JP2006049524A - Light emitting device and manufacturing method thereof - Google Patents

Light emitting device and manufacturing method thereof Download PDF

Info

Publication number
JP2006049524A
JP2006049524A JP2004227305A JP2004227305A JP2006049524A JP 2006049524 A JP2006049524 A JP 2006049524A JP 2004227305 A JP2004227305 A JP 2004227305A JP 2004227305 A JP2004227305 A JP 2004227305A JP 2006049524 A JP2006049524 A JP 2006049524A
Authority
JP
Japan
Prior art keywords
light emitting
emitting element
light
emitting device
opening region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004227305A
Other languages
Japanese (ja)
Other versions
JP4617761B2 (en
Inventor
Kazuhiro Kamata
和宏 鎌田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichia Chemical Industries Ltd
Original Assignee
Nichia Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichia Chemical Industries Ltd filed Critical Nichia Chemical Industries Ltd
Priority to JP2004227305A priority Critical patent/JP4617761B2/en
Publication of JP2006049524A publication Critical patent/JP2006049524A/en
Application granted granted Critical
Publication of JP4617761B2 publication Critical patent/JP4617761B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/93Batch processes
    • H01L24/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L24/97Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being connected to a common substrate, e.g. interposer, said common substrate being separable into individual assemblies after connecting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/156Material
    • H01L2924/15786Material with a principal constituent of the material being a non metallic, non metalloid inorganic material
    • H01L2924/15787Ceramics, e.g. crystalline carbides, nitrides or oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • H01L2924/1815Shape

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Led Device Packages (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To uniformly form a resin containing fluorescence having a predetermined thickness around a light emitting device. <P>SOLUTION: This method comprises the steps of forming a frame 150 which has an opening region 152 comprising an opening with the size of the light emitting device 110 coated with a phosphor beforehand, on the base on which the light emitting device 110 to be mounted so that the opening region 152 surrounds the location wherein the light emitting device 110 is to be disposed; mounting the light emitting device 110 at about the center of the opening region 152, so that a nearly uniform gap corresponding to the thickness of the phosphor film is formed between the light emitting device 110 and the opening region 152; and coating the light emitting device 110 with a cure composition containing the phosphor, by filling it into the gap formed between the light emitting device 110 and the opening region 152. Thus, the light emitting device 110 is accurately disposed at the center of the opening region 152 of the frame 150, and the light emitting device 110 can be coated with the phosphor of a nearly uniform thickness around it to reduce the unevenness of the light distribution and the chrominance from the light emitting device. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、発光装置の製造方法及び発光装置に関する。   The present invention relates to a method for manufacturing a light emitting device and a light emitting device.

発光素子に半導体素子を用いた発光装置は、小型で電力効率が良く鮮やかな色の発光をする。また、半導体素子である発光素子は球切れ等の心配がない。さらに初期駆動特性が優れ、振動やオン・オフ点灯の繰り返しに強いという特徴を有する。このような優れた特性を有するため、発光ダイオード(LED)、レーザーダイオード(LD)等の半導体発光素子を用いる発光装置は、各種の光源として利用されている。   A light-emitting device using a semiconductor element as a light-emitting element emits light with a small color, high power efficiency, and vivid colors. In addition, a light emitting element which is a semiconductor element does not have a concern about a broken ball. Further, it has excellent initial driving characteristics and is strong against vibration and repeated on / off lighting. Because of such excellent characteristics, light-emitting devices using semiconductor light-emitting elements such as light-emitting diodes (LEDs) and laser diodes (LDs) are used as various light sources.

特に、GaN系化合物半導体を利用した高輝度の青色発光のLEDが開発され、その輝度性を活用して白色発光の発光装置が実現されている。この白色発光の発光装置は、青色に発光する発光素子の周りを黄緑色に発光する蛍光物質を含む樹脂で被覆して、白色光を得るというものである。   In particular, a high-luminance blue light-emitting LED using a GaN-based compound semiconductor has been developed, and a white light-emitting device has been realized by utilizing the luminance. In this white light emitting device, a light emitting element that emits blue light is covered with a resin containing a fluorescent material that emits yellow green light to obtain white light.

このような発光装置を製造する手段として、発光素子を波長変換部材で被覆する必要がある。発光素子への波長変換部材の被膜の形成方法として、ポッティング手段が知られている(例えば特許文献1参照)。図5は、ポッティング手段を用いた従来の被膜形成方法を示す模式的工程断面図である。図5に示すポッティング手段を用いた発光装置300は、所定の形状のキャビティ311内に、フリップチップ型の発光素子310をフェイスダウン実装している。発光素子310の上面及び側面は、蛍光物質316を含む被膜312で被覆されている。発光素子310はリード電極315と電気的に接続されている。このリード電極315はキャビティ311と一体成型されている。この発光装置300は、あらかじめ発光素子310をリード電極315上にフェイスダウン実装させている。この発光素子310の上面に、樹脂313を細管314から突出させる。この突出された樹脂314が、発光素子310の上面及び側面をほぼ完全に被覆したら投入を止め、樹脂314を硬化させる。このようにして発光素子310の上面及び側面に被膜312を形成する。   As a means for manufacturing such a light emitting device, it is necessary to coat the light emitting element with a wavelength conversion member. Potting means is known as a method for forming a film of a wavelength conversion member on a light emitting element (see, for example, Patent Document 1). FIG. 5 is a schematic process cross-sectional view showing a conventional film forming method using potting means. A light emitting device 300 using the potting means shown in FIG. 5 has a flip chip type light emitting element 310 mounted face-down in a cavity 311 having a predetermined shape. The top and side surfaces of the light emitting element 310 are covered with a film 312 containing a fluorescent material 316. The light emitting element 310 is electrically connected to the lead electrode 315. The lead electrode 315 is integrally formed with the cavity 311. In the light emitting device 300, the light emitting element 310 is mounted face-down on the lead electrode 315 in advance. A resin 313 is projected from the thin tube 314 on the upper surface of the light emitting element 310. When the protruding resin 314 almost completely covers the upper surface and side surfaces of the light emitting element 310, the charging is stopped and the resin 314 is cured. In this manner, the film 312 is formed on the upper surface and the side surface of the light emitting element 310.

しかしながら、上記のようなポッティングにより波長変換部材を被覆すると、発光素子の周囲に蛍光物質が均一に被膜されず、配光色度ムラを生じるという問題があった。すなわち、図6に示すように凹部611に充填された波長変換部材612は、発光素子610の上面と側面付近では厚さが異なるため、発光素子610から発せられる光が外部に放出されるまでに励起する蛍光物質の量も異なり、結果として波長変換の度合いに差が生じることとなる。例えば発光素子610として青色光を発光するGaN系LEDチップ、波長変換部材612として青色光を黄色に変換するYAG系蛍光体とを組み合わせて混色により白色を発光する発光装置の場合、発光素子610の上面ではYAG系蛍光体の量が相対的に少ないため、青色光が波長変換される割合も減少してやや青みがかった白色光となる。一方、発光素子610の側面近傍では、上面に比べて相対的にYAG系蛍光体の量が多くなるため、波長変換される割合が多くなってやや黄色がかった白色光となる。この結果、発光装置から発する白色光は、均一とならず、発光素子610の中心近傍で青色っぽくなり、周辺で黄色っぽくなり、配光色度ムラを生じてしまうという問題があった。このような配光色度ムラは、照明として使用する場合に発光品質の低下を招くため、配光色度ムラを抑制して場所によらず均一な白色光等を得ることのできる発光装置が求められている。   However, when the wavelength conversion member is coated by the potting as described above, there is a problem in that the fluorescent material is not uniformly coated around the light emitting element, resulting in uneven light distribution chromaticity. That is, as shown in FIG. 6, the wavelength conversion member 612 filled in the recess 611 has a different thickness between the upper surface and the side surface of the light emitting element 610, so that the light emitted from the light emitting element 610 is emitted to the outside. The amount of the fluorescent substance to be excited is also different, and as a result, a difference occurs in the degree of wavelength conversion. For example, in the case of a light emitting device that emits white light by mixing colors by combining a GaN-based LED chip that emits blue light as the light emitting element 610 and a YAG phosphor that converts blue light into yellow as the wavelength conversion member 612, Since the amount of the YAG phosphor on the upper surface is relatively small, the ratio of the blue light to which the wavelength is converted is reduced, and the light becomes slightly bluish white light. On the other hand, in the vicinity of the side surface of the light emitting element 610, since the amount of YAG phosphor is relatively larger than that of the upper surface, the ratio of wavelength conversion increases and the light becomes slightly yellowish white light. As a result, white light emitted from the light emitting device is not uniform, and becomes blue in the vicinity of the center of the light emitting element 610, and becomes yellowish in the periphery, resulting in uneven light distribution chromaticity. Such light distribution chromaticity unevenness causes a decrease in light emission quality when used as illumination. Therefore, a light emitting device that can suppress light distribution chromaticity unevenness and obtain uniform white light regardless of location. It has been demanded.

このような配光色度ムラを抑制するには、図7に示すように発光素子710の周囲にほぼ均一に蛍光物質716を含有する波長変換部材712を被覆する必要がある。このような被覆を実現する方法としては、図8に示すようなスクリーン印刷が知られている。図8(a)、(b)に示す発光装置400は、発光素子410の上面及び側面を、スクリーン印刷により蛍光物質417を含む被膜412で被覆されている。まず図8(a)に示すように、フリップチップ型の発光素子410は、基板411の上面にフェイスダウン実装する。発光素子410は、基板411に設けられたリード電極415と電気的に接続される。そして、所定の形状に開口された金属製のメタルマスク416を、開口領域の中心に発光素子410が位置するように基板411上に裁置し、さらに蛍光物質417を含む樹脂413を開口領域に供給する。この状態で、ヘラ414で樹脂413を延ばしていき、発光素子410の上面に被膜412を形成する。被膜412を形成した後、メタルマスク416を取り外すことで、図8(b)に示すように発光素子410の上面及び側面に被膜412が形成される。   In order to suppress such light distribution chromaticity unevenness, it is necessary to coat the wavelength conversion member 712 containing the fluorescent material 716 almost uniformly around the light emitting element 710 as shown in FIG. As a method for realizing such coating, screen printing as shown in FIG. 8 is known. In the light emitting device 400 shown in FIGS. 8A and 8B, the upper surface and side surfaces of the light emitting element 410 are covered with a film 412 containing a fluorescent material 417 by screen printing. First, as shown in FIG. 8A, the flip chip type light emitting element 410 is mounted face-down on the upper surface of the substrate 411. The light emitting element 410 is electrically connected to a lead electrode 415 provided on the substrate 411. Then, a metal metal mask 416 opened in a predetermined shape is placed on the substrate 411 so that the light emitting element 410 is positioned at the center of the opening region, and a resin 413 containing a fluorescent material 417 is placed in the opening region. Supply. In this state, the resin 413 is extended with a spatula 414 to form a coating 412 on the upper surface of the light emitting element 410. After the coating 412 is formed, the metal mask 416 is removed, whereby the coating 412 is formed on the upper surface and the side surface of the light emitting element 410 as shown in FIG.

しかしながら、スクリーン印刷方法では多数の発光素子に均一に蛍光物質を塗布することが困難であり、量産性が悪いという欠点があった。量産性よく蛍光物質を塗布するには、同一基板上に多数の発光素子をダイボンディングした状態で、各発光素子の位置に応じて開口領域を多数形成したメタルマスクを裁置してスクリーン印刷を行うこととなる。ここで、一般に発光素子の周囲に被覆する蛍光物質は薄く、例えば30μm程度の膜厚を形成される。したがって、図8(a)に示すように発光素子の周囲にメタルマスクの開口領域を配置する際に、発光素子とメタルマスクの開口領域との間隔も30μm程度となるよう、メタルマスクの開口中心が発光素子の中心とほぼ一致するように正確に位置合わせを行う必要がある。しかしながら、同一基板上に多数の発光素子をダイボンダ等でボンディングしようとすれば、ボンディングの際の位置ずれの誤差が±30μm程度生じてしまう。この結果、基板上にダイボンドされた複数の発光素子それぞれに、図8のような方法でメタルマスクの開口領域を各々位置合わせしようとすれば、ダイボンディングの誤差のためにすべての開口領域で発光素子との中心を一致させることが非常に困難となる。すなわちダイボンディングの誤差によって開口領域の中心に発光素子が位置せず、発光素子と開口領域との間隔が不均一となり、蛍光物質の膜厚を発光素子毎に一定することができなくなる結果、歩留まりが低下するという問題がある。これを回避するには、多数の発光素子に同時にメタルマスクを配置するのでなく、発光素子毎に個別マスクをセットしてスクリーン印刷を行う必要があり、極めて煩雑で量産性が悪化するという問題があった。   However, the screen printing method has a drawback that it is difficult to uniformly apply a fluorescent material to a large number of light emitting elements, and mass productivity is poor. In order to apply a fluorescent substance with high productivity, screen printing is performed by placing a metal mask with a large number of open areas according to the position of each light-emitting element in a state where many light-emitting elements are die-bonded on the same substrate. Will be done. Here, in general, the fluorescent material covering the periphery of the light emitting element is thin, for example, a film thickness of about 30 μm is formed. Therefore, as shown in FIG. 8A, when the opening area of the metal mask is arranged around the light emitting element, the opening center of the metal mask is set so that the distance between the light emitting element and the opening area of the metal mask is about 30 μm. Needs to be accurately aligned so that is substantially coincident with the center of the light emitting element. However, if a large number of light emitting elements are to be bonded on the same substrate with a die bonder or the like, an error in positional deviation during bonding occurs about ± 30 μm. As a result, if each of the plurality of light-emitting elements die-bonded on the substrate is aligned with the metal mask opening area by the method shown in FIG. 8, light is emitted from all the opening areas due to die bonding errors. It becomes very difficult to match the center with the element. That is, the light emitting element is not positioned at the center of the opening area due to an error in die bonding, the distance between the light emitting element and the opening area becomes non-uniform, and the film thickness of the fluorescent material cannot be made constant for each light emitting element. There is a problem that decreases. In order to avoid this, it is necessary to perform screen printing by setting individual masks for each light emitting element instead of arranging metal masks on a large number of light emitting elements at the same time. there were.

一方、所望の膜厚で蛍光剤を含む透光性樹脂を発光素子の周囲に形成する技術として、特許文献2に記載される表面実装型LEDが開発されている。このLEDは、図9に示すように基板911上に配されたLEDチップ910と、LEDチップ910を封止するチップ封止部915a、及びチップ封止部915aの周囲に、溝部915bを介し、その高さをチップ封止部915aの高さより高くして設けられたチップ封止部包囲部915cを有した第1透光性樹脂層915と、蛍光剤を含み、チップ封止部包囲部915cの内側に形成された第2透光性樹脂層916とを備える。これによって、第1透光性樹脂層915の形状により第2透光性樹脂層916の形状が定まるので、第2透光性樹脂層916の厚みを均一にすることができる。   On the other hand, as a technique for forming a translucent resin containing a fluorescent agent with a desired film thickness around a light emitting element, a surface-mounted LED described in Patent Document 2 has been developed. As shown in FIG. 9, the LED includes an LED chip 910 arranged on a substrate 911, a chip sealing portion 915a for sealing the LED chip 910, and a groove 915b around the chip sealing portion 915a. A first light-transmitting resin layer 915 having a chip sealing portion surrounding portion 915c provided with a height higher than that of the chip sealing portion 915a, and a fluorescent agent, the chip sealing portion surrounding portion 915c 2nd translucent resin layer 916 formed inside. Accordingly, the shape of the second light transmissive resin layer 916 is determined by the shape of the first light transmissive resin layer 915, and thus the thickness of the second light transmissive resin layer 916 can be made uniform.

しかしながらこの方法では、発光素子の周囲に2段階で樹脂層を形成するため、製造工数が増えて時間及びコストがかかるという問題があった。すなわち、一旦第1透光性樹脂を充填する型を配置し、樹脂を流し込んだ後、これを硬化させ、さらに第2透光性樹脂を流し込み、硬化させるため、樹脂層成形のための設備及び工程が必然的に増加する。また図9に示すように、発光素子の側面に蛍光剤が配置されない隙間が生じてしまうため、この隙間から漏れる発光素子の光は波長変換されず、発光観測方位によって発光装置の出力光の色度に差が生じる。また、変換効率の面からは発光素子と蛍光物質との距離は近い程好ましいが、図9の構成では発光素子と蛍光物質との間に別の樹脂が介在するため、蛍光物質と発光素子が離間され、変換効率が悪くなるという問題もあった。   However, in this method, since the resin layer is formed in two steps around the light emitting element, there is a problem in that the number of manufacturing steps is increased and it takes time and cost. That is, once a mold for filling the first translucent resin is arranged, and after pouring the resin, this is cured, and further, the second translucent resin is poured and cured. The process inevitably increases. Further, as shown in FIG. 9, a gap where the fluorescent agent is not arranged is formed on the side surface of the light emitting element. Therefore, the light of the light emitting element leaking from the gap is not wavelength-converted, and the color of the output light of the light emitting device depends on the emission observation direction. There is a difference in degrees. Further, from the viewpoint of conversion efficiency, the distance between the light emitting element and the fluorescent material is preferably as short as possible. However, in the configuration of FIG. 9, another resin is interposed between the light emitting element and the fluorescent material. There was also a problem that the conversion efficiency deteriorated due to separation.

加えて、発光素子の上面に電極が表出するフェイスアップ実装においては、ボンディングした後に蛍光体層を塗布しているため、スクリーン印刷を利用するとボンディングしたワイヤ等が邪魔になるという問題もある。また、蛍光体層がワイヤの接続部分等に接触する結果、導電性が低下する等信頼性を損なう恐れもあった。
特開2002−134792号公報 特開2002−252376号公報
In addition, in face-up mounting in which electrodes are exposed on the upper surface of the light-emitting element, since the phosphor layer is applied after bonding, there is a problem that the bonded wire or the like becomes an obstacle when screen printing is used. In addition, as a result of the phosphor layer coming into contact with the connecting portion of the wire, there is a risk that reliability may be impaired such as a decrease in conductivity.
JP 2002-134792 A JP 2002-252376 A

本発明は、このような問題点を解決するためになされたものである。本発明の主な目的は、簡単な構成で発光素子の周囲に一定の膜厚で蛍光物質を被膜することにより、配光色度変化を減少させた発光装置の製造方法及び発光装置を提供することにある。   The present invention has been made to solve such problems. A main object of the present invention is to provide a method of manufacturing a light-emitting device and a light-emitting device in which a change in light distribution chromaticity is reduced by coating a fluorescent material with a constant film thickness around the light-emitting element with a simple configuration. There is.

以上の目的を達成するために本発明の発光装置の製造方法は、発光素子と、発光素子からの発光の一部を異なる波長に変換するよう発光素子の周囲に配置された蛍光物質とを備える発光装置の製造方法であって、予め発光素子に蛍光物質を被膜した状態の大きさに開口された開口領域を形成した枠体を、発光素子を載置する台座上に、発光素子を配置すべき位置を開口領域で囲むように形成する工程と、発光素子と開口領域との間に蛍光物質の膜厚に相当する略一定の空隙が形成されるように、開口領域の略中心に発光素子を載置する工程と、発光素子と開口領域との間に形成された空隙に、蛍光物質を含有する硬化性組成物を充填して発光素子を被覆する工程とを有する。これにより、正確に枠体の開口領域の中心に発光素子を配置して、発光素子の周囲に略均一な厚さで蛍光物質を被膜でき、発光装置の配光色度ムラを低減できる。   In order to achieve the above object, a method for manufacturing a light emitting device of the present invention includes a light emitting element and a fluorescent material disposed around the light emitting element so as to convert a part of light emitted from the light emitting element into a different wavelength. A method of manufacturing a light-emitting device, wherein a frame body in which an opening region is formed in a size that is preliminarily coated with a fluorescent material is disposed on a pedestal on which the light-emitting element is placed. A step of forming the power position so as to be surrounded by the opening region, and a light emitting element substantially at the center of the opening region so that a substantially constant gap corresponding to the film thickness of the fluorescent material is formed between the light emitting element and the opening region. And a step of covering the light emitting device by filling a curable composition containing a fluorescent material into a gap formed between the light emitting device and the opening region. Accordingly, the light emitting element can be accurately arranged at the center of the opening region of the frame body, and the fluorescent material can be coated around the light emitting element with a substantially uniform thickness, and unevenness in light distribution chromaticity of the light emitting device can be reduced.

また、本発明の他の発光装置の製造方法は、枠体に形成された開口領域が、発光素子を開口領域の略中心に配置した際、発光素子の側面とその周囲を区画する開口領域の側壁との間の距離と、発光素子の上面と枠体上面の平面部分との距離が、略等しくなるように設定されている。この構成によって、発光素子を被覆する蛍光物質の膜厚を、発光素子の側面を被覆する蛍光物質と、発光素子の上面を被覆する蛍光物質とが略等しくなるように構成でき、配光色度ムラを低減した均一な出力光を得ることができる。   In addition, according to another method of manufacturing a light emitting device of the present invention, the opening region formed in the frame has an opening region that divides the side surface of the light emitting element and the periphery thereof when the light emitting element is disposed at substantially the center of the opening region. The distance between the side wall and the distance between the upper surface of the light emitting element and the planar portion of the upper surface of the frame is set to be substantially equal. With this configuration, it is possible to configure the fluorescent material covering the light emitting element so that the fluorescent material covering the side surface of the light emitting element and the fluorescent material covering the top surface of the light emitting element are substantially equal. Uniform output light with reduced unevenness can be obtained.

さらに、本発明の他の発光装置の製造方法は、枠体が透光性樹脂よりなる。これにより、硬化性組成物の充填後に枠体を除去せずとも発光装置から光を取り出すことができ、製造工程を簡略化できる。   Furthermore, in another method for manufacturing a light emitting device of the present invention, the frame body is made of a translucent resin. Thereby, it is possible to extract light from the light emitting device without removing the frame after filling with the curable composition, and the manufacturing process can be simplified.

さらにまた、本発明の他の発光装置の製造方法は、枠体が、開口領域を同一平面上に所定の間隔で複数形成している。これにより、多数の発光素子を並べて同時に枠体を配置し、生産性よく硬化性組成物を被膜できる。   Furthermore, in another method for manufacturing a light emitting device of the present invention, the frame has a plurality of opening regions formed on the same plane at a predetermined interval. Thereby, a large number of light-emitting elements can be arranged side by side, and the frame can be disposed at the same time, so that the curable composition can be coated with high productivity.

さらにまた、本発明の他の発光装置の製造方法は、さらに発光素子に蛍光物質を被覆する工程の後、枠体の開口領域の周囲で枠体ごと台座を切断して個別の発光素子毎に分割する工程とを有する。これにより、枠体を除去せずとも発光素子毎に分割して発光装置を構成でき、製造工程を簡素化して発光装置を安価に製造できる。   Furthermore, in another method of manufacturing a light emitting device according to the present invention, after the step of coating the light emitting element with a fluorescent material, the frame and the base are cut around the opening area of the frame to separate each light emitting element. Dividing. Accordingly, the light emitting device can be configured by dividing the light emitting elements without removing the frame, and the manufacturing process can be simplified and the light emitting device can be manufactured at low cost.

さらにまた、本発明の他の発光装置の製造方法は、さらに発光素子に蛍光物質を被覆する工程の後、枠体を除去し、枠体の開口領域が存在した位置の周囲で台座を切断して個別の発光素子毎に分割する工程とを有する。これにより、枠体を除去して更に光の取り出し効率を高めた発光装置を実現できる。   Furthermore, in another method for manufacturing a light emitting device of the present invention, after the step of covering the light emitting element with a fluorescent material, the frame is removed, and the base is cut around the position where the opening area of the frame exists. And dividing each individual light emitting element. Thereby, it is possible to realize a light emitting device in which the frame body is removed and the light extraction efficiency is further increased.

また、本発明の発光装置は、フリップチップ型の発光素子と、発光素子を実装した状態で発光素子と電気的に接続されるリード電極を備える台座と、発光素子からの発光の一部を異なる波長に変換する蛍光物質を含有し、発光素子の周囲に略一定の厚さで配置される波長変換部材と、波長変換部材の側面側の周囲に配置され、波長変換部材を充填するための透光性樹脂よりなる枠体とを備え、発光素子とその周囲を区画する開口領域の側壁との間の空隙が略均一で、かつこの空隙に充填された波長変換部材と、発光素子の上面に被覆された波長変換部材の厚さが略等しい。これにより、正確に枠体の中心に発光素子を配置して発光素子の周囲に略均一な厚さで蛍光物質を被膜でき、発光装置の配光色度ムラを低減できる。   In addition, the light-emitting device of the present invention is different from a flip-chip type light-emitting element, a pedestal including a lead electrode electrically connected to the light-emitting element in a state where the light-emitting element is mounted, and a part of light emission from the light-emitting element. A wavelength conversion member that contains a fluorescent substance that converts to a wavelength and is disposed at a substantially constant thickness around the light-emitting element, and a transparent member that is disposed around the side surface of the wavelength conversion member to fill the wavelength conversion member. A wavelength conversion member having a substantially uniform gap between the light emitting element and the side wall of the opening region partitioning the periphery thereof, and a top surface of the light emitting element. The coated wavelength conversion members have substantially the same thickness. Accordingly, the light emitting element can be accurately arranged at the center of the frame body, and the fluorescent material can be coated on the periphery of the light emitting element with a substantially uniform thickness.

本発明の発光装置の製造方法及び発光装置によれば、台座上に実装された発光素子にメタルマスク等を配置するのでなく、先に枠体を台座上に配置した後、枠体の開口領域に発光素子を実装する方法を採用することで、発光素子が枠体の開口領域の中心に位置するように載置の精度を高めることができ、従来困難であった蛍光含有樹脂の膜厚のより正確な制御が可能となり、製品の歩留まりを向上させ量産性に適した発光装置の製造方法が実現できる。これにより、ダイボンディングの精度を上げることが容易であるため、樹脂の膜厚を正確に制御でき、その結果発光素子の周囲に均一な膜厚の蛍光含有樹脂を被覆し、極めて精度の高い高品質な発光装置を得ることができる。   According to the light emitting device manufacturing method and the light emitting device of the present invention, the metal mask or the like is not disposed on the light emitting element mounted on the pedestal, but the frame body is first disposed on the pedestal, and then the opening area of the frame body By adopting the method of mounting the light emitting element on the surface, it is possible to increase the mounting accuracy so that the light emitting element is positioned at the center of the opening area of the frame, More accurate control is possible, and the manufacturing method of the light emitting device suitable for mass productivity can be realized by improving the product yield. This makes it easy to improve die bonding accuracy, so that the resin film thickness can be accurately controlled. As a result, the phosphor-containing resin with a uniform film thickness is coated around the light-emitting element, resulting in extremely high accuracy. A quality light emitting device can be obtained.

以下、本発明の実施の形態を図面に基づいて説明する。ただし、以下に示す実施の形態は、本発明の技術思想を具体化するための発光装置の製造方法及び発光装置を例示するものであって、本発明は発光装置の製造方法及び発光装置を以下のものに特定しない。また、本明細書は特許請求の範囲に示される部材を、実施の形態の部材に特定するものでは決してない。特に実施の形態に記載されている構成部品の寸法、材質、形状、その相対的配置等は特に特定的な記載がない限りは、本発明の範囲をそれのみに限定する趣旨ではなく、単なる説明例にすぎない。なお、各図面が示す部材の大きさや位置関係等は、説明を明確にするため誇張していることがある。さらに以下の説明において、同一の名称、符号については同一もしくは同質の部材を示しており、詳細説明を適宜省略する。さらに、本発明を構成する各要素は、複数の要素を同一の部材で構成して一の部材で複数の要素を兼用する態様としてもよいし、逆に一の部材の機能を複数の部材で分担して実現することもできる。
(発光装置)
Hereinafter, embodiments of the present invention will be described with reference to the drawings. However, the embodiment described below exemplifies a light emitting device manufacturing method and a light emitting device for embodying the technical idea of the present invention, and the present invention describes the light emitting device manufacturing method and the light emitting device below. Not specific to anything. Further, the present specification by no means specifies the members shown in the claims to the members of the embodiments. In particular, the dimensions, materials, shapes, relative arrangements, and the like of the component parts described in the embodiments are not intended to limit the scope of the present invention unless otherwise specified, but are merely described. It is just an example. Note that the size, positional relationship, and the like of the members shown in each drawing may be exaggerated for clarity of explanation. Furthermore, in the following description, the same name and symbol indicate the same or the same members, and detailed description thereof will be omitted as appropriate. Furthermore, each element constituting the present invention may be configured such that a plurality of elements are constituted by the same member and the plurality of elements are shared by one member, and conversely, the function of one member is constituted by a plurality of members. It can also be realized by sharing.
(Light emitting device)

図1に、一実施の形態に係る発光装置100の概略断面図を示す。この図に示す発光装置100は、リード電極102を有する台座101の上面に実装された発光素子110と、発光素子110の周囲を被覆する蛍光含有樹脂120と、蛍光含有樹脂120中に含有される蛍光物質140を備える。発光素子110はフリップチップ又はフェイスダウン型であり、台座101と接続する面に電極113を有している。台座101は所定の導電パターンを有するリード電極102を有している。リード電極102の一端は、外部電極と電気的に接続するように配置されており、またリード電極102の他端は、発光素子110の電極113と電気的に接続するように配置されている。発光素子110の電極113とリード電極102とは、バンプ103等を介して電気的に接続されている。また発光素子110の周囲に蛍光物質140を配置するよう、蛍光物質140を含有した蛍光含有樹脂120で発光素子110の周囲を被覆している。蛍光含有樹脂120は、発光素子110の周囲にほぼ均一に形成される。この蛍光含有樹脂120は、発光素子110で発生した熱を台座101等を介して外部に放出する役割も有している。以下、各部材について詳細に説明する。
(発光素子110)
FIG. 1 is a schematic cross-sectional view of a light emitting device 100 according to an embodiment. The light-emitting device 100 shown in this figure is contained in the light-emitting element 110 mounted on the upper surface of the pedestal 101 having the lead electrode 102, the fluorescent-containing resin 120 covering the periphery of the light-emitting element 110, and the fluorescent-containing resin 120. A fluorescent material 140 is provided. The light-emitting element 110 is a flip chip or face-down type, and has an electrode 113 on a surface connected to the base 101. The pedestal 101 has a lead electrode 102 having a predetermined conductive pattern. One end of the lead electrode 102 is disposed so as to be electrically connected to the external electrode, and the other end of the lead electrode 102 is disposed so as to be electrically connected to the electrode 113 of the light emitting element 110. The electrode 113 of the light emitting element 110 and the lead electrode 102 are electrically connected via a bump 103 or the like. In addition, the periphery of the light emitting element 110 is covered with a fluorescent-containing resin 120 containing the fluorescent substance 140 so that the fluorescent substance 140 is disposed around the light emitting element 110. The fluorescent-containing resin 120 is formed substantially uniformly around the light emitting element 110. The fluorescent-containing resin 120 also has a role of releasing heat generated in the light emitting element 110 to the outside through the pedestal 101 and the like. Hereinafter, each member will be described in detail.
(Light emitting element 110)

発光素子110の概略を図2〜図3に示す。図2は、発光素子110の平面図、図3は、図2のIII−III’線における断面図をそれぞれ示す。発光素子110は、GaN系又はAlGaN系、InGaN系、InAlGaN系、BN、SiC等の材料を有し、紫外線領域から可視光領域までの光を発することができる。特に350nm〜550nm近傍に発光ピーク波長を有する発光素子を使用し、蛍光物質140を効率よく励起可能な発光波長を有する光を発光できる発光層を有することが好ましい。ここでは発光素子110として窒化物半導体発光素子を例にとって説明するが、これに限定されるものではない。窒化物半導体発光素子110は、図3に示すようにサファイア基板111上にそれぞれ窒化物半導体からなるn型層、活性層及びp型層の順に積層されてなる半導体層112を有しており、n側電極は、互いに分離されてライン状に露出されたn型半導体に対して形成され、p側電極は、pオーミック電極とそのpオーミック電極の上に形成された複数のpパッド電極により構成されている。   An outline of the light emitting element 110 is shown in FIGS. 2 is a plan view of the light-emitting element 110, and FIG. 3 is a cross-sectional view taken along line III-III 'of FIG. The light emitting element 110 includes a material such as a GaN-based material, an AlGaN-based material, an InGaN-based material, an InAlGaN-based material, BN, or SiC, and can emit light from an ultraviolet region to a visible light region. In particular, it is preferable to use a light emitting element having a light emission peak wavelength in the vicinity of 350 nm to 550 nm and to have a light emitting layer capable of emitting light having a light emission wavelength capable of efficiently exciting the fluorescent material 140. Here, a nitride semiconductor light emitting element will be described as an example of the light emitting element 110, but is not limited thereto. As shown in FIG. 3, the nitride semiconductor light emitting device 110 has a semiconductor layer 112 formed by sequentially laminating an n-type layer, an active layer, and a p-type layer made of a nitride semiconductor on a sapphire substrate 111, The n-side electrode is formed on n-type semiconductors that are separated from each other and exposed in a line shape, and the p-side electrode is constituted by a p-ohmic electrode and a plurality of p-pad electrodes formed on the p-ohmic electrode. Has been.

詳細に説明すると、窒化物半導体発光素子では、n型層、活性層及びp型層からなる積層体において、図2(a)に示すようにp型層及び活性層の一部がライン状に除去されることにより複数の溝が形成されて、n型半導体層114がライン状に露出される。さらに、図2(b)に示すように露出されたn型半導体層114上にそれぞれnパッド電極115が形成される。一方p側電極は、p型半導体層116のほぼ全面に形成された透光性を有するpオーミック電極と、そのpオーミック電極の上に形成された複数のpパッド電極117とによって構成される。   More specifically, in the nitride semiconductor light emitting device, in the stacked body including the n-type layer, the active layer, and the p-type layer, as shown in FIG. 2A, a part of the p-type layer and the active layer are formed in a line shape. By removing the plurality of grooves, the n-type semiconductor layer 114 is exposed in a line shape. Furthermore, n pad electrodes 115 are formed on the exposed n-type semiconductor layer 114 as shown in FIG. On the other hand, the p-side electrode is composed of a translucent p-ohmic electrode formed on almost the entire surface of the p-type semiconductor layer 116 and a plurality of p-pad electrodes 117 formed on the p-ohmic electrode.

上述した電極構成を有する窒化物半導体発光素子は、以下のような理由により、発光領域全体に電流が注入されるようにして発光効率を向上させるとともに、比較的大面積(例えば、1000μm×1000μm)の窒化物半導体発光素子においても、発光面全体に亙って均一な発光が可能になるようにしている。   The nitride semiconductor light emitting device having the above-described electrode configuration improves the light emission efficiency by injecting a current into the entire light emitting region for the following reasons, and has a relatively large area (for example, 1000 μm × 1000 μm). Also in the nitride semiconductor light emitting device, uniform light emission is possible over the entire light emitting surface.

発光素子110は、サファイア基板、シリコン基板等の透光性基板の上に窒化ガリウムを主成分としたn型半導体層及びp型半導体層が積層された構造を有し、それぞれの半導体層に形成されたnパッド電極115及びpパッド電極117はバンプを介して、台座101に設けられたリード電極102と電気的に接続されている。発光素子110とリード電極102とを電気的に接続している部分以外の隙間部分は、空気が残存しないように、またpパッド電極115とnパッド電極117との短絡を防止するために、蛍光含有樹脂120を充填させることもできる。パッド電極115、117とリード電極102との接合は、はんだ、金バンプを導電パターンとパッド電極との間に超音波接合したもの、金、銀、パラジウム、ロジウム等の導電性ペースト、異方性導電ペースト等を用いることができる。
(台座101)
The light-emitting element 110 has a structure in which an n-type semiconductor layer and a p-type semiconductor layer containing gallium nitride as main components are stacked on a light-transmitting substrate such as a sapphire substrate or a silicon substrate, and is formed in each semiconductor layer. The n pad electrode 115 and the p pad electrode 117 thus formed are electrically connected to the lead electrode 102 provided on the base 101 through bumps. In order to prevent the air from remaining in the gap portion other than the portion where the light emitting element 110 and the lead electrode 102 are electrically connected, and to prevent a short circuit between the p pad electrode 115 and the n pad electrode 117, the fluorescence The containing resin 120 can also be filled. The bonding between the pad electrodes 115 and 117 and the lead electrode 102 is performed by ultrasonic bonding of solder, gold bumps between the conductive pattern and the pad electrode, conductive paste such as gold, silver, palladium, rhodium or the like. A conductive paste or the like can be used.
(Pedestal 101)

台座101は、発光素子110を載置して、これと電気的に接続される。台座101には、所定の形状を有するリード電極102が形成されている。リード電極102は連接された、発光素子110と電気的に接続する部位と、外部電極と電気的に接続する部位とを有している。腐食を防止する観点からは、これらの両部位のみが台座101上で露出していることが好ましいが、光の反射効率を向上させるために両部位以外の部分が露出していてもよい。台座101は、発光素子110と電気的に接続する部位において、発光素子110のnパッド電極115及びpパッド電極117と対向する位置にリード電極102を設けている。一方、外部電極と電気的に接続する部位は、ワイヤを用いてワイヤボンディングにより接続される。これにより、発光素子110は、リード電極102を介して、外部電極と電気的に接続される。台座101は、ガラスエポキシ積層基板、液晶ポリマー基板、ポリイミド樹脂基板、セラミック基板等で形成される。   The pedestal 101 mounts the light emitting element 110 and is electrically connected thereto. A lead electrode 102 having a predetermined shape is formed on the pedestal 101. The lead electrode 102 has a connected portion that is electrically connected to the light emitting element 110 and a portion that is electrically connected to the external electrode. From the viewpoint of preventing corrosion, it is preferable that only these two parts are exposed on the pedestal 101, but parts other than both parts may be exposed in order to improve the light reflection efficiency. The pedestal 101 is provided with a lead electrode 102 at a position where it is electrically connected to the light emitting element 110 and facing the n pad electrode 115 and the p pad electrode 117 of the light emitting element 110. On the other hand, the part electrically connected to the external electrode is connected by wire bonding using a wire. As a result, the light emitting element 110 is electrically connected to the external electrode via the lead electrode 102. The pedestal 101 is formed of a glass epoxy laminated substrate, a liquid crystal polymer substrate, a polyimide resin substrate, a ceramic substrate, or the like.

リード電極102は、所定の導電パターンを有することもできる。導電パターンには、銅、リン青銅、鉄、ニッケル等の電気良導体を用いることができる。さらに、導電パターンの表面に銀、金、パラジウム、ロジウム等の貴金属メッキを施すこともできる。また、発光素子110とリード電極102とを電気的に接続する手段としては、バンプ103を介する手段等が利用できる。   The lead electrode 102 can also have a predetermined conductive pattern. For the conductive pattern, a good electrical conductor such as copper, phosphor bronze, iron or nickel can be used. Furthermore, noble metal plating such as silver, gold, palladium, and rhodium can be applied to the surface of the conductive pattern. Further, as means for electrically connecting the light emitting element 110 and the lead electrode 102, means via the bump 103 can be used.

なお図示しないが、発光素子は台座に直接実装するのでなく、サブマウント基板に実装し、このサブマウント基板を介して台座に実装することもできる。また、台座をサブマウント基板とすることもできる。台座をサブマウント基板とした場合、蛍光含有樹脂で被覆されていないリード電極を外部端子として利用できる。さらにサブマウント基板はウエハ状の板材とすることもできる。あるいは、台座自体を実装基板としてもよい。さらに、台座のリード電極と発光素子とはワイヤボンディングで電気的に接続することもできる。
(蛍光含有樹脂)
Although not shown, the light emitting element can be mounted on the submount substrate instead of being directly mounted on the pedestal, and can be mounted on the pedestal via the submount substrate. Further, the pedestal can be a submount substrate. When the pedestal is a submount substrate, a lead electrode not covered with a fluorescent-containing resin can be used as an external terminal. Further, the submount substrate may be a wafer-like plate material. Alternatively, the pedestal itself may be a mounting substrate. Furthermore, the lead electrode of the base and the light emitting element can be electrically connected by wire bonding.
(Fluorescent resin)

蛍光含有樹脂120は、波長変換部材として蛍光物質140を混入した波長変換層を構成する。なお硬化前の波長変換部材は請求項における硬化性組成物に相当する。硬化性組成物には熱硬化性樹脂が利用できる。蛍光物質140は、蛍光含有樹脂120中にほぼ均一の割合で混合されていることが好ましい。ただ、蛍光物質が部分的に偏在するように配合することもできる。例えば、蛍光含有樹脂120の外面側に蛍光物質140が多く含まれるよう偏在させ、発光素子110と蛍光含有樹脂120との接触面から離間させることにより、発光素子110で発生した熱が蛍光物質140に伝達し難くして蛍光物質140の劣化を抑制できる。蛍光含有樹脂120は、シリコーン樹脂組成物、変性シリコーン樹脂組成物等を使用することが好ましいが、エポキシ樹脂組成物、変性エポキシ樹脂組成物、アクリル樹脂組成物等の透光性を有する絶縁樹脂組成物を用いることもできる。また蛍光含有樹脂120中には、顔料、拡散剤等を混入することもできる。   The fluorescence-containing resin 120 constitutes a wavelength conversion layer in which the fluorescent material 140 is mixed as a wavelength conversion member. In addition, the wavelength conversion member before hardening is equivalent to the curable composition in a claim. A thermosetting resin can be used for the curable composition. The fluorescent material 140 is preferably mixed in the fluorescent-containing resin 120 at a substantially uniform ratio. However, it can also mix | blend so that a fluorescent material may be unevenly distributed. For example, the fluorescent material 140 is unevenly distributed on the outer surface side of the fluorescent-containing resin 120 and separated from the contact surface between the light-emitting element 110 and the fluorescent-containing resin 120, so that the heat generated in the light-emitting element 110 is converted into the fluorescent material 140. The deterioration of the fluorescent material 140 can be suppressed by making it difficult to transmit to the light source. The fluorescent-containing resin 120 is preferably a silicone resin composition, a modified silicone resin composition, or the like, but an insulating resin composition having translucency such as an epoxy resin composition, a modified epoxy resin composition, or an acrylic resin composition. Things can also be used. In addition, a pigment, a diffusing agent, and the like can be mixed in the fluorescent-containing resin 120.

蛍光含有樹脂120は、硬化後でも軟質であることが好ましい。硬化前は、発光素子110の周囲に蛍光含有樹脂120を行き渡らせ、かつ、発光素子110とリード電極102とを電気的に接続する部分以外の隙間部分へ蛍光含有樹脂120を浸入させるため、粘度の低い液状のものが好ましい。また蛍光含有樹脂120は、接着性を有していることが好ましい。蛍光含有樹脂120に接着性を持たせることにより、発光素子110と台座101との固着性を高めることができる。接着性は、常温で接着性を示すものだけでなく、蛍光含有樹脂120に所定の熱と圧力を加えることにより接着するものも含む。また蛍光含有樹脂120は、固着強度を高めるために温度や圧力を加えたり乾燥させたりすることもできる。   The fluorescent-containing resin 120 is preferably soft even after being cured. Before curing, the fluorescence-containing resin 120 is spread around the light-emitting element 110, and the fluorescence-containing resin 120 is infiltrated into a gap portion other than the portion where the light-emitting element 110 and the lead electrode 102 are electrically connected. A liquid having a low viscosity is preferred. Moreover, it is preferable that the fluorescence containing resin 120 has adhesiveness. By providing the fluorescence-containing resin 120 with adhesiveness, the adhesion between the light emitting element 110 and the pedestal 101 can be enhanced. The adhesiveness includes not only those exhibiting adhesiveness at room temperature but also those that are bonded to the fluorescent resin 120 by applying predetermined heat and pressure. In addition, the fluorescent resin 120 can be applied with temperature or pressure or dried to increase the fixing strength.

蛍光物質140は、発光素子110からの光を吸収し異なる波長の光に波長変換する波長変換部材である。例えば、Eu、Ce等のランタノイド系元素で主に賦活される窒化物系蛍光体・酸窒化物系蛍光体、Eu等のランタノイド系、Mn等の遷移金属系の元素により主に賦活されるアルカリ土類ハロゲンアパタイト蛍光体、アルカリ土類金属ホウ酸ハロゲン蛍光体、アルカリ土類金属アルミン酸塩蛍光体、アルカリ土類ケイ酸塩、アルカリ土類硫化物、アルカリ土類チオガレート、アルカリ土類窒化ケイ素、ゲルマン酸塩、又はCe等のランタノイド系元素で主に賦活される希土類アルミン酸塩、希土類ケイ酸塩、又はEu等のランタノイド系元素で主に賦活される有機及び有機錯体等から選ばれる少なくともいずれか1以上であることが好ましい。具体例として、下記の蛍光体を使用することができるが、これらに限定されない。   The fluorescent material 140 is a wavelength conversion member that absorbs light from the light emitting element 110 and converts the light into light of different wavelengths. For example, nitride phosphors / oxynitride phosphors mainly activated by lanthanoid elements such as Eu and Ce, lanthanoid phosphors such as Eu, and alkalis mainly activated by transition metal elements such as Mn Earth halogen apatite phosphor, alkaline earth metal borate halogen phosphor, alkaline earth metal aluminate phosphor, alkaline earth silicate, alkaline earth sulfide, alkaline earth thiogallate, alkaline earth silicon nitride At least selected from organic and organic complexes mainly activated by rare earth aluminates, rare earth silicates, or lanthanoid elements such as Eu, which are mainly activated by lanthanoid elements such as germanate or Ce Any one or more are preferable. As specific examples, the following phosphors can be used, but are not limited thereto.

Eu、Ce等のランタノイド系元素で主に賦活される窒化物系蛍光体は、MSi:Eu(Mは、Sr、Ca、Ba、Mg、Znから選ばれる少なくとも1種以上である。)等がある。また、MSi:Euの他、MSi10:Eu、M1.8Si0.2:Eu、M0.9Si0.110:Eu(Mは、Sr、Ca、Ba、Mg、Znから選ばれる少なくとも1種以上である。)等もある。一方、Eu、Ce等のランタノイド系元素で主に賦活される酸窒化物系蛍光体は、MSi:Eu(Mは、Sr、Ca、Ba、Mg、Znから選ばれる少なくとも1種以上である。)等がある。 A nitride phosphor mainly activated by a lanthanoid element such as Eu or Ce is M 2 Si 5 N 8 : Eu (M is at least one selected from Sr, Ca, Ba, Mg, Zn). There is.) In addition to M 2 Si 5 N 8 : Eu, MSi 7 N 10 : Eu, M 1.8 Si 5 O 0.2 N 8 : Eu, M 0.9 Si 7 O 0.1 N 10 : Eu ( M is at least one selected from Sr, Ca, Ba, Mg, and Zn. On the other hand, an oxynitride phosphor mainly activated by a lanthanoid element such as Eu or Ce is MSi 2 O 2 N 2 : Eu (M is at least one selected from Sr, Ca, Ba, Mg, and Zn). More than seeds).

またEu等のランタノイド系、Mn等の遷移金属系の元素により主に賦活されるアルカリ土類ハロゲンアパタイト蛍光体には、M(POX:R(Mは、Sr、Ca、Ba、Mg、Znから選ばれる少なくとも1種以上である。Xは、F、Cl、Br、Iから選ばれる少なくとも1種以上である。Rは、Eu、Mn、EuとMn、のいずれか1以上である。)等がある。 In addition, alkaline earth halogen apatite phosphors mainly activated by lanthanoid-based elements such as Eu and transition metal-based elements such as Mn include M 5 (PO 4 ) 3 X: R (M is Sr, Ca, Ba). X is at least one selected from F, Cl, Br and I. R is any one of Eu, Mn, Eu and Mn. Etc.)

さらにアルカリ土類金属ホウ酸ハロゲン蛍光体には、MX:R(Mは、Sr、Ca、Ba、Mg、Znから選ばれる少なくとも1種以上である。Xは、F、Cl、Br、Iから選ばれる少なくとも1種以上である。Rは、Eu、Mn、EuとMn、のいずれか1以上である。)等がある。 Further, the alkaline earth metal borate phosphor has M 2 B 5 O 9 X: R (M is at least one selected from Sr, Ca, Ba, Mg, Zn. X is F, And at least one selected from Cl, Br, and I. R is Eu, Mn, or any one of Eu and Mn.).

アルカリ土類金属アルミン酸塩蛍光体には、SrAl:R、SrAl1425:R、CaAl:R、BaMgAl1627:R、BaMgAl1612:R、BaMgAl1017:R(Rは、Eu、Mn、EuとMn、のいずれか1以上である。)等がある。 Alkaline earth metal aluminate phosphors include SrAl 2 O 4 : R, Sr 4 Al 14 O 25 : R, CaAl 2 O 4 : R, BaMg 2 Al 16 O 27 : R, BaMg 2 Al 16 O 12 : R, BaMgAl 10 O 17 : R (R is Eu, Mn, or any one of Eu and Mn).

またアルカリ土類硫化物蛍光体には、LaS:Eu、YS:Eu、GdS:Eu等がある。 Examples of alkaline earth sulfide phosphors include La 2 O 2 S: Eu, Y 2 O 2 S: Eu, and Gd 2 O 2 S: Eu.

Ce等のランタノイド系元素で主に賦活される希土類アルミン酸塩蛍光体には、YAl12:Ce、(Y0.8Gd0.2Al12:Ce、Y(Al0.8Ga0.212:Ce、(Y,Gd)(Al,Ga)12の組成式で表されるYAG系蛍光体等がある。 Examples of rare earth aluminate phosphors mainly activated with lanthanoid elements such as Ce include Y 3 Al 5 O 12 : Ce, (Y 0.8 Gd 0.2 ) 3 Al 5 O 12 : Ce, Y 3 There are YAG phosphors represented by the composition formula of (Al 0.8 Ga 0.2 ) 5 O 12 : Ce, (Y, Gd) 3 (Al, Ga) 5 O 12 .

その他の蛍光体には、ZnS:Eu、ZnGeO:Mn、MGa:Eu(Mは、Sr、Ca、Ba、Mg、Znから選ばれる少なくとも1種以上である。Xは、F、Cl、Br、Iから選ばれる少なくとも1種以上である。)等がある。 Other phosphors include ZnS: Eu, Zn 2 GeO 4 : Mn, MGa 2 S 4 : Eu (M is at least one selected from Sr, Ca, Ba, Mg, Zn. X is And at least one selected from F, Cl, Br, and I.).

上述の蛍光体は、所望に応じてEuに代えて、又はEuに加えてTb、Cu、Ag、Au、Cr、Nd、Dy、Co、Ni、Tiから選択される1種以上を含有させることもできる。   The phosphor described above contains at least one selected from Tb, Cu, Ag, Au, Cr, Nd, Dy, Co, Ni, Ti instead of Eu or in addition to Eu as desired. You can also.

また、上記蛍光体以外の蛍光体であって、同様の性能、効果を有する蛍光体も使用することができる。   Moreover, it is fluorescent substance other than the said fluorescent substance, Comprising: The fluorescent substance which has the same performance and effect can also be used.

これらの蛍光物質は、発光素子110の励起光により、黄色、赤色、緑色、青色に発光スペクトルを有する蛍光体を使用することができる他、これらの中間色である黄緑色、青緑色、橙色等に発光スペクトルを有する蛍光体も使用することができる。これらの蛍光体を種々組み合わせて使用することにより、種々の発光色を有する発光装置を製造することができる。   These fluorescent materials can use phosphors having emission spectra in yellow, red, green, and blue by the excitation light of the light emitting element 110, and can also be used in yellow, green, blue green, orange, etc., which are intermediate colors thereof. A phosphor having an emission spectrum can also be used. By using these phosphors in various combinations, light emitting devices having various emission colors can be manufactured.

例えば、青色に発光するGaN系化合物半導体を用いて、YAl12:Ce若しくは(Y0.8Gd0.2Al12:Ceの蛍光物質に照射し、波長変換を行う。発光素子110からの光と、蛍光物質140からの光との混合色により白色に発光する発光装置を提供することができる。 For example, using a GaN-based compound semiconductor that emits blue light, a Y 3 Al 5 O 12 : Ce or (Y 0.8 Gd 0.2 ) 3 Al 5 O 12 : Ce fluorescent material is irradiated to convert the wavelength. Do. A light-emitting device that emits white light with a mixed color of light from the light-emitting element 110 and light from the fluorescent material 140 can be provided.

あるいは、緑色から黄色に発光するCaSi:Eu、又はSrSi:Euと、蛍光体である青色に発光する(Sr,Ca)(POCl:Eu、赤色に発光する(Ca,Sr)Si:Euと、からなる蛍光物質140を使用することによって、演色性の良好な白色に発光する発光装置を提供することができる。これは、色の三源色である赤・青・緑を使用しているため、第1の蛍光体及び第2の蛍光体の配合比を変えることのみで、所望の白色光を実現することができる。 Alternatively, CaSi 2 O 2 N 2 : Eu, which emits light from green to yellow, or SrSi 2 O 2 N 2 : Eu, and (Sr, Ca) 5 (PO 4 ) 3 Cl: Eu, which emits blue light as a phosphor. By using the fluorescent material 140 that contains (Ca, Sr) 2 Si 5 N 8 : Eu that emits red light, a light emitting device that emits white light with good color rendering can be provided. This uses the three primary colors of red, blue, and green, so the desired white light can be achieved simply by changing the blend ratio of the first phosphor and the second phosphor. Can do.

蛍光物質140の粒径は、1μm〜20μmの範囲が好ましく、より好ましくは2μm〜8μm、特に5μm〜8μmの範囲が好ましい。2μmより小さい粒径を有する蛍光体は、凝集体を形成しやすい傾向にある。一方、5μm〜8μmの粒径範囲の蛍光体は、光の吸収率及び変換効率が高い。このように、光学的に優れた特徴を有する粒径の大きな蛍光体を含有させることにより、発光装置の量産性が向上する。   The particle size of the fluorescent material 140 is preferably in the range of 1 μm to 20 μm, more preferably 2 μm to 8 μm, and particularly preferably in the range of 5 μm to 8 μm. A phosphor having a particle size smaller than 2 μm tends to form an aggregate. On the other hand, a phosphor having a particle size range of 5 μm to 8 μm has a high light absorption rate and conversion efficiency. In this manner, the mass productivity of the light-emitting device is improved by including a phosphor having a large particle diameter and having optically excellent characteristics.

ここで粒径は、空気透過法で得られる平均粒径を指す。具体的には、気温25℃、湿度70%の環境下において、1cm分の試料を計り取り、専用の管状容器にパッキングした後、一定圧力の乾燥空気を流し、差圧から比表面積を読みとり、平均粒径に換算した値である。本発明で用いられる蛍光体の平均粒径は2μm〜8μmの範囲であることが好ましく、さらに、この平均粒径値を有する蛍光体が、頻度高く含有されていることが好ましい。また、粒度分布も狭い範囲に分布していることが好ましく、特に粒径2μm以下の微粒子が少ないと好ましい。このように粒径及び粒度分布のバラツキが小さい蛍光体を用いることにより、より色ムラが抑制され、良好な色調を有する発光装置が得られる。
(拡散剤)
Here, the particle size refers to the average particle size obtained by the air permeation method. Specifically, in an environment with an air temperature of 25 ° C. and a humidity of 70%, a sample of 1 cm 3 is weighed and packed in a special tubular container. The value is converted into an average particle diameter. The average particle size of the phosphor used in the present invention is preferably in the range of 2 μm to 8 μm, and it is preferable that the phosphor having this average particle size value is contained frequently. Further, the particle size distribution is preferably distributed in a narrow range, and it is particularly preferable that the number of fine particles having a particle size of 2 μm or less is small. In this way, by using a phosphor having a small variation in particle size and particle size distribution, color unevenness is further suppressed and a light emitting device having a good color tone can be obtained.
(Diffusion agent)

さらに、蛍光含有樹脂120中に蛍光物質140の他に拡散剤を含有させてもよい。具体的な拡散剤としては、チタン酸バリウム、酸化チタン、酸化アルミニウム、酸化珪素等が好適に用いられる。これによって良好な指向特性を有する発光装置が得られる。   Furthermore, in addition to the fluorescent material 140, a diffusing agent may be included in the fluorescent-containing resin 120. As a specific diffusing agent, barium titanate, titanium oxide, aluminum oxide, silicon oxide or the like is preferably used. As a result, a light emitting device having good directivity can be obtained.

ここで本明細書において拡散剤とは、中心粒径が1nm以上5μm未満のものをいう。1μm以上5μm未満の拡散剤は、発光素子110及び蛍光物質140からの光を良好に乱反射させ、大きな粒径の蛍光物質を用いることによって生じやすい色ムラを抑制することができるので、好適に使用できる。また、発光スペクトルの半値幅を狭めることができ、色純度の高い発光装置が得られる。一方、1nm以上1μm未満の拡散剤は、発光素子110からの光波長に対する干渉効果が低い反面、透明度が高く、光度を低下させることなく樹脂粘度を高めることができる。
(フィラー)
Here, in this specification, the diffusing agent refers to those having a center particle diameter of 1 nm or more and less than 5 μm. A diffusing agent having a size of 1 μm or more and less than 5 μm can be suitably used because it can diffuse irregularly the light from the light emitting element 110 and the fluorescent material 140 and suppress color unevenness that tends to occur by using a fluorescent material having a large particle size. it can. In addition, the half width of the emission spectrum can be narrowed, and a light emitting device with high color purity can be obtained. On the other hand, a diffusing agent having a wavelength of 1 nm or more and less than 1 μm has a low interference effect with respect to the light wavelength from the light emitting element 110, but has high transparency and can increase the resin viscosity without reducing the light intensity.
(Filler)

さらに、蛍光含有樹脂120中に蛍光物質140の他にフィラーを含有させてもよい。具体的な材料としては、拡散剤と同様のものが使用できる。ただ、拡散剤とフィラーとは中心粒径が異なり、本明細書においてはフィラーの中心粒径は5μm以上100μm以下とすることが好ましい。このような粒径のフィラーを透光性樹脂中に含有させると、光散乱作用により発光装置の色度バラツキが改善される他、透光性樹脂の耐熱衝撃性を高めることができる。これにより、高温下での使用においても、発光素子と外部電極とを電気的に接続しているワイヤーの断線や発光素子底面とパッケージの凹部底面と剥離等を防止可能な信頼性の高い発光装置とできる。さらには樹脂の流動性を長時間一定に調整することが可能となり、所望とする場所内に封止部材を形成することができ歩留まり良く量産することが可能となる。
(膜厚)
Further, a filler may be contained in the fluorescent-containing resin 120 in addition to the fluorescent substance 140. As a specific material, the same material as the diffusing agent can be used. However, the center particle size of the diffusing agent and the filler are different, and in this specification, the center particle size of the filler is preferably 5 μm or more and 100 μm or less. When the filler having such a particle size is contained in the translucent resin, the chromaticity variation of the light emitting device is improved by the light scattering action, and the thermal shock resistance of the translucent resin can be enhanced. As a result, a highly reliable light-emitting device that can prevent disconnection of the wire that electrically connects the light-emitting element and the external electrode, separation of the bottom surface of the light-emitting element and the bottom surface of the recess of the package, even when used at high temperatures. And can. Furthermore, the fluidity of the resin can be adjusted to be constant for a long time, and a sealing member can be formed in a desired location, enabling mass production with a high yield.
(Film thickness)

発光素子の周囲に被覆する蛍光含有樹脂の膜厚は、図7に示すように上面及び側面で各々各位置で均一となるようにする。発光素子の上面及び側面を各々一定の厚さとすることにより、指向特性を優れたものとすることができる。また、側面の膜厚と上面の膜厚をほぼ等しくすることで、さらに配光色度ムラを低減した高品質な発光を得ることが可能となる。また蛍光含有樹脂を図6から図7のように薄く被膜することで、蛍光物質の密度を増し蛍光物質の沈降等による分布の不均一さを低減でき、より均一な発光とできる効果も得られる。蛍光含有樹脂120の膜厚は、後述するように枠体に開口された開口領域152と発光素子110との隙間により決定される。膜厚は、好ましくは10〜50μm、さらに好ましくは20〜40μm、最も好ましくは30μm程度とする。ただし、膜厚は特に限定されず、非常に薄い膜厚のものや厚い膜厚のものも使用することができる。
(枠体)
As shown in FIG. 7, the film thickness of the fluorescent-containing resin covering the periphery of the light emitting element is made uniform at each position on the upper surface and the side surface. By setting the upper surface and the side surface of the light emitting element to have a constant thickness, the directivity can be improved. Further, by making the film thickness of the side surface and the film thickness of the upper surface substantially equal, it is possible to obtain high-quality light emission with further reduced light distribution chromaticity unevenness. Further, by coating the fluorescent-containing resin thinly as shown in FIGS. 6 to 7, the density of the fluorescent substance can be increased, the non-uniform distribution due to the sedimentation of the fluorescent substance can be reduced, and the effect of more uniform light emission can be obtained. . The film thickness of the fluorescent resin 120 is determined by the gap between the opening region 152 opened in the frame and the light emitting element 110 as described later. The film thickness is preferably 10 to 50 μm, more preferably 20 to 40 μm, and most preferably about 30 μm. However, the film thickness is not particularly limited, and a very thin film or a thick film can be used.
(Frame)

さらに発光装置100は、蛍光含有樹脂120を発光素子110の周囲で均一な膜厚に形成するために枠体150を、発光素子110を実装する前の台座上、ここではウエハ上に形成する。枠体150は、蛍光含有樹脂120を発光素子110の周囲に形成するための型枠あるいはキャビティを構成する。図4に、枠体150を利用して発光素子110の周囲に蛍光含有樹脂120を形成する例を図示する。この図に示す枠体150は台座とほぼ同じ外形の平板状に成型され、開口領域152を形成している。枠体150の成型は、トランスファーモールド等により行われる。トランスファーモールドは、非難燃性エポキシ系樹脂等の熱硬化性材料を加熱ポットから閉じた加熱金型のキャビティの中へ移送することによって成形する工程である。枠体150は透光性を備える部材で構成することが好ましい。透光性のある枠体150は、蛍光含有樹脂120の形成後に枠体150を除去せずとも、蛍光体の光を遮ることなく外部に取り出すことができる。このため、枠体150は透光性を有するシリコーン樹脂やエポキシ樹脂が利用できる。ただ、蛍光含有樹脂の形成後に枠体を除去するよう構成してもよく、この場合は枠体が透光性を有することを必要としない。   Further, in the light emitting device 100, in order to form the fluorescent resin 120 with a uniform film thickness around the light emitting element 110, a frame 150 is formed on a pedestal before mounting the light emitting element 110, here on a wafer. The frame 150 constitutes a mold or cavity for forming the fluorescent-containing resin 120 around the light emitting element 110. FIG. 4 illustrates an example in which the fluorescent resin 120 is formed around the light emitting element 110 using the frame 150. A frame 150 shown in this figure is molded into a flat plate shape having substantially the same outer shape as the base, and forms an opening region 152. The frame 150 is molded by transfer molding or the like. The transfer mold is a process in which a thermosetting material such as a non-flame retardant epoxy resin is molded by transferring it from a heating pot into a closed mold cavity. The frame 150 is preferably formed of a member having translucency. The translucent frame 150 can be taken out without blocking the light of the phosphor without removing the frame 150 after the formation of the fluorescence-containing resin 120. For this reason, the frame 150 can use a translucent silicone resin or epoxy resin. However, the frame body may be removed after the formation of the fluorescence-containing resin, and in this case, the frame body does not need to have translucency.

なお図4の例では、枠体を台座上に直接形成しているが、枠体を別部材として形成し、この枠体を台座上に配置する構成とすることもできる。この場合は、枠体の成型はトランスファーモールドに限られず、注型法、押出成形法、プレス加工法等でも成型できる。さらにこの場合は、一枚の台座に一枚の枠体を使用する例に限られず、複数枚の枠体を一枚の台座にセットしたり、あるいは一枚の枠体を一枚の台座上で移動させて使用することもできる。   In the example of FIG. 4, the frame body is directly formed on the pedestal. However, the frame body may be formed as a separate member, and the frame body may be arranged on the pedestal. In this case, the molding of the frame is not limited to the transfer mold, and can be molded by a casting method, an extrusion molding method, a press processing method, or the like. Furthermore, in this case, the present invention is not limited to an example in which one frame is used for one pedestal, and a plurality of frames are set on one pedestal, or one frame is placed on one pedestal. It can also be moved by using.

枠体150に形成される開口領域152は、台座上の発光素子110を実装する位置に開口される。このため枠体150は発光素子110を実装する台座よりも小さく、発光素子110よりも大きい。発光素子110を台座上にダイボンダ等で配置するパターンに応じて、開口領域152は形成される。図4(b)の例では、開口領域152は同一平面上に所定の間隔で複数形成されて、碁盤目状に開口している。ただ、開口領域の配置パターンはオフセットさせた千鳥状や網目状等、所望のパターンにすることができる。   The opening region 152 formed in the frame 150 is opened at a position where the light emitting element 110 is mounted on the pedestal. Therefore, the frame 150 is smaller than the pedestal on which the light emitting element 110 is mounted and larger than the light emitting element 110. The opening region 152 is formed in accordance with a pattern in which the light emitting element 110 is arranged on the pedestal with a die bonder or the like. In the example of FIG. 4B, a plurality of opening regions 152 are formed at a predetermined interval on the same plane, and are open in a grid pattern. However, the arrangement pattern of the opening regions can be a desired pattern such as an offset zigzag pattern or a mesh pattern.

さらに開口領域152の大きさは、発光素子110よりも若干大きくし、発光素子110に蛍光含有樹脂120を形成した大きさとする。これにより、開口領域152の中央に発光素子110を配置すれば、発光素子110と開口領域152との間の空隙に蛍光含有樹脂120を注入して均一な膜厚に形成できる。従来のスクリーン印刷等により蛍光含有樹脂を被膜する方法では、台座上に発光素子を実装した状態でメタルマスク等を配置して、メタルマスクに開口されたパターンの中心に発光素子が位置するよう位置決めする必要があった。この方法では、台座上に発光素子を実装する際のダイボンダ等の誤差によって、メタルマスクの開口パターンと発光素子とが一致しなくなり、一の台座上に実装されたすべての発光素子について同一の膜厚となるようメタルマスクを位置決めすることが極めて困難であった。特に発光素子の実装に使用されるダイボンダは、精度が±25〜50μm程度であるため、蛍光含有樹脂の膜厚を10〜50μm程度とする場合には、誤差の影響が極めて大きくなる。ボンディングされた発光素子毎にそれぞれ異なる実装誤差が生じ、予め用意されていたメタルマスクの孔に発光素子が規定の位置に入らなくなってしまうこともある。さらに、このような実装誤差が生じた状態で、蛍光体含有樹脂をメタルマスクの孔内に充填すると、発光素子毎に一定の膜厚で蛍光体層を形成することができず、歩留まりが低下していた。   Further, the size of the opening region 152 is slightly larger than that of the light emitting element 110, and is the size in which the fluorescent-containing resin 120 is formed on the light emitting element 110. Accordingly, if the light emitting element 110 is arranged in the center of the opening region 152, the fluorescent-containing resin 120 can be injected into the gap between the light emitting element 110 and the opening region 152 to form a uniform film thickness. In the conventional method of coating the phosphor-containing resin by screen printing or the like, a metal mask or the like is arranged with the light emitting element mounted on a pedestal, and the light emitting element is positioned at the center of the pattern opened in the metal mask. There was a need to do. In this method, the opening pattern of the metal mask does not match the light emitting element due to an error such as a die bonder when mounting the light emitting element on the pedestal, and the same film for all the light emitting elements mounted on one pedestal. It was extremely difficult to position the metal mask so as to be thick. In particular, since the die bonder used for mounting the light emitting element has an accuracy of about ± 25 to 50 μm, when the thickness of the fluorescent-containing resin is set to about 10 to 50 μm, the influence of the error becomes extremely large. A different mounting error may occur for each bonded light emitting element, and the light emitting element may not enter a predetermined position in a hole of a metal mask prepared in advance. Furthermore, if the phosphor-containing resin is filled in the hole of the metal mask in a state where such a mounting error has occurred, the phosphor layer cannot be formed with a constant film thickness for each light emitting element, and the yield decreases. Was.

これに対して本願発明では、先に発光素子を実装した状態でメタルマスクの開口領域と発光素子との位置決めを行うのでなく、先に枠体を台座上に固定した状態で、すなわち開口領域を台座上で確定した状態で、発光素子を実装する手順とした。これにより、各開口領域毎に発光素子を実装する位置を最適な位置に調整できるので、開口領域と発光素子との間の空隙を一定にして、ここに充填される蛍光含有樹脂の膜厚を一定に制御することが可能となる。特に開口領域が特定された状態でダイボンディングを行う際には、画像処理等により正確な位置決めを行うことができるので、開口領域のほぼ中央に発光素子を位置させることが可能となる。すなわち、ダイボンディングを一律に行う場合は、各発光素子毎の位置のばらつきが生じることは避けられないが、開口領域毎に各発光素子の基準位置を調整することによって、正確なダイボンディングが可能となり、開口領域毎に正確に発光素子をほぼ中央に配置して、発光素子と開口領域との空隙を一定として膜厚を均一に近付けることを可能としたものである。   On the other hand, in the present invention, rather than positioning the opening area of the metal mask and the light emitting element in the state where the light emitting element is first mounted, the opening area is set in a state where the frame is fixed on the pedestal first. The procedure for mounting the light-emitting element in a state determined on the pedestal was adopted. As a result, the position where the light emitting element is mounted in each opening region can be adjusted to an optimum position. Therefore, the gap between the opening region and the light emitting element is made constant, and the film thickness of the fluorescent-containing resin filled therein is set. It becomes possible to control to be constant. In particular, when die bonding is performed in a state in which the opening area is specified, accurate positioning can be performed by image processing or the like, and thus the light emitting element can be positioned almost at the center of the opening area. In other words, when die bonding is performed uniformly, variations in the position of each light emitting element are inevitable, but accurate die bonding is possible by adjusting the reference position of each light emitting element for each opening area. Thus, the light emitting element is accurately arranged in the center of each opening region, and the thickness of the light emitting element and the opening region can be made uniform while keeping the gap between the light emitting element and the opening region constant.

枠体150の開口領域152は、蛍光含有樹脂120で被覆する発光素子110の大きさ及び形状に応じて成形される。またその寸法は、発光素子110に加えて被膜する蛍光含有樹脂120の厚みによって決定される。図4に示すように、使用される発光素子110の外形寸法及び厚みに蛍光含有樹脂120の厚さを加えた大きさに設計される。例えば、発光素子110を開口領域152のほぼ中心に配置した際に、発光素子110の前後左右側面とその周囲を囲む開口領域152の各側壁との間の距離がほぼ等しくなるようにすると共に、発光素子110の上面と枠体150上面の平面との距離がほぼ等しくなるように設定される。これにより、図4(d)に示すように硬化前の蛍光含有樹脂120である硬化性組成物を枠体150の平面まで充填した状態で、発光素子110上面の膜厚と側面の膜厚がほぼ一致するようになり、発光素子110から放出される光の配光色度ムラを抑制して均一な光を得ることができる。   The opening area 152 of the frame 150 is formed according to the size and shape of the light emitting element 110 covered with the fluorescent resin 120. Further, the dimension is determined by the thickness of the fluorescent resin 120 to be coated in addition to the light emitting element 110. As shown in FIG. 4, it is designed to have a size obtained by adding the thickness of the fluorescent-containing resin 120 to the outer dimensions and thickness of the light emitting element 110 to be used. For example, when the light emitting element 110 is disposed substantially at the center of the opening region 152, the distance between the front, rear, left and right side surfaces of the light emitting element 110 and each side wall of the opening region 152 surrounding the periphery thereof is made substantially equal. The distance between the upper surface of the light emitting element 110 and the plane of the upper surface of the frame 150 is set to be substantially equal. Accordingly, as shown in FIG. 4D, the film thickness of the upper surface of the light emitting element 110 and the film thickness of the side surfaces thereof are filled with the curable composition that is the fluorescence-containing resin 120 before curing up to the plane of the frame 150. As a result, the light distribution chromaticity unevenness of the light emitted from the light emitting element 110 is suppressed and uniform light can be obtained.

蛍光含有樹脂120の形成に枠体150を使用することで、蛍光含有樹脂120の膜厚を均一に形成することが容易となる。特に枠体150を金型等の成型型で成型する場合、金型の精度は比較的高くできるため、より正確な膜厚制御が可能となる。発光素子110の発光を波長変換する波長変換部材を含有した波長変換層をムラなく均一に形成すれば、蛍光含有樹脂120に含有されて枠体150と発光素子110との間に位置する蛍光物質140で、発光素子110の上面及び側面から放出される光が均等に波長変換されあるいは透過する距離を一定とでき、蛍光物質の分布が均一となるので波長変換効率が均一になり、波長変換された光や発光素子110からの発光色との混色が色ムラなく放出され、混色性や配向特性に優れた高品質な発光を実現できる。特に発光素子110の上方だけでなく、側方も蛍光含有樹脂120で覆われているので、発光素子110の上面からの放射光と側面からの放射光との色調ムラが低減する。   By using the frame 150 for forming the fluorescent-containing resin 120, it becomes easy to form the fluorescent-containing resin 120 with a uniform film thickness. In particular, when the frame 150 is molded by a mold such as a mold, the precision of the mold can be made relatively high, so that the film thickness can be controlled more accurately. If a wavelength conversion layer containing a wavelength conversion member that converts the wavelength of light emitted from the light emitting element 110 is uniformly formed, the fluorescent material contained in the fluorescent resin 120 and positioned between the frame 150 and the light emitting element 110 140, the wavelength of light emitted from the top and side surfaces of the light emitting device 110 is uniformly wavelength-converted or transmitted, and the distribution of the fluorescent material is uniform, so that the wavelength conversion efficiency is uniform and the wavelength is converted. The mixed light with the emitted light and the luminescent color from the light emitting element 110 is emitted without color unevenness, and high-quality light emission excellent in the color mixing property and orientation characteristics can be realized. In particular, since not only the upper side of the light emitting element 110 but also the sides are covered with the fluorescent resin 120, uneven color tone between the emitted light from the upper surface and the emitted light from the side surface of the light emitting element 110 is reduced.

ただ、本発明は必ずしも発光素子の側面と上面とで膜厚を等しくする必要はなく、これを異なる値に設定することもできる。例えば発光素子の上面と枠体上面との距離と、発光素子の側面と枠体側壁との距離を変化させ、発光素子の上面からの光量と側面からの光量に応じて蛍光物質の量を変更させることで、光量を調整できる。   However, in the present invention, it is not always necessary to make the film thickness equal between the side surface and the upper surface of the light emitting element, and this can be set to a different value. For example, the distance between the upper surface of the light emitting element and the upper surface of the frame body and the distance between the side surface of the light emitting element and the side wall of the frame body are changed, and the amount of the fluorescent material is changed according to the light amount from the upper surface of the light emitting element and the light amount from the side surface. By doing so, the amount of light can be adjusted.

また蛍光含有樹脂120は熱硬化性樹脂を使用することが好ましい。加熱温度は蛍光含有樹脂120の硬化温度により適宜変更するが、70℃以上130℃以下であることが好ましい。発光素子110の耐用温度以下で蛍光含有樹脂120を硬化することを要するからである。
(発光装置の製造方法)
Moreover, it is preferable to use a thermosetting resin for the fluorescent-containing resin 120. The heating temperature is appropriately changed depending on the curing temperature of the fluorescence-containing resin 120, but is preferably 70 ° C or higher and 130 ° C or lower. This is because it is necessary to cure the fluorescence-containing resin 120 at a temperature equal to or lower than the service temperature of the light emitting element 110.
(Method for manufacturing light emitting device)

次に、図4に基づいて、本発明の実施の形態に係る発光装置100の製造工程を説明する。まず、図4(a)に示す台座の上面に図4(b)のように枠体150を形成する。台座は、予めリード電極102を形成している。リード電極102は所定の配向パターンを有しており、台座101の上面若しくは内部に配線されている。リード電極102は発光素子110の電極113と対向するように配向パターンを形成することが好ましい。リード電極102の一端は台座101の上面若しくは下面から露出しており外部電極と電気的に接続するように形成されている。リード電極102の他端は発光素子110が載置される部分に露出している。一方枠体150は、トランスファーモールドにより金型(図示せず)で台座の上下面を狭持し、透光性樹脂を射出して形成される。この際、枠体150には所定のパターンで開口領域152が形成されるよう、予め金型には凹凸が形成される。金型の型精度は、±2μmの公差といった高精度で作製できる。
(発光素子の位置決め)
Next, based on FIG. 4, the manufacturing process of the light-emitting device 100 which concerns on embodiment of this invention is demonstrated. First, the frame 150 is formed on the upper surface of the pedestal shown in FIG. 4A as shown in FIG. The pedestal is formed with lead electrodes 102 in advance. The lead electrode 102 has a predetermined orientation pattern, and is wired on the upper surface or inside of the pedestal 101. The lead electrode 102 is preferably formed with an alignment pattern so as to face the electrode 113 of the light emitting element 110. One end of the lead electrode 102 is exposed from the upper surface or the lower surface of the base 101 and is formed so as to be electrically connected to the external electrode. The other end of the lead electrode 102 is exposed at a portion where the light emitting element 110 is placed. On the other hand, the frame 150 is formed by holding the upper and lower surfaces of the pedestal with a mold (not shown) by transfer molding and injecting a translucent resin. At this time, unevenness is formed in advance on the mold so that the opening region 152 is formed in the frame 150 in a predetermined pattern. The mold accuracy of the mold can be manufactured with high accuracy of ± 2 μm tolerance.
(Light emitting element positioning)

次に、図4(c)に示すように予め作製された発光素子110を各開口領域152に各々載置する。ここでは、ダイボンダを用いて発光素子110を開口領域152の中心にダイボンドする。ダイボンダは別のウエハからダイシングされた発光素子110のチップ(ダイ、ダイス)を摘み上げ、台座のリード電極102にバンプを介して発光素子110を電気接続状態に接着して実装する。ダイボンドの位置決めにおいては、図4(c)に示すように開口領域152に発光素子110が収納され、かつ発光素子110の周囲で開口領域152を形成する側壁との間隔が一定となるように、すなわち発光素子110が開口領域152の中央に配置されるように位置決めされる。この例では、ほぼ直方体状の発光素子110の周囲に、ほぼ同じ形状の直方体形状を一回り大きくしたサイズで開口するように開口領域152が形成される。ダイボンダは、発光素子110を実装する開口領域152毎にカメラで撮像し、画像処理により正確に発光素子110が開口領域152の中央に位置するよう、位置決めを行う。この方式であれば開口領域毎に個別の位置決めを行えるため、枠体150の位置が多少ずれていたとしてもダイボンドの位置を調整することができる。すなわち、先に枠体150を配置して開口領域152を確定した後にチップを載置することにより、微調整を可能とし、これによって実装の位置決め精度を向上させることができ、ひいては蛍光物質の均一な塗布を実現できる。   Next, as shown in FIG. 4C, the light-emitting elements 110 manufactured in advance are placed in the respective opening regions 152. Here, the light emitting element 110 is die-bonded to the center of the opening region 152 using a die bonder. The die bonder picks up a chip (die, dice) of the light emitting element 110 diced from another wafer, and attaches the light emitting element 110 to the pedestal lead electrode 102 in an electrically connected state via a bump. In the positioning of the die bond, as shown in FIG. 4C, the light emitting element 110 is accommodated in the opening region 152 and the distance from the side wall forming the opening region 152 around the light emitting element 110 is constant. That is, the light emitting element 110 is positioned so as to be disposed at the center of the opening region 152. In this example, an opening region 152 is formed around the light emitting element 110 having a substantially rectangular parallelepiped shape so as to open with a size that is one size larger than a substantially rectangular parallelepiped shape. The die bonder takes an image with a camera for each opening area 152 where the light emitting element 110 is mounted, and performs positioning so that the light emitting element 110 is accurately positioned at the center of the opening area 152 by image processing. With this method, since individual positioning can be performed for each opening region, the position of the die bond can be adjusted even if the position of the frame 150 is slightly shifted. That is, by placing the chip after placing the frame 150 first to determine the opening region 152, fine adjustment is possible, thereby improving the positioning accuracy of the mounting, and thus the uniform fluorescent substance. Application can be realized.

バンプ103は導電性があり、リード電極102や電極113よりも軟質の部材であるもの、例えばハンダ等を用いることができる。これにより、発光素子110の電極113とリード電極102とはバンプ103を介して電気的に接続される。発光素子110の基板面の上面は、台座101とほぼ平行になるように配置することが好ましい。次の工程で蛍光含有樹脂120をポッティングしたときに蛍光含有樹脂120が流れ出さないようにし、また発光装置100の配向色度を所定の状態に保持するためである。
(蛍光含有樹脂の塗布)
The bump 103 is conductive and can be made of a softer material than the lead electrode 102 and the electrode 113, such as solder. Accordingly, the electrode 113 of the light emitting element 110 and the lead electrode 102 are electrically connected via the bump 103. The upper surface of the substrate surface of the light emitting element 110 is preferably arranged so as to be substantially parallel to the pedestal 101. This is to prevent the fluorescence-containing resin 120 from flowing out when potting the fluorescence-containing resin 120 in the next step, and to maintain the orientation chromaticity of the light emitting device 100 in a predetermined state.
(Application of fluorescent-containing resin)

次に、予め蛍光物質を均一に含有させた蛍光含有樹脂120を用意し、この蛍光含有樹脂120を図4(d)に示すように各開口領域152に実装された発光素子110の上方から供給する。蛍光含有樹脂120はペースト状で、発光素子110と台座との間の隙間に浸入できる粘度に調整しておく。また、空隙への蛍光含有樹脂120の浸入を確実にするために、減圧あるいは真空状態で蛍光含有樹脂120を充填することもできる。蛍光含有樹脂120を発光素子110の上面に載置する手段としては、ポッティングやスクリーン印刷、スプレー噴霧手段等が利用できる。スクリーン印刷によれば、空隙から溢れた蛍光含有樹脂120はへら状又は棒状のスキージ等を用いて押し出し、平滑化できる。蛍光含有樹脂120を載置する量は、発光素子110と対向する台座101と枠体150とで囲まれた容積に等しい量、若しくは若干多くする。蛍光含有樹脂120には、予め蛍光物質140をほぼ均一に混合することで、発光装置100から放出される光の色ムラを防止できる。また蛍光含有樹脂120には、必要に応じて蛍光物質140の他に拡散剤やフィラー等を均一に混合することもできる。また蛍光含有樹脂120が表面張力により発光素子110の上面に保持されて流出しないよう、また流出した場合でも発光素子110の周囲から広く拡散しない程度に蛍光含有樹脂120の粘度を調整してもよい。また蛍光含有樹脂120に気泡が残存していると光取り出し効率が低下したり色調バラツキが生じたりするため、発光素子110と開口領域152の間の空隙には空気が残存しないように蛍光含有樹脂120を注入する。
(蛍光含有樹脂の硬化)
Next, a fluorescent-containing resin 120 in which a fluorescent substance is uniformly contained in advance is prepared, and this fluorescent-containing resin 120 is supplied from above the light emitting element 110 mounted in each opening region 152 as shown in FIG. To do. The fluorescence-containing resin 120 is in a paste form and is adjusted to have a viscosity that can enter the gap between the light emitting element 110 and the pedestal. Further, in order to ensure the penetration of the fluorescence-containing resin 120 into the gap, the fluorescence-containing resin 120 can be filled under reduced pressure or in a vacuum state. As means for placing the fluorescent-containing resin 120 on the upper surface of the light emitting element 110, potting, screen printing, spray spraying means, or the like can be used. According to screen printing, the fluorescence-containing resin 120 overflowing from the voids can be extruded and smoothed using a spatula or rod-like squeegee. The amount on which the fluorescent-containing resin 120 is placed is equal to or slightly larger than the volume surrounded by the base 101 and the frame 150 facing the light emitting element 110. By mixing the fluorescent material 140 almost uniformly in advance with the fluorescent-containing resin 120, color unevenness of light emitted from the light emitting device 100 can be prevented. In addition to the fluorescent material 140, a diffusing agent, a filler, or the like can be uniformly mixed with the fluorescent-containing resin 120 as necessary. Further, the viscosity of the fluorescent-containing resin 120 may be adjusted so that the fluorescent-containing resin 120 is held on the upper surface of the light-emitting element 110 due to surface tension and does not flow out. . Further, if bubbles remain in the fluorescent-containing resin 120, the light extraction efficiency decreases and color variation occurs. Therefore, the fluorescent-containing resin does not leave air in the gap between the light emitting element 110 and the opening region 152. 120 is injected.
(Curing of fluorescent resin)

さらに発光素子110の周囲に蛍光含有樹脂120を行き渡らせた図4(d)の状態で加熱して、熱硬化性樹脂である蛍光含有樹脂120を熱硬化させる。蛍光含有樹脂120を硬化することにより枠体150と蛍光含有樹脂120との界面、蛍光含有樹脂120と発光素子110との界面、蛍光含有樹脂120と台座101との界面を接着することができ、剥離が防止される。また蛍光含有樹脂120中に含まれる蛍光物質140を均一に混合された状態で保持する。   Further, the phosphor-containing resin 120 that is a thermosetting resin is thermally cured by heating in the state of FIG. By curing the fluorescence-containing resin 120, the interface between the frame 150 and the fluorescence-containing resin 120, the interface between the fluorescence-containing resin 120 and the light emitting element 110, and the interface between the fluorescence-containing resin 120 and the pedestal 101 can be bonded. Peeling is prevented. In addition, the fluorescent material 140 contained in the fluorescent resin 120 is held in a uniformly mixed state.

蛍光含有樹脂120の硬化は、枠体150をセットした台座101を所定の加熱装置に挿入して加熱する。また、台座をラミネートや袋状のものに封入して水等の溶液中に浸漬して枠体等に圧力を加えながら、該溶液を加熱して蛍光含有樹脂を硬化することもできる。これにより蛍光含有樹脂中に蛍光物質を密にした部分を形成でき、発光素子から波長変換されずに直接放出される光を少なくして色ムラを低減する効果が期待できる。また本明細書において硬化とは完全に硬化させる他、ゲル状に硬化させる場合も含まれる。   Curing of the fluorescence-containing resin 120 is performed by inserting the base 101 on which the frame 150 is set into a predetermined heating device. Alternatively, the pedestal can be sealed in a laminate or bag and immersed in a solution such as water to apply pressure to the frame and the like to heat the solution to cure the fluorescent resin. As a result, it is possible to form a dense portion of the fluorescent substance in the fluorescent-containing resin, and the effect of reducing the color unevenness by reducing the light directly emitted from the light-emitting element without being wavelength-converted can be expected. In this specification, the term “curing” includes not only complete curing but also curing in a gel form.

蛍光含有樹脂120を硬化させる温度及びその加熱時間は、使用する熱硬化性樹脂の種類や塗布量等に応じて決定され、蛍光含有樹脂120が十分に硬化できる温度及び時間とする。例えば蛍光含有樹脂120をシリコーン樹脂とする場合、約100℃でおよそ1時間加熱して硬化させる。その結果、蛍光物質を含有したシリコーン樹脂層は、発光素子110周囲に約30μmの均一な蛍光体層が形成されていることが確認された。
(発光装置のチップ化)
The temperature at which the fluorescent-containing resin 120 is cured and the heating time thereof are determined according to the type and application amount of the thermosetting resin to be used, and are set to a temperature and time at which the fluorescent-containing resin 120 can be sufficiently cured. For example, when the fluorescent-containing resin 120 is a silicone resin, it is cured by heating at about 100 ° C. for about 1 hour. As a result, it was confirmed that a uniform phosphor layer of about 30 μm was formed around the light emitting element 110 in the silicone resin layer containing the phosphor.
(Light-emitting device chip)

そして蛍光含有樹脂120を硬化させた後、図4(e)に示すように枠体150を残したまま枠体150の位置で台座を切断し、発光素子110毎に切り出してチップ化し、発光装置100とする。切断はダイサ等を用いてダイシングし所望の形状にカットされる。図4(e)の例では6角形状に切り出しているが、この形状に限られず、矩形状や3角形、5角形等の多角形状、円形や楕円形状とすることもできる。   Then, after the fluorescent-containing resin 120 is cured, the pedestal is cut at the position of the frame 150 while leaving the frame 150 as shown in FIG. 100. The cutting is diced using a dicer or the like and cut into a desired shape. In the example of FIG. 4 (e), a hexagonal shape is cut out. However, the shape is not limited to this shape, and may be a polygonal shape such as a rectangular shape, a triangular shape, or a pentagonal shape, a circular shape, or an elliptical shape.

図4(e)では、チップ化の際に枠体150の部分でカットしており、図1のように発光装置100は枠体150の一部が残った形となる。上述の通り枠体150を透明な部材とすることで、光の取り出し効率を低下させることなく高出力な発光装置とすることができる。また枠体を除去する工程を排除することにより、工数を削減して安価に製造できる利点も得られる。   In FIG. 4E, the frame 150 is cut at the time of chip formation, and the light emitting device 100 has a shape in which a part of the frame 150 remains as shown in FIG. By using the frame 150 as a transparent member as described above, a high-output light-emitting device can be obtained without reducing light extraction efficiency. Further, by eliminating the step of removing the frame, there is an advantage that man-hours can be reduced and manufacturing can be performed at low cost.

ただ、図4(d)の状態から蛍光含有樹脂の硬化後に枠体を除去し、枠体の無い状態で図4(e)に示すように切断することもできる。枠体の除去には、例えば枠体を特定の溶媒に溶融する材質で構成し、蛍光含有樹脂の硬化後にこの溶媒で枠体を溶融させる等の方法が利用できる。この方法では枠体を除去する工程が必要となり製造工数が増えるものの、枠体を除去することで枠体による光取り出しの損失を抑えたより高品質な発光装置を得ることができる。   However, the frame body can be removed from the state of FIG. 4D after the fluorescence-containing resin is cured, and the frame body can be cut as shown in FIG. 4E without the frame body. For removing the frame, for example, a method can be used in which the frame is made of a material that melts in a specific solvent, and the frame is melted with the solvent after the fluorescence-containing resin is cured. Although this method requires a step of removing the frame and increases the number of manufacturing steps, removing the frame can provide a higher-quality light-emitting device that suppresses light extraction loss due to the frame.

以上の構成では蛍光含有樹脂を一層のみ発光素子に被覆しているが、樹脂層を多層構成とすることもできる。この際、各樹脂層に蛍光物質を含有させる際に、各樹脂層中に混入させる蛍光物質は、同一のものとする他、異なるものとすることもできる。例えば、第1の樹脂中に混入する蛍光物質を、第2の樹脂中に混入する蛍光物質よりも長波長側に発光ピーク波長を有するタイプとすることにより、第1の樹脂中の蛍光物質で波長変換された光を第2の樹脂中の蛍光物質で波長変換されることなく外部に放出させ、発光装置の波長変換効率を向上させることができる。あるいは、多層構成の樹脂層の内、発光素子と接触する樹脂層等、特定の層にのみ蛍光物質を含有させた波長変換層とし、他の層は蛍光物質を含有しない透光性の樹脂層として、フィラーや拡散剤を混入してもよい。   In the above configuration, only one layer of the fluorescent-containing resin is coated on the light-emitting element, but the resin layer may have a multilayer configuration. At this time, when the fluorescent material is contained in each resin layer, the fluorescent material mixed in each resin layer may be the same or different. For example, by making the fluorescent material mixed in the first resin into a type having an emission peak wavelength on the longer wavelength side than the fluorescent material mixed in the second resin, the fluorescent material in the first resin The wavelength-converted light can be emitted to the outside without being wavelength-converted by the fluorescent material in the second resin, and the wavelength conversion efficiency of the light-emitting device can be improved. Alternatively, a wavelength conversion layer in which a fluorescent material is contained only in a specific layer, such as a resin layer in contact with a light-emitting element, in a multilayer resin layer, and the other layers are light-transmitting resin layers that do not contain a fluorescent material As an alternative, a filler or a diffusing agent may be mixed.

以上の工程を経ることにより、図1のような発光素子の周囲に均一な膜厚で蛍光含有樹脂120が成形された発光装置100が得られる。蛍光含有樹脂120の膜厚を一定にすることで、発光素子110から放出された光はほぼ均一な膜厚を持つ蛍光含有樹脂120を透過するため、所定の発光色を再現性良く実現することができ、発光観測方位によって色度の変化が少ない発光装置を実現できる。枠体150と発光素子110チップとの間は、ダイボンドの精度レベルの空隙とできるため、チップ周囲に狭い空間を精度良く形成することが可能となる。そして枠体150内に蛍光含有樹脂120をポッティングするだけでチップ周囲に均一な波長変換部材を形成することができる。このように本実施の形態によれば、量産性がよく、配光色度ムラを低減した高品質な発光装置を安価に大量生産することができるという優れた特長が実現できる。   Through the above steps, the light emitting device 100 in which the fluorescent-containing resin 120 is molded with a uniform film thickness around the light emitting element as shown in FIG. 1 is obtained. By making the film thickness of the fluorescent-containing resin 120 constant, the light emitted from the light-emitting element 110 passes through the fluorescent-containing resin 120 having a substantially uniform film thickness, so that a predetermined emission color can be realized with good reproducibility. Thus, a light emitting device with little change in chromaticity depending on the light emission observation direction can be realized. Since the gap between the frame 150 and the light emitting element 110 chip can be a gap with a die bonding accuracy level, a narrow space around the chip can be formed with high accuracy. A uniform wavelength conversion member can be formed around the chip simply by potting the fluorescent-containing resin 120 in the frame 150. As described above, according to the present embodiment, it is possible to realize an excellent feature that a high-quality light-emitting device with high mass productivity and reduced light distribution chromaticity unevenness can be mass-produced at low cost.

本発明の発光装置の製造方法及び発光装置は、照明用光源、LEDデイスプレイ、バックライト光源、信号機、照明式スイッチ、各種センサ及び各種インジケータ等に好適に利用できる。   The light emitting device manufacturing method and the light emitting device of the present invention can be suitably used for illumination light sources, LED displays, backlight light sources, traffic lights, illumination switches, various sensors, various indicators, and the like.

本発明の一実施の形態に係る発光装置を示す概略断面図である。It is a schematic sectional drawing which shows the light-emitting device which concerns on one embodiment of this invention. 本発明の一実施の形態に係る発光素子の平面図である。It is a top view of the light emitting element concerning one embodiment of the present invention. 図2のIII−III’線における断面図である。It is sectional drawing in the III-III 'line | wire of FIG. 枠体を利用して発光素子の周囲に蛍光含有樹脂を形成する工程を示す断面図及び平面図である。It is sectional drawing and a top view which show the process of forming fluorescence containing resin around a light emitting element using a frame. ポッティング手段を用いた従来の被膜形成方法を示す断面図である。It is sectional drawing which shows the conventional film formation method using a potting means. 従来の発光装置の構成を示す断面図である。It is sectional drawing which shows the structure of the conventional light-emitting device. 本発明の一実施の形態に係る発光装置の構成を示す断面図である。It is sectional drawing which shows the structure of the light-emitting device which concerns on one embodiment of this invention. スクリーン印刷手段を用いた従来の被膜形成方法を示す断面図である。It is sectional drawing which shows the conventional film formation method using a screen printing means. 従来の他の発光装置の構成を示す断面図である。It is sectional drawing which shows the structure of the other conventional light-emitting device.

符号の説明Explanation of symbols

100、300、400…発光装置;101…台座;102…リード電極;103…バンプ;110、310、410、610、710…発光素子;111、411…基板;112…半導体層;113…電極;114…n型半導体層;115…nパッド電極;116…p型半導体層;117…pパッド電極;120…蛍光含有樹脂;140…蛍光物質;150…枠体;152…開口領域;311…キャビティ;312…被膜;313…樹脂;314…細管;315…リード電極;316…蛍光物質;412…被膜;413…樹脂;414…ヘラ;415…リード電極;416…メタルマスク;417…蛍光物質;611…凹部:612、712…波長変換部材;616、716…蛍光物質;910…LEDチップ;911…基板;915…第1透光性樹脂層;915a…チップ封止部;915b…溝部;915c…チップ封止部包囲部;916…第2透光性樹脂層 DESCRIPTION OF SYMBOLS 100, 300, 400 ... Light-emitting device; 101 ... Base; 102 ... Lead electrode; 103 ... Bump; 110, 310, 410, 610, 710 ... Light-emitting element; 111, 411 ... Substrate; 114 ... n-type semiconductor layer; 115 ... n-pad electrode; 116 ... p-type semiconductor layer; 117 ... p-pad electrode; 120 ... fluorescent-containing resin; 140 ... fluorescent substance; 150 ... frame body; 313 ... Resin; 314 ... Capillary; 315 ... Lead electrode; 316 ... Fluorescent material; 412 ... Coating; 413 ... Resin; 414 ... Spatula; 415 ... Lead electrode; 416 ... Metal mask; 611: Recess: 612, 712 ... Wavelength conversion member; 616, 716 ... Fluorescent material; 910 ... LED chip; 911 ... Substrate; Translucent resin layer; 915a ... tip sealing portion; 915b ... groove; 915c ... tip sealing portion surrounding portion; 916: second light-transmissive resin layer

Claims (7)

発光素子と、前記発光素子からの発光の一部を異なる波長に変換するよう発光素子の周囲に配置された蛍光物質とを備える発光装置の製造方法であって、
前記発光素子を載置する台座上に、所定の大きさに開口された開口領域を有する枠体を、発光素子を配置すべき位置が前記開口領域に含まれるように形成する工程と、
前記発光素子の周囲に略一定の大きさの空隙が形成されるように、前記開口領域の略中心に前記発光素子を載置する工程と、
前記発光素子と開口領域の側壁との間に形成された空隙に、前記蛍光物質を含有する硬化性組成物を充填して前記発光素子を被覆する工程と、
を有することを特徴とする発光装置の製造方法。
A method of manufacturing a light emitting device comprising: a light emitting element; and a fluorescent material disposed around the light emitting element so as to convert a part of light emitted from the light emitting element to a different wavelength,
Forming a frame having an opening region opened to a predetermined size on a pedestal on which the light emitting device is placed so that a position where the light emitting device is to be disposed is included in the opening region;
Placing the light emitting element at substantially the center of the opening region such that a gap having a substantially constant size is formed around the light emitting element;
Filling a gap formed between the light emitting element and the side wall of the opening region with the curable composition containing the fluorescent material to cover the light emitting element;
A method for manufacturing a light-emitting device, comprising:
請求項1に記載の発光装置の製造方法であって、
前記枠体に形成された開口領域が、発光素子を開口領域の略中心に配置した際、発光素子の側面とその周囲を区画する開口領域の側壁との間の距離と、発光素子の上面と枠体上面の平面部分との距離が、略等しくなるように設定されていることを特徴とする発光装置。
A method of manufacturing a light emitting device according to claim 1,
The opening region formed in the frame body has a distance between a side surface of the light emitting element and a side wall of the opening region that divides the periphery of the light emitting device when the light emitting device is disposed at substantially the center of the opening region, and an upper surface of the light emitting device. A light-emitting device, characterized in that the distance between the upper surface of the frame and the planar portion is set to be substantially equal.
請求項1又は2に記載の発光装置の製造方法であって、
前記枠体が透光性樹脂よりなることを特徴とする発光装置の製造方法。
A method of manufacturing a light emitting device according to claim 1 or 2,
The method for manufacturing a light emitting device, wherein the frame body is made of a translucent resin.
請求項1から3のいずれかに記載の発光装置の製造方法であって、
前記枠体が、開口領域を同一平面上に所定の間隔で複数形成していることを特徴とする発光装置の製造方法。
A method for manufacturing a light-emitting device according to claim 1,
A method of manufacturing a light-emitting device, wherein the frame has a plurality of opening regions formed on the same plane at a predetermined interval.
請求項4に記載の発光装置の製造方法であって、さらに
前記発光素子に蛍光物質を被覆する工程の後、前記枠体の開口領域の周囲で枠体ごと前記台座を切断して個別の発光素子毎に分割する工程と、
を有することを特徴とする発光装置の製造方法。
5. The method of manufacturing a light emitting device according to claim 4, further comprising: cutting the pedestal together with the frame body around the opening region of the frame body after the step of coating the light emitting element with a fluorescent material, and individually emitting light. A step of dividing each element;
A method for manufacturing a light-emitting device, comprising:
請求項4に記載の発光装置の製造方法であって、さらに
前記発光素子に蛍光物質を被覆する工程の後、前記枠体を除去し、枠体の開口領域が存在した位置の周囲で前記台座を切断して個別の発光素子毎に分割する工程と、
を有することを特徴とする発光装置の製造方法。
5. The method for manufacturing a light emitting device according to claim 4, further comprising: after the step of coating the light emitting element with a fluorescent material, removing the frame and surrounding the pedestal around a position where an opening region of the frame exists. Cutting and dividing each individual light emitting element,
A method for manufacturing a light-emitting device, comprising:
発光素子と、
前記発光素子を実装した状態で前記発光素子と電気的に接続されるリード電極を備える台座と、
前記発光素子からの発光の一部を異なる波長に変換する蛍光物質を含有し、前記発光素子の周囲に略一定の厚さで配置される波長変換部材と、
前記波長変換部材の側面側の周囲に配置され、波長変換部材を充填するための透光性樹脂よりなる枠体と、
を備え、前記発光素子とその周囲を区画する開口領域の側壁との間の空隙が略均一で、かつこの空隙に充填された波長変換部材と、発光素子の上面に被覆された波長変換部材の厚さが略等しいことを特徴とする発光装置。
A light emitting element;
A pedestal including a lead electrode electrically connected to the light emitting element in a state where the light emitting element is mounted;
A wavelength conversion member that contains a fluorescent material that converts a part of the light emitted from the light emitting element to a different wavelength, and is disposed at a substantially constant thickness around the light emitting element;
A frame made of a translucent resin disposed around the side surface side of the wavelength conversion member and filled with the wavelength conversion member;
A wavelength conversion member having a substantially uniform air gap between the light emitting element and the side wall of the opening region partitioning the periphery thereof, and a wavelength conversion member coated on the upper surface of the light emitting element. A light-emitting device having a substantially equal thickness.
JP2004227305A 2004-08-03 2004-08-03 Method for manufacturing light emitting device Expired - Fee Related JP4617761B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004227305A JP4617761B2 (en) 2004-08-03 2004-08-03 Method for manufacturing light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004227305A JP4617761B2 (en) 2004-08-03 2004-08-03 Method for manufacturing light emitting device

Publications (2)

Publication Number Publication Date
JP2006049524A true JP2006049524A (en) 2006-02-16
JP4617761B2 JP4617761B2 (en) 2011-01-26

Family

ID=36027751

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004227305A Expired - Fee Related JP4617761B2 (en) 2004-08-03 2004-08-03 Method for manufacturing light emitting device

Country Status (1)

Country Link
JP (1) JP4617761B2 (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007242717A (en) * 2006-03-06 2007-09-20 Koito Mfg Co Ltd Lighting tool for vehicle
JP2008108952A (en) * 2006-10-26 2008-05-08 Matsushita Electric Ind Co Ltd Semiconductor light emitting device, and method for manufacturing semiconductor light emitting device
JP2009094262A (en) * 2007-10-09 2009-04-30 Toyoda Gosei Co Ltd Method for manufacturing light-emitting device
CN100542693C (en) * 2006-10-27 2009-09-23 中山大学 A kind of LED excited fluorescent powder coating method that is used for
JP2010518646A (en) * 2007-02-13 2010-05-27 スリーエム イノベイティブ プロパティズ カンパニー LED device having a lens and manufacturing method thereof
WO2011013923A2 (en) * 2009-07-28 2011-02-03 한미반도체 주식회사 Package aggregate for manufacturing semiconductor packages
JP2011091257A (en) * 2009-10-23 2011-05-06 Stanley Electric Co Ltd Method of manufacturing led light source device
JP2012227346A (en) * 2011-04-19 2012-11-15 Citizen Electronics Co Ltd Semiconductor light-emitting device
WO2014092374A1 (en) * 2012-12-13 2014-06-19 (주)라이타이저코리아 Method of manufacturing phosphor for light emitting diode
CN104756226A (en) * 2012-08-24 2015-07-01 发光装置公司 Wavelength converting material deposition methods and associated articles
WO2017123040A1 (en) * 2016-01-14 2017-07-20 피에스아이 주식회사 Ultra-small led electrode assembly and method for preparing same
JP2017139456A (en) * 2016-01-29 2017-08-10 日亜化学工業株式会社 Light-emitting device and method for manufacturing light-emitting device
US9944031B2 (en) 2007-02-13 2018-04-17 3M Innovative Properties Company Molded optical articles and methods of making same
US10211378B2 (en) 2016-01-29 2019-02-19 Nichia Corporation Light emitting device and method for manufacturing same
US10553765B2 (en) 2016-11-21 2020-02-04 Nichia Corporation Method for manufacturing light emitting device
JP2020072145A (en) * 2018-10-30 2020-05-07 日亜化学工業株式会社 Manufacturing method of light-emitting device
JP2022010198A (en) * 2018-11-05 2022-01-14 日亜化学工業株式会社 Semiconductor light emitting device

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63226080A (en) * 1987-03-02 1988-09-20 Copal Co Ltd Composite assembly of light emitting diode
JPH0653258A (en) * 1992-07-29 1994-02-25 Mitsubishi Cable Ind Ltd Manufacture of display
JP2000208822A (en) * 1999-01-11 2000-07-28 Matsushita Electronics Industry Corp Semiconductor light-emitting device
JP2000223750A (en) * 1999-02-02 2000-08-11 Nichia Chem Ind Ltd Light emitting diode and its forming method
JP2002185048A (en) * 2000-10-13 2002-06-28 Lumileds Lighting Us Llc Stenciling phosphor layer of light-emitting diode
JP2002252376A (en) * 2001-02-23 2002-09-06 Seiwa Electric Mfg Co Ltd Surface-mounted type light-emitting diode and its manufacturing method
JP2004200208A (en) * 2002-12-16 2004-07-15 Matsushita Electric Works Ltd Light-emitting device
JP2005093601A (en) * 2003-09-16 2005-04-07 Stanley Electric Co Ltd Semiconductor light emitting device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63226080A (en) * 1987-03-02 1988-09-20 Copal Co Ltd Composite assembly of light emitting diode
JPH0653258A (en) * 1992-07-29 1994-02-25 Mitsubishi Cable Ind Ltd Manufacture of display
JP2000208822A (en) * 1999-01-11 2000-07-28 Matsushita Electronics Industry Corp Semiconductor light-emitting device
JP2000223750A (en) * 1999-02-02 2000-08-11 Nichia Chem Ind Ltd Light emitting diode and its forming method
JP2002185048A (en) * 2000-10-13 2002-06-28 Lumileds Lighting Us Llc Stenciling phosphor layer of light-emitting diode
JP2002252376A (en) * 2001-02-23 2002-09-06 Seiwa Electric Mfg Co Ltd Surface-mounted type light-emitting diode and its manufacturing method
JP2004200208A (en) * 2002-12-16 2004-07-15 Matsushita Electric Works Ltd Light-emitting device
JP2005093601A (en) * 2003-09-16 2005-04-07 Stanley Electric Co Ltd Semiconductor light emitting device

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007242717A (en) * 2006-03-06 2007-09-20 Koito Mfg Co Ltd Lighting tool for vehicle
JP2008108952A (en) * 2006-10-26 2008-05-08 Matsushita Electric Ind Co Ltd Semiconductor light emitting device, and method for manufacturing semiconductor light emitting device
CN100542693C (en) * 2006-10-27 2009-09-23 中山大学 A kind of LED excited fluorescent powder coating method that is used for
US8901588B2 (en) 2007-02-13 2014-12-02 3M Innovative Properties Company LED devices having lenses and methods of making same
JP2010518646A (en) * 2007-02-13 2010-05-27 スリーエム イノベイティブ プロパティズ カンパニー LED device having a lens and manufacturing method thereof
US9944031B2 (en) 2007-02-13 2018-04-17 3M Innovative Properties Company Molded optical articles and methods of making same
JP2009094262A (en) * 2007-10-09 2009-04-30 Toyoda Gosei Co Ltd Method for manufacturing light-emitting device
WO2011013923A3 (en) * 2009-07-28 2011-04-07 한미반도체 주식회사 Package aggregate for manufacturing semiconductor packages
WO2011013923A2 (en) * 2009-07-28 2011-02-03 한미반도체 주식회사 Package aggregate for manufacturing semiconductor packages
JP2011091257A (en) * 2009-10-23 2011-05-06 Stanley Electric Co Ltd Method of manufacturing led light source device
JP2012227346A (en) * 2011-04-19 2012-11-15 Citizen Electronics Co Ltd Semiconductor light-emitting device
CN104756226A (en) * 2012-08-24 2015-07-01 发光装置公司 Wavelength converting material deposition methods and associated articles
WO2014092374A1 (en) * 2012-12-13 2014-06-19 (주)라이타이저코리아 Method of manufacturing phosphor for light emitting diode
WO2017123040A1 (en) * 2016-01-14 2017-07-20 피에스아이 주식회사 Ultra-small led electrode assembly and method for preparing same
US10784246B2 (en) 2016-01-14 2020-09-22 Samsung Display Co., Ltd. Ultra-small LED electrode assembly and method for preparing same
US11380670B2 (en) 2016-01-14 2022-07-05 Samsung Display Co., Ltd. Ultra-small LED electrode assembly and method for preparing same
JP2017139456A (en) * 2016-01-29 2017-08-10 日亜化学工業株式会社 Light-emitting device and method for manufacturing light-emitting device
US10211378B2 (en) 2016-01-29 2019-02-19 Nichia Corporation Light emitting device and method for manufacturing same
US10720556B2 (en) 2016-01-29 2020-07-21 Nichia Corporation Method for manufacturing light emitting device
JP7177326B2 (en) 2016-01-29 2022-11-24 日亜化学工業株式会社 Light-emitting device and method for manufacturing light-emitting device
US10553765B2 (en) 2016-11-21 2020-02-04 Nichia Corporation Method for manufacturing light emitting device
JP2020072145A (en) * 2018-10-30 2020-05-07 日亜化学工業株式会社 Manufacturing method of light-emitting device
US10910515B2 (en) 2018-10-30 2021-02-02 Nichia Corporation Method of manufacturing a light-emitting device
JP2022010198A (en) * 2018-11-05 2022-01-14 日亜化学工業株式会社 Semiconductor light emitting device
JP7227528B2 (en) 2018-11-05 2023-02-22 日亜化学工業株式会社 semiconductor light emitting device

Also Published As

Publication number Publication date
JP4617761B2 (en) 2011-01-26

Similar Documents

Publication Publication Date Title
JP5233170B2 (en) LIGHT EMITTING DEVICE, RESIN MOLDED BODY FORMING LIGHT EMITTING DEVICE, AND METHOD FOR PRODUCING THEM
JP5103831B2 (en) Semiconductor manufacturing method
JP5168152B2 (en) Light emitting device
JP4543712B2 (en) Method for manufacturing light emitting device
JP4617761B2 (en) Method for manufacturing light emitting device
JP5380774B2 (en) Surface mount type side surface light emitting device and manufacturing method thereof
JP6079209B2 (en) Light emitting device and manufacturing method thereof
JP5262054B2 (en) Method for manufacturing light emitting device
JP4611937B2 (en) Surface mount type light emitting device and manufacturing method thereof
JP2005191420A (en) Semiconductor light emitting device having wavelength converting layer and its manufacturing method
JP2006269778A (en) Optical device
JP5598323B2 (en) Light emitting device and method for manufacturing light emitting device
JP5082427B2 (en) Light emitting device
JP2007116133A (en) Light emitting device
JP2007234968A (en) Light emitting device and manufacturing method of same
JP2007116117A (en) Light emitting device
JP2018082027A (en) Light-emitting device and method for manufacturing the same
CN101507005B (en) Electroluminescent phosphor-converted light source and method for manufacturing the same
JP2007116116A (en) Light emitting device
JP4986282B2 (en) Light emitting device
JP2008235552A (en) Method of manufacturing light-emitting apparatus and light-emitting apparatus
JP4608966B2 (en) Method for manufacturing light emitting device
JP2008084908A (en) Light emitting device
JP7212282B2 (en) Light-emitting device and manufacturing method thereof
JP5628475B2 (en) Manufacturing method of surface mounted light emitting device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070607

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100308

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100316

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100409

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100928

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101011

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131105

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4617761

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131105

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees