことを特徴とする特許請求の範
囲第1項記載の発光ダイオード複合組立体。
(2) The dividing frame member is characterized in that the glass component mixed with alumina contains transition element ions in the form of oxides that have absorption spectral characteristics in the visible light region. A light emitting diode composite assembly as described.
(3)前記遷移元素イオンは、Cu^2^+、Mn^3
^+、Co^2^+、Ni^2^+、Ti^3^+、V
^3^+、Cr^3^+、Fe^2^+、Fe^3^+
等の内の少なくとも1種または2種以上であることを特
徴とする特許請求の範囲第2項記載の発光ダイオード複
合組立体。
(3) The transition element ions are Cu^2^+, Mn^3
^+, Co^2^+, Ni^2^+, Ti^3^+, V
^3^+, Cr^3^+, Fe^2^+, Fe^3^+
The light emitting diode composite assembly according to claim 2, characterized in that the light emitting diode composite assembly is at least one or two or more of the following.
(4)前記遷移元素の酸化物はこれが単一種の酸化物で
ある場合、前記ガラス成分中に10wt%以下の割合で
配合されていることを特徴とする特許請求の範囲第2項
記載の発光ダイオード複合組立体。
(4) The light emission according to claim 2, characterized in that when the oxide of the transition element is a single type of oxide, it is blended in the glass component at a ratio of 10 wt% or less. Diode composite assembly.
JP62046999A 1987-03-02 1987-03-02 Composite assembly of light emitting diode Pending JPS63226080A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62046999A JPS63226080A (en) 1987-03-02 1987-03-02 Composite assembly of light emitting diode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62046999A JPS63226080A (en) 1987-03-02 1987-03-02 Composite assembly of light emitting diode

Publications (1)

Publication Number Publication Date
JPS63226080A true JPS63226080A (en) 1988-09-20

Family

ID=12762889

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62046999A Pending JPS63226080A (en) 1987-03-02 1987-03-02 Composite assembly of light emitting diode

Country Status (1)

Country Link
JP (1) JPS63226080A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004228170A (en) * 2003-01-20 2004-08-12 Matsushita Electric Works Ltd Wiring board and light emitting device
JP2005035864A (en) * 2002-10-15 2005-02-10 Kenichiro Miyahara Substrate for mounting luminous element
JP2005191445A (en) * 2003-12-26 2005-07-14 Sanyo Electric Co Ltd Package for light-emitting element, and manufacturing method thereof
JP2006049524A (en) * 2004-08-03 2006-02-16 Nichia Chem Ind Ltd Light emitting device and manufacturing method thereof
JP2006140247A (en) * 2004-11-11 2006-06-01 Sony Corp Wiring connection method and display apparatus and manufacturing method thereof
JP2006216764A (en) * 2005-02-03 2006-08-17 Ngk Spark Plug Co Ltd Wiring board for packaging light-emitting device
WO2006117711A1 (en) * 2005-04-29 2006-11-09 Koninklijke Philips Electronics N.V. Rgb thermal isolation substrate
JP2007318179A (en) * 2000-12-06 2007-12-06 Ibiden Co Ltd Substrate for mounting ic chip
JP2012049565A (en) * 2011-11-21 2012-03-08 Sharp Corp Electronic device
CN102709407A (en) * 2012-05-25 2012-10-03 瑞声声学科技(深圳)有限公司 Method for manufacturing an LED (light-emitting diode) packaging retaining wall
US8421109B2 (en) 2003-04-01 2013-04-16 Sharp Kabushiki Kaisha Light-emitting apparatus package, light-emitting apparatus, backlight apparatus, and display apparatus

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4866383A (en) * 1971-12-13 1973-09-11
JPS5712769B2 (en) * 1977-03-09 1982-03-12

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4866383A (en) * 1971-12-13 1973-09-11
JPS5712769B2 (en) * 1977-03-09 1982-03-12

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007318179A (en) * 2000-12-06 2007-12-06 Ibiden Co Ltd Substrate for mounting ic chip
JP2005035864A (en) * 2002-10-15 2005-02-10 Kenichiro Miyahara Substrate for mounting luminous element
JP2004228170A (en) * 2003-01-20 2004-08-12 Matsushita Electric Works Ltd Wiring board and light emitting device
US11424210B2 (en) 2003-04-01 2022-08-23 Xiamen San'an Optoelectronics Co., Ltd. Light-emitting package
US11476227B2 (en) 2003-04-01 2022-10-18 Xiamen San'an Optoelectronics Co., Ltd. Light-emitting apparatus
US9768153B2 (en) 2003-04-01 2017-09-19 Sharp Kabushiki Kaisha Light-emitting apparatus
US10741533B2 (en) 2003-04-01 2020-08-11 Xiamen San'an Optoelectronics Co., Ltd. Light-emitting package
US10490535B2 (en) 2003-04-01 2019-11-26 Xiamen San'an Optoelectronics Co., Ltd. Light-emitting apparatus
US8421109B2 (en) 2003-04-01 2013-04-16 Sharp Kabushiki Kaisha Light-emitting apparatus package, light-emitting apparatus, backlight apparatus, and display apparatus
US8629476B2 (en) 2003-04-01 2014-01-14 Sharp Kabushiki Kaisha Light-emitting apparatus package, light-emitting apparatus, backlight apparatus, and display apparatus
US9241375B2 (en) 2003-04-01 2016-01-19 Sharp Kabushiki Kaisha Light-emitting apparatus package, light-emitting apparatus, backlight apparatus, and display apparatus
JP2005191445A (en) * 2003-12-26 2005-07-14 Sanyo Electric Co Ltd Package for light-emitting element, and manufacturing method thereof
JP2006049524A (en) * 2004-08-03 2006-02-16 Nichia Chem Ind Ltd Light emitting device and manufacturing method thereof
JP4617761B2 (en) * 2004-08-03 2011-01-26 日亜化学工業株式会社 Method for manufacturing light emitting device
JP2006140247A (en) * 2004-11-11 2006-06-01 Sony Corp Wiring connection method and display apparatus and manufacturing method thereof
JP2006216764A (en) * 2005-02-03 2006-08-17 Ngk Spark Plug Co Ltd Wiring board for packaging light-emitting device
US7952112B2 (en) 2005-04-29 2011-05-31 Philips Lumileds Lighting Company Llc RGB thermal isolation substrate
WO2006117711A1 (en) * 2005-04-29 2006-11-09 Koninklijke Philips Electronics N.V. Rgb thermal isolation substrate
JP2012049565A (en) * 2011-11-21 2012-03-08 Sharp Corp Electronic device
CN102709407A (en) * 2012-05-25 2012-10-03 瑞声声学科技(深圳)有限公司 Method for manufacturing an LED (light-emitting diode) packaging retaining wall

Similar Documents

Publication Publication Date Title
US20200411732A1 (en) Semiconductor light-emitting device
KR100954657B1 (en) Low temperature co-fired ceramic ltcc tape compositions, light-emitting diode led modules, lighting devices and methods of forming thereof
DE112015002289B4 (en) Solid state lighting devices having a color point mismatched to a blackbody locus
EP1627179B1 (en) Method and apparatus for led panel lamp systems
DE69702929T4 (en) LIGHT-EMITTING DEVICE AND DISPLAY DEVICE
EP1439586B1 (en) Light-emitting semiconductor component with luminescence conversion element
US7192164B2 (en) Light-emitting apparatus and illuminating apparatus
CN108242442A (en) Light-emitting device
EP2182783A2 (en) Light-emitting module and illuminating apparatus
JP2008518461A (en) Solid metal block semiconductor light emitting device mounting substrate and package including cavity and heat sink and method for packaging them
DE19625622A1 (en) Light radiating semiconductor constructional element
DE202009019173U1 (en) Light-emitting device and resin housing and resin moldings
JP2009177106A (en) Ceramic member for semiconductor light-emitting apparatus, method of manufacturing ceramic member for semiconductor light-emitting apparatus, semiconductor light-emitting apparatus, and display
DE102016204604A1 (en) Illumination module, single-body type encapsulated substrate illumination device and method of manufacturing the illumination module
JP2007121613A (en) Optical reflector, wiring substrate for mounting light emission element, and light emission device
JP2008218486A (en) Light emitting device
KR20150007885A (en) Phosphor and light emitting device having thereof
JPS63226080A (en) Composite assembly of light emitting diode
DE102017125413A1 (en) Light emitting device and method for its production
DE102017104606A1 (en) Light-emitting apparatus and lighting apparatus
JP2001177156A (en) Side emitting led lamp
JP2007116117A (en) Light emitting device
CN109616567A (en) Light emitting device
US20230207752A1 (en) Light-emitting device and method of manufacturing the same
DE102016102778A1 (en) Light-emitting device and lighting device