JPS63225524A - Production of compound superconductive body - Google Patents

Production of compound superconductive body

Info

Publication number
JPS63225524A
JPS63225524A JP62056754A JP5675487A JPS63225524A JP S63225524 A JPS63225524 A JP S63225524A JP 62056754 A JP62056754 A JP 62056754A JP 5675487 A JP5675487 A JP 5675487A JP S63225524 A JPS63225524 A JP S63225524A
Authority
JP
Japan
Prior art keywords
green compact
stage
temperature
compound superconductor
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62056754A
Other languages
Japanese (ja)
Inventor
Yoshio Muto
武藤 芳雄
Hiroshichi Noto
能登 宏七
Yasuhiko Shono
庄野 安彦
Norio Kobayashi
小林 典男
Masae Kikuchi
菊地 昌枝
Naoko Sasaki
尚子 佐々木
Akira Murase
村瀬 暁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP62056754A priority Critical patent/JPS63225524A/en
Publication of JPS63225524A publication Critical patent/JPS63225524A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/01Manufacture or treatment
    • H10N60/0268Manufacture or treatment of devices comprising copper oxide

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To obtain a laminar perovskite type compound super conductive body having high upper critical magnetic field and being useful obtd. by mixing, pulverizing under pressure, heating, mixing under grinding, and repulverizing under pressure specified powder bodies. CONSTITUTION:In a first stage, plural kinds of powder body of each >=99.9% purity such as La2O3, BaCO3, CuO, etc., contg. elements constituting a laminar perovskite type compound superconductive body are mixed. Then, in a second stage a green compact is prepd. by compressing obtd. mixture under 3-1,500kg/cm<2>, and the green compact is held in a third stage, in an atomsphere having >=0.2atm O2 partial pressure at 900-1,100 deg.C for >=1h4, and cooled there after slowly to 600 deg.C at <=10 deg.C/min cooling rate obtd. thus a heat-treated prod uct. The heat-treated product is crushed in a fourth stage and mixed, and com pressed again in a fifth stage under 3-1,500kg/cm<2> to obtain a green compact, which is held in an atmosphere having >=0.2atm 02 partial pressure at 900-1,100 deg.C for >=20h4, then cooled slowly at <=10 deg.C/min cooling rate until 600 deg.C to obtain thus a compound superconductive body.

Description

【発明の詳細な説明】 〔発明の目的] (産業上の利用分野) 本発明は、゛化合物超電導体の製造方法に係り。[Detailed description of the invention] [Purpose of the invention] (Industrial application field) The present invention relates to a method for manufacturing a compound superconductor.

特に、上部臨界磁界(lIc2)を大幅に向上させるこ
とができるようにした層状ペロブスカイト型化合物超電
導体の製造方法に関する。
In particular, the present invention relates to a method of manufacturing a layered perovskite compound superconductor that can significantly improve the upper critical magnetic field (lIc2).

(従来の技術) 化合物超電導体を結晶構造で分類すると。(Conventional technology) Classifying compound superconductors by crystal structure.

A15型、 Bl型、シェブレル型、ラーヴエス型、ペ
ロブスカイト型1層状ペロブスカイト型などに分類され
る。このうち層状ペロブスカイト型化合物超電導体は、
他の化合物超電導体に比べて臨界温度(Tc)が30に
以上と非常に高いものが多い。これらの中で、特に、 
Ba−La−Cu−0化合物は高い臨界温度(Tc)を
持っている。しかし、その上部臨界磁界(lIc2)は
約0.I T (テスラ)と非常に低い。
It is classified into A15 type, Bl type, Chevrell type, Laves type, perovskite type, single-layer perovskite type, etc. Among these, layered perovskite compound superconductors are
Compared to other compound superconductors, many have extremely high critical temperatures (Tc) of 30 or more. Among these, especially
The Ba-La-Cu-0 compound has a high critical temperature (Tc). However, its upper critical magnetic field (lIc2) is about 0. IT (Tesla) is very low.

このため、この層状ペロブスカイト型化合物超電導体を
高磁界にさらされる超電導マグネットへ使用することは
困難視されていた。
For this reason, it has been considered difficult to use this layered perovskite compound superconductor in superconducting magnets that are exposed to high magnetic fields.

このように1層状ペロブスカイト型化合物超電導体は、
臨界温度(Tc)が高いという利点がある反面、上部臨
界磁界(He2)が低いために応用性に欠ける問題があ
った。
In this way, the single-layer perovskite compound superconductor is
Although it has the advantage of having a high critical temperature (Tc), it has the problem of lack of applicability due to the low upper critical magnetic field (He2).

(発明が解決しようとする問題点) 上述の如く1層状ペロブスカイト型化合物超電導体は、
上部臨界磁界(11c2)が低いが故に高磁界の超電導
マグネットに使用することができなかった。
(Problems to be solved by the invention) As mentioned above, the single-layer perovskite compound superconductor is
Because the upper critical magnetic field (11c2) is low, it could not be used for high-field superconducting magnets.

そこで本発明は9層状ペロブスカイト型結晶構造を持ち
、臨界温度(Te)が30に以−にと高く、シかも、!
二部臨界磁界(lIc2)が507を越える改良された
化合物超電導体の製造方法を提供することを目的として
いる。
Therefore, the present invention has a nine-layered perovskite crystal structure, and the critical temperature (Te) is much higher than 30.
The object of the present invention is to provide an improved method for producing a compound superconductor having a two-part critical magnetic field (lIc2) exceeding 507.

[発明の構成] (問題点を解決するための手段) 本発明によれば1層状ペロブスカイト型の化合物超電導
体を構成する元素を含む複数の粉末体を混合する第1の
工程と、この第1の工程で得られた混合物に圧力を加え
て圧粉体とする第2の工程と、上記圧粉体に熱処理を施
す第3の工程と。
[Structure of the Invention] (Means for Solving the Problems) According to the present invention, a first step of mixing a plurality of powder bodies containing elements constituting a single-layer perovskite compound superconductor; a second step of applying pressure to the mixture obtained in the step to form a green compact; and a third step of subjecting the green compact to heat treatment.

この工程を経た圧粉体を粉砕して混合する第4の工程と
、この工程によって得られた混合物に1ff度圧力を加
えて圧粉体とする第5の工程と、この工程によって得ら
れた圧粉体に熱処理を施す第6の工程とからな、る化合
物超電導体の製造方法が提供される。
A fourth step of pulverizing and mixing the green compact obtained through this step, a fifth step of applying 1ff degree pressure to the mixture obtained in this step to form a green compact, and A method for manufacturing a compound superconductor is provided, which comprises a sixth step of heat-treating a green compact.

さらに詳しく述べると、第1の工程での粉末体は、 L
a 2O3、BaC0、CuOであり、これらは純度9
9.9%以上ものが用いられる。純度が上記値以下の場
合には、生成される層状ペロブスカイト型化合物の中に
多くの不純物が混入し、これが原因して臨界温度(Tc
)、上部臨界磁界(lIc2)などの超電導特性を低下
させる。第2および第5の工程における圧力は、3〜1
500kg/ (!−の範囲が望ましい。
To explain in more detail, the powder in the first step is L
a 2O3, BaC0, CuO, which have a purity of 9
9.9% or more is used. If the purity is below the above value, many impurities will be mixed into the layered perovskite compound to be produced, which will cause the critical temperature (Tc
), lowering the superconducting properties such as the upper critical magnetic field (lIc2). The pressure in the second and fifth steps is 3 to 1
A range of 500 kg/ (!- is desirable.

圧力が3kg/cj未満の場合には圧粉体を形成するこ
とが困難であり、また得られた化合物の超電導特性も低
い。一方、圧力が1500kg/ c−を越えても超電
導特性は低下する。第3の工程では、酸素分圧が0.2
気圧以上の雰囲気下で、熱処理温度を900〜1100
℃の範囲、温度保持時間を1時間以上とし。
When the pressure is less than 3 kg/cj, it is difficult to form a green compact, and the superconducting properties of the obtained compound are also low. On the other hand, even if the pressure exceeds 1500 kg/c-, the superconducting properties deteriorate. In the third step, the oxygen partial pressure is 0.2
The heat treatment temperature is 900 to 1100 in an atmosphere above atmospheric pressure.
℃ range and temperature holding time for 1 hour or more.

かつ熱処理温度から600℃まで降温速度を毎分10℃
以下にすると、上部臨界磁界(lIc2)の高い超電導
特性が得られる。熱処理温度が上記範囲をはずれ、温度
保持時間が1時間未満では層状ペロブスカイト型化合物
の生成量が少なくなる。また、酸素分圧が0.2気圧未
満の場合には酸素の量が不足し、これが原因して結晶構
造の安定した規則性の高い層状ペロブスカイト型化合物
を生成することができない。熱処理温度から600℃ま
での降温速度を毎分lO℃程度以下に抑えない場合には
冷却段階でミクロ・的な割れが生じる。第6の工程にお
いても第3の工程と同様なことが言えるが、温度保持時
間が20時間以上と第3の工程の場合より長くしなけれ
ば、結晶の規則性の高い充分な量の層状ペロブスカイト
型化合物が得られず、高い上部臨界磁界(He2)は得
られない。
And the cooling rate from the heat treatment temperature to 600℃ is 10℃ per minute.
If it is set below, superconducting characteristics with a high upper critical magnetic field (lIc2) can be obtained. If the heat treatment temperature is outside the above range and the temperature holding time is less than 1 hour, the amount of layered perovskite compound produced will be small. Further, when the oxygen partial pressure is less than 0.2 atm, the amount of oxygen is insufficient, and as a result, a layered perovskite compound with a stable crystal structure and highly regularity cannot be produced. If the cooling rate from the heat treatment temperature to 600° C. is not suppressed to about 10° C. per minute or less, microscopic cracks will occur during the cooling stage. The same thing can be said about the 6th step as in the 3rd step, but unless the temperature holding time is longer than 20 hours or longer than in the 3rd step, a sufficient amount of layered perovskite with high crystal regularity can be obtained. type compound is not obtained, and a high upper critical magnetic field (He2) is not obtained.

(作用) このような製造方法の採用によって、上部臨界磁界(l
Ic2)を5B〜80Tまで向上させ得ることが実験的
に確められた。これは原料が不純物のない状態で均一に
混合されるのでサンプル内での濃度変化がなく、また粒
間に不純物が存在せず、このために高純度高均質で結晶
の規則性の良い層状べロブスカイト型化合物超電導体が
サンプル全体に亙って生成されて電子比熱係数、比抵抗
等を増加させ、この結果として上部臨界磁界(lIc2
)が向上すると言う理由に基づくものと予想される。
(Function) By adopting such a manufacturing method, the upper critical magnetic field (l
It has been experimentally confirmed that Ic2) can be improved from 5B to 80T. This is because the raw materials are mixed uniformly without impurities, so there is no change in concentration within the sample, and there are no impurities between grains, resulting in a layered product with high purity, high homogeneity, and good crystal regularity. A lobskite-type compound superconductor is generated throughout the sample, increasing the electronic specific heat coefficient, resistivity, etc., and as a result, the upper critical magnetic field (lIc2
) is expected to improve.

(実施例) 以下、実施例を説明する。(Example) Examples will be described below.

純度99.9%のLa 2O3、BaCO3,同じく純
度99.9%のCuOの粉末をそれぞれ0.548:0
.067:0.385(モル比)でボールミル中で混合
撹拌(第1の工程)シ、これにプレスでl000kg/
 cjの圧力を加えて圧粉体を作った(第2の工程)。
Powders of La2O3, BaCO3, and CuO, each with a purity of 99.9%, were mixed at 0.548:0.
.. 067: 0.385 (molar ratio), mixed and stirred in a ball mill (first step), and then pressed at 1000 kg/
A compact was made by applying a pressure of cj (second step).

次に、この圧粉体を酸素分圧0.2気圧の雰囲気、昇温
速度35’C/sinの条件で950℃まで温度−上昇
させ、5時間保持した後、600℃までは8℃/gin
の降温速度で徐冷し、続いて室温までは約100℃/a
inの降温速度で急冷した(第3の工程)。このように
して熱処理の終了した圧粉体を再びホールミル中で粉砕
Next, the temperature of this green compact was raised to 950°C in an atmosphere with an oxygen partial pressure of 0.2 atm and a temperature increase rate of 35'C/sin, and after holding for 5 hours, the temperature was increased to 8°C/sin until 600°C. gin
100°C/a to room temperature.
The sample was rapidly cooled at a temperature decreasing rate of in (third step). The green compact that has been heat-treated in this way is ground again in a whole mill.

混合、撹拌しく第4の工程)、続いて、この混合物にプ
レスで1000kg/ c−の圧力を加えて再度、圧粉
体を作った(第5の工程)。次に、この圧粉体を酸素分
圧0.2気圧の雰囲気、昇温速度35℃1IIIInの
条件で950℃まで温度上昇させ、24時間保持した後
、600℃までは8℃/+Inの降温速度で徐冷し。
Then, a pressure of 1000 kg/c- was applied to this mixture using a press to make a powder compact again (fifth step). Next, the temperature of this green compact was raised to 950°C in an atmosphere with an oxygen partial pressure of 0.2 atm and a temperature increase rate of 35°C 1IIIn, and after holding for 24 hours, the temperature was decreased by 8°C/+In until it reached 600°C. Cool slowly.

続いて室温まで100℃/winで急冷した(第6の工
程)。
Subsequently, it was rapidly cooled to room temperature at 100° C./win (sixth step).

このような工程を経て製造されたサンプルについてX線
分光分析を行なったところ、高均質なLa1.78Ba
O,22Cu1.2504−Y’組成式を持9層状60
ブスカイト型化合物超電導体がサンプル全体に亙って生
成されていることが確認された。また、このサンプルに
ついて超電導特性を測定したところ。
When X-ray spectroscopic analysis was performed on the sample manufactured through such a process, it was found that highly homogeneous La1.78Ba
O,22Cu1.2504-Y' has a 9-layered structure 60
It was confirmed that buskite-type compound superconductors were generated throughout the sample. We also measured the superconducting properties of this sample.

第1図および第2図に示す結果が得られた。第1図は磁
界がOTから21.ITまでの6段階における温度変化
に対する抵抗変化を示すもので1図中矢印は各磁界にお
ける臨界温度(Te)を示している。
The results shown in FIGS. 1 and 2 were obtained. Figure 1 shows that the magnetic field is 21. It shows the resistance change with respect to temperature change in six stages up to IT, and the arrows in Figure 1 indicate the critical temperature (Te) in each magnetic field.

この図から判かるように磁界が零のときにおける臨界温
度(Tc)は33.5K 、また21.ITの磁界中で
の臨界温度(Tc)は25にと非常に高い値を示してい
る。
As can be seen from this figure, the critical temperature (Tc) when the magnetic field is zero is 33.5K and 21. The critical temperature (Tc) of IT in a magnetic field is as high as 25.

一方、第2図は第1図から読み取った臨界温度(Tc)
を磁界の変化としてプロットした図で、A界磁界(lI
c2)の温度変化として示している。この図から温度が
IK下がれば上部臨界磁界(lIc2)は2.4T上昇
していることが判かる。そして、これから直線外挿して
0(に)における上部臨界磁界(II c 2 * )
を求めると80Tと高い値が得られ、またWHH理論を
考慮して0(K)における上部臨界磁界(Itch)を
求めても56Tと高い値が得られる。この値は従来の0
.I Tを大幅に上回っており1本発明の有効性が理解
される。
On the other hand, Figure 2 shows the critical temperature (Tc) read from Figure 1.
is plotted as a change in the magnetic field, and the A field magnetic field (lI
It is shown as the temperature change of c2). It can be seen from this figure that if the temperature decreases by IK, the upper critical magnetic field (lIc2) increases by 2.4T. Then, by linear extrapolation from this, the upper critical magnetic field at 0 (II c 2 *)
A high value of 80T is obtained, and a high value of 56T is obtained when the upper critical magnetic field (Itch) at 0 (K) is obtained in consideration of the WHH theory. This value is the conventional 0
.. The effectiveness of the present invention can be understood as it significantly exceeds IT.

なお9本発明は上記実施例に限定されるものではない。Note that the present invention is not limited to the above embodiments.

すなわち、第2から第3までの工程は1度に限らず複数
回繰返し行なってもよい。また。
That is, the second to third steps may be repeated not only once but multiple times. Also.

第2および第5工程における条件、第3および第6エ程
における条件は前述した範囲内であればよい。また、第
1の工程で用いる粉末体は、実施例の粉末体に限らず1
層状ペロブスカイト型化合物超電導体を構成する元素を
含む粉末体であればよい。
The conditions in the second and fifth steps and the conditions in the third and sixth steps may be within the ranges described above. In addition, the powder used in the first step is not limited to the powder in the example.
Any powder containing the elements constituting the layered perovskite compound superconductor may be used.

[発明の効果] 以上述べたように2本発明によれば、今まで困難視され
ていた高磁界への応用可能な層状ペロブスカイト型の化
合物超電導体の製造方法を提供できる。
[Effects of the Invention] As described above, according to the two aspects of the present invention, it is possible to provide a method for producing a layered perovskite compound superconductor that can be applied to high magnetic fields, which has been considered difficult until now.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明製造方法によって得られた化合物超電導
体の各磁界における抵抗の温度変化を示す図、第2図は
本発明製造方法によって得られた化合物超電導体の上部
臨界磁界(lIc2)の温度変化を示す図である。 出願人代理人 弁理士 鈴江武彦 手続補正書 特許庁長官 黒 1)明 雄 殿 1、事件の表示 特願昭62−56754号 2、発明の名称 化合物超電導体の製造方法 3、補正をする者 事件との関係  特許出願人 武藤芳雄(ほか6名) 4、代理人 東京都千代田区霞が関3丁目7番2号UBEピル6、補
正の対象 明[1書 7、補正の内容 (1)明111mの第5頁5行目に「La 2O3、B
aC0。 CuOJとあるのをr La20 :l 、 BaCO
3,CLIOJと訂正する。
Fig. 1 is a diagram showing temperature changes in resistance in each magnetic field of the compound superconductor obtained by the production method of the present invention, and Fig. 2 is a diagram showing the upper critical magnetic field (lIc2) of the compound superconductor obtained by the production method of the present invention. FIG. 3 is a diagram showing temperature changes. Applicant's representative Patent attorney Takehiko Suzue Procedural amendment Commissioner of the Patent Office Black 1) Yu Akira1, Indication of the case Japanese Patent Application No. 62-567542, Name of the invention Process for manufacturing compound superconductor 3, Person making the amendment Case Relationship with Patent applicant Yoshio Muto (and 6 others) 4. Agent UBE Pill 6, 3-7-2 Kasumigaseki, Chiyoda-ku, Tokyo, Subject of amendment Ming [1 Book 7, Contents of amendment (1) Ming 111m On page 5, line 5, “La 2O3, B
aC0. CuOJ is r La20:l, BaCO
3. Correct it as CLIOJ.

Claims (6)

【特許請求の範囲】[Claims] (1)層状ペロブスカイト型の化合物超電導体を構成す
る元素を含む複数の粉末体を混合する第1の工程と、こ
の第1の工程で得られた混合物に圧力を加えて圧粉体と
する第2の工程と、上記圧粉体に熱処理を施す第3の工
程と、この工程を経た圧粉体を粉砕して混合する第4の
工程と、この工程によって得られた混合物に再度圧力を
加えて圧粉体とする第5の工程と、この工程によって得
られた圧粉体に熱処理を施す第6の工程とを具備してな
ることを特徴とする化合物超電導体の製造方法。
(1) A first step of mixing a plurality of powder bodies containing elements constituting a layered perovskite compound superconductor, and a second step of applying pressure to the mixture obtained in this first step to form a green compact. Step 2, a third step of heat-treating the green compact, a fourth step of crushing and mixing the green compact that has undergone this step, and applying pressure again to the mixture obtained in this step. 1. A method for manufacturing a compound superconductor, comprising: a fifth step of producing a green compact; and a sixth step of subjecting the green compact obtained in this step to heat treatment.
(2)前記粉末体は、La_2O_3、BaCO_3、
CuOであることを特徴とする特許請求の範囲第1項記
載の化合物超電導体の製造方法。
(2) The powder body includes La_2O_3, BaCO_3,
2. The method for producing a compound superconductor according to claim 1, wherein the superconductor is CuO.
(3)前記粉末体の純度は、99.9%以上であること
を特徴とする特許請求の範囲第2項記載の化合物超電導
体の製造方法。
(3) The method for producing a compound superconductor according to claim 2, wherein the powder has a purity of 99.9% or more.
(4)前記第2および第5の工程における圧力は、3〜
1500kg/cm^2範囲であることを特徴とする特
許請求の範囲第1項記載の化合物超電導体の製造方法。
(4) The pressure in the second and fifth steps is 3~
2. The method for producing a compound superconductor according to claim 1, wherein the weight is in the range of 1500 kg/cm^2.
(5)前記第3の工程における熱処理は、酸素分圧が0
.2気圧以上の雰囲気内で、900〜1100℃の範囲
に1時間以上保持した後、600℃までは毎分10℃以
下の降温速度で徐冷する経過を辿ることを特徴とする特
許請求の範囲第1項記載の化合物超電導体の製造方法。
(5) In the heat treatment in the third step, the oxygen partial pressure is 0.
.. Claims characterized in that after being maintained at a temperature in the range of 900 to 1100°C for 1 hour or more in an atmosphere of 2 atmospheres or more, the temperature is gradually cooled down to 600°C at a temperature decreasing rate of 10°C or less per minute. 2. A method for producing a compound superconductor according to item 1.
(6)前記第6の工程における熱処理は、酸素分圧が0
.2気圧以上の雰囲気内で、900〜1100℃の範囲
に20時間以上保持した後、600℃までは毎分10℃
以下の降温速度で徐冷する経過を辿ることを特徴とする
特許請求の範囲第1項記載の化合物超電導体の製造方法
(6) In the heat treatment in the sixth step, the oxygen partial pressure is 0.
.. After being maintained in the range of 900 to 1100℃ for 20 hours or more in an atmosphere of 2 atmospheres or more, the temperature is 10℃ per minute up to 600℃.
2. The method for producing a compound superconductor according to claim 1, wherein the process of slow cooling is performed at the following temperature decreasing rate.
JP62056754A 1987-03-13 1987-03-13 Production of compound superconductive body Pending JPS63225524A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62056754A JPS63225524A (en) 1987-03-13 1987-03-13 Production of compound superconductive body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62056754A JPS63225524A (en) 1987-03-13 1987-03-13 Production of compound superconductive body

Publications (1)

Publication Number Publication Date
JPS63225524A true JPS63225524A (en) 1988-09-20

Family

ID=13036299

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62056754A Pending JPS63225524A (en) 1987-03-13 1987-03-13 Production of compound superconductive body

Country Status (1)

Country Link
JP (1) JPS63225524A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS643061A (en) * 1987-03-22 1989-01-06 Sumitomo Electric Ind Ltd Production of superconducting material
JPS643063A (en) * 1987-03-28 1989-01-06 Sumitomo Electric Ind Ltd Production of superconductive material
JPS6476950A (en) * 1987-09-17 1989-03-23 Mitsubishi Cable Ind Ltd Production of superconducting substance
US5639714A (en) * 1988-08-29 1997-06-17 Sumitomo Electric Industries, Ltd. Method of producing oxide superconductor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS643061A (en) * 1987-03-22 1989-01-06 Sumitomo Electric Ind Ltd Production of superconducting material
JPS643063A (en) * 1987-03-28 1989-01-06 Sumitomo Electric Ind Ltd Production of superconductive material
JPS6476950A (en) * 1987-09-17 1989-03-23 Mitsubishi Cable Ind Ltd Production of superconducting substance
US5639714A (en) * 1988-08-29 1997-06-17 Sumitomo Electric Industries, Ltd. Method of producing oxide superconductor

Similar Documents

Publication Publication Date Title
JPH0643268B2 (en) Oxide high temperature superconductor
EP0377359B1 (en) Oxide superconducting material, process for preparing the same and applications thereof
JPS63225524A (en) Production of compound superconductive body
DE69120840T2 (en) Thallium-based superconductor substituted by rare earths
JPH0780710B2 (en) Manufacturing method of oxide high temperature superconductor
Markert et al. Processing and superconducting properties of the electron-doped compounds Ln2− xMxCuO4− y (Ln= Pr, Nd, Sm, Eu, Gd; M= Ce, Th)
EP0676817B2 (en) Method of preparing high-temperature superconducting wire
JP2625280B2 (en) Manufacturing method of oxide superconducting material
JP2723173B2 (en) High temperature superconductor and method of manufacturing the same
JPS63274652A (en) Method for elevating purity of ceramic superconductor to high level
JP2899510B2 (en) Oxide superconductor and manufacturing method thereof
US7008906B2 (en) Oxide high-critical temperature superconductor acicular crystal and its production method
CA1339720C (en) High temperature processing of cuprate oxide superconducting
JPH07118014A (en) Oxide superconductor and its production
RU1095863C (en) Method of producing supercondicting material
JPH01160861A (en) Anisotropic growth of superconducting ceramic
Salib et al. Electromechanical characterization of silver-clad BSCCO tapes
JPH06223650A (en) Manufacture of bi oxide superconducting wire
JPH06162842A (en) Manufacture of bi oxide superconductor wire rod and raw material powder for manufacturing bi oxide superconductor wire rod
JPS63230526A (en) Compound superconductor and production thereof
JPH0589730A (en) Manufacture of multilayer ceramic superconductive conductor
JPH0664921A (en) Production of oxide superconductor
Poeppel et al. Practical superconductor development for electrical power applications. Annual report for FY 1993
JPH01100054A (en) Production of oxide superconductor
JPS63242957A (en) Production of superconducting compound