JPH06162842A - Manufacture of bi oxide superconductor wire rod and raw material powder for manufacturing bi oxide superconductor wire rod - Google Patents

Manufacture of bi oxide superconductor wire rod and raw material powder for manufacturing bi oxide superconductor wire rod

Info

Publication number
JPH06162842A
JPH06162842A JP4308880A JP30888092A JPH06162842A JP H06162842 A JPH06162842 A JP H06162842A JP 4308880 A JP4308880 A JP 4308880A JP 30888092 A JP30888092 A JP 30888092A JP H06162842 A JPH06162842 A JP H06162842A
Authority
JP
Japan
Prior art keywords
powder
compound
raw material
oxide superconductor
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP4308880A
Other languages
Japanese (ja)
Inventor
Toshio Egi
俊雄 江木
Seiji Hayashi
征治 林
Kazuyuki Shibuya
和幸 渋谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP4308880A priority Critical patent/JPH06162842A/en
Publication of JPH06162842A publication Critical patent/JPH06162842A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

PURPOSE:To quickly provide a Bi oxide superconductor wire rod including no impurity phase, by enclosing the raw material mixed power of the Bi oxide superconductor wire rod in a sheathing material to be plastic-worked and then heat-treated to have a specific superconductor phase. CONSTITUTION:Bi oxide superconductor wire material is manufactured by a sheathing method as follows: Powder, having chemical structure in a formula I, and raw material mixed powder, composed of Ca-Sr-Cu-O compound powder and also not including a (Ca, Sr)2PbO4 compound, are previously prepared so that (Bi, Pb):(Sr, Ba):C:Cu in this mixed powder can have a proportion nearly 2:2:2:3. Then the mixed powder is enclosed in a sheathing material to perform plastic working, and then is heat-treated in atmosphere or a non-oxidizing atmosphere to form mixed powder in the sheath material to a formula II type oxide superconductor, thus obtaining a target wire rod. In the formula I, 0.05<=x<=0.7, 0<=y<=0.2.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は臨界電流特性が良好で、
超電導マグネット等の素材として最適なBi系酸化物超
電導体線材をシース法を適用しつつ製造する為の新規な
方法、およびその様な線材を製造する為の原料粉末に関
するものである。
The present invention has a good critical current characteristic,
The present invention relates to a novel method for producing a Bi-based oxide superconducting wire which is optimal as a material for a superconducting magnet while applying a sheath method, and a raw material powder for producing such a wire.

【0002】[0002]

【従来の技術】希土類元素−アルカリ土類元素−銅酸化
物が超電導体として注目を集める様になって以来、幾多
の複合酸化物について超電導現象が検討されている。例
えばBi系酸化物は、超電導遷移温度(以下、単にTc
と記す)が80K(低温相)或は110K(高温相)等
の高いTcを有する物質として知られている。
2. Description of the Related Art Since rare earth elements-alkaline earth elements-copper oxides have been attracting attention as superconductors, superconducting phenomena have been studied for many composite oxides. For example, a Bi-based oxide has a superconducting transition temperature (hereinafter, simply referred to as Tc
Is described as a substance having a high Tc such as 80K (low temperature phase) or 110K (high temperature phase).

【0003】Bi系酸化物のうち、Tcが110K程度
の部類に属するBi系酸化物超電導体は、Tcが液体窒
素の沸点温度を十分に超え且つ毒性もないという優れた
特徴を有しており、特に超電導体線材への応用が有望視
され、これまで数多くの研究開発がなされている。この
高温相Bi系酸化物超電導体は、(Bi+Pb),S
r,Ca,Cuを含み、これらの原子モル比がほぼ2:
2:2:3となっているものが代表的であり[例えば
(Bi1-x Pbx2 Sr2 Ca2 Cu310- δ:但
し、0.05≦x≦0.7]、Bi系2223型酸化物
超電導体とも呼ばれている。またSrの一部をBaで置
換した高温相Bi系酸化物超電導体も知られている。
Among the Bi-based oxides, the Bi-based oxide superconductors belonging to the category of Tc of about 110K have the excellent characteristics that Tc is sufficiently higher than the boiling temperature of liquid nitrogen and is not toxic. Especially, the application to superconducting wire is regarded as promising, and many researches and developments have been made so far. This high-temperature phase Bi-based oxide superconductor is (Bi + Pb), S
It contains r, Ca and Cu, and their atomic molar ratio is approximately 2:
The ratio of 2: 2: 3 is typical [for example, (Bi 1-x Pb x ) 2 Sr 2 Ca 2 Cu 3 O 10- δ: where 0.05 ≦ x ≦ 0.7], It is also called a Bi-based 2223 type oxide superconductor. A high-temperature phase Bi-based oxide superconductor in which a part of Sr is replaced with Ba is also known.

【0004】Bi系2223型酸化物超電導体の超電導
マグネット等への応用を考える場合には、該酸化物超電
導体の線材化が不可欠の要件である。Bi系酸化物超電
導体線材の製造方法としては、シース法が最も一般的な
方法であるが、このシース法によってBi系2223型
酸化物超電導体線材を製造する場合は、通常下記の様に
行われる。まず各構成元素の酸化物や炭酸塩を原料と
し、これを所定の割合で混合し、大気中750〜820
℃程度の温度で仮焼を繰り返した後、Bi系2223型
酸化物超電導体相が生成する温度で短時間焼成する。次
いで、得られた試料を粉砕した後、これを銀パイプ等の
シース材に封入して伸線、圧延加工を施してシース線材
とし、この線材に3回の熱処理と該熱処理の間に一軸プ
レスを施す。
When considering application of the Bi type 2223 type oxide superconductor to a superconducting magnet or the like, it is an essential requirement to make the oxide superconductor into a wire. The sheath method is the most general method for producing a Bi-based oxide superconductor wire, but when a Bi-based 2223 type oxide superconductor wire is produced by this sheath method, it is usually performed as follows. Be seen. First, the oxides and carbonates of the respective constituent elements are used as raw materials, which are mixed at a predetermined ratio, and then mixed in the atmosphere at 750 to 820.
After repeating the calcination at a temperature of about ° C, the calcination is performed for a short time at a temperature at which a Bi-based 2223 type oxide superconductor phase is generated. Then, after crushing the obtained sample, it is enclosed in a sheath material such as a silver pipe and subjected to wire drawing and rolling to form a sheath wire, and this wire is subjected to three heat treatments and a uniaxial press between the heat treatments. Give.

【0005】ところで超電導体線材を実用化するに当た
って、特にコイル化して超電導マグネット等として使用
する場合、線材(シース材+超電導物質)の単位面積当
たりの臨界電流値即ち臨界電流密度(オーバオールの臨
界電流密度:以下、単にJcと記す)をできるだけ大き
くする必要がある。線材のJc値を向上させる為には、
酸化物超電導体自体でのJc値を上げるか、線材中のシ
ース材の比率を低くするかのいずれかであるが、加工の
制約上シース材の線材全体に占める割合を低くするには
限界がある。従って、線材のJc値を向上させる為に
は、酸化物超電導体自体でのJc値を上げるしかない
が、その為には線材中の酸化物をできるだけ単一相に
し、且つ結晶を配向させてやる必要がある。何故なら線
材中の不純物相は超電導電流の流れを阻害すると共に、
超電導部分の有効断面積を低下させ、また酸化物超電導
体はその結晶のa−b面方向には電流が流れ易いが、該
結晶面に垂直な方向には電流が流れ難いという特徴を有
しているからである。
When the superconducting wire is put into practical use, particularly when it is used as a superconducting magnet after being coiled, the critical current value per unit area of the wire (sheath material + superconducting material), that is, the critical current density (overall criticality). Current density: hereinafter simply referred to as Jc) is required to be as large as possible. In order to improve the Jc value of the wire,
Either the Jc value of the oxide superconductor itself should be increased or the ratio of the sheath material in the wire should be decreased. However, there is a limit to reducing the ratio of the sheath material in the whole wire due to processing restrictions. is there. Therefore, the only way to improve the Jc value of the wire is to increase the Jc value of the oxide superconductor itself. For that purpose, the oxide in the wire should be made as single phase as possible and the crystals should be oriented. I need to do it. Because the impurity phase in the wire interferes with the flow of superconducting current,
The effective cross-sectional area of the superconducting portion is reduced, and the oxide superconductor has a characteristic that the current easily flows in the ab plane direction of the crystal, but the current hardly flows in the direction perpendicular to the crystal plane. Because it is.

【0006】こうした点を考慮して、従来では線材を約
7トン/cm2 の圧力でプレスし、これを大気中830
℃で熱処理する工程を3回繰り返して行うのが一般的で
あった。しかしながら、注意深く熱処理しても、超電導
体中の随所に大きな不純物相が残存してしまうのが実情
であり、従来の方法で作成した線材のJc値は17,0
00A/cm2 (77K,0T)程度であった。またプ
レスを3回繰り返すことによって結晶の配向性は向上す
るが、プレスの際に生じたクラックが熱処理後も残存
し、Jc値の向上を妨げてしまうという欠点があった。
更に、シース材中でのBi系2223型酸化物超電導体
相(以下、Bi−2223相と記すことがある)の生成
速度は、バルク体として製造する場合の生成速度(約1
00時間)と比較して非常に遅く、線材の熱処理に非常
に長い時間(約200時間)を必要とするという欠点も
あった。
In consideration of these points, conventionally, a wire rod is conventionally pressed at a pressure of about 7 ton / cm 2 , and this is pressed in air at 830
It was common to repeat the step of heat treatment at ℃ 3 times. However, even if the heat treatment is carefully performed, a large impurity phase remains in many places in the superconductor, and the Jc value of the wire produced by the conventional method is 17,0.
It was about 00 A / cm 2 (77K, 0T). Further, although the crystal orientation is improved by repeating the pressing three times, there is a defect that cracks generated during pressing remain after the heat treatment and hinder the improvement of Jc value.
Further, the production rate of the Bi-based 2223 type oxide superconductor phase (hereinafter sometimes referred to as Bi-2223 phase) in the sheath material is the production rate in the case of manufacturing as a bulk body (about 1
It was very slow as compared with the case of 00 hours), and there was a drawback that it took a very long time (about 200 hours) to heat the wire.

【0007】[0007]

【発明が解決しようとする課題】本発明は、上述した様
な技術的課題を解決する為になされたものであって、そ
の目的は、不純物相を含まないBi系酸化物超電導体線
材を迅速に製造する為の方法、およびその様な酸化物超
電導体を製造する為の原料粉末を提供することにある。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned technical problems, and an object thereof is to quickly obtain a Bi-based oxide superconductor wire containing no impurity phase. To provide a raw material powder for producing such an oxide superconductor.

【0008】[0008]

【課題を解決するための手段】上記目的を達成し得た本
発明方法とは、(Bi1-x Pbx2 (Sr1-y Ba
y2 CaCu210- δ(但し、0.05≦x≦0.
7,0≦y≦0.2)の化学構造を有する粉末と、Ca
−Sr−Cu−O系化合物粉末とからなり、且つ(C
a,Sr)2 PbO4 化合物を含まない原料混合粉末
を、該混合粉末中の(Bi,Pb):(Sr,Ba):
Ca:Cuが2:2:2:3に近似した割合になる様に
して予め調製しておき、この混合粉末をシース材に封入
して塑性加工を行った後、大気中若しくは非酸化性雰囲
気中で熱処理してシース材中の混合粉末を(Bi,P
b)2 (Sr,Ba)2 Ca2 Cu3 O型酸化物超電導
体相とする点に要旨を有するBi系酸化物超電導体線材
の製造方法である。またこのとき用いる原料混合粉末
は、Bi化合物、Pb化合物、Sr化合物、Ba化合
物、Ca化合物およびCu化合物を、(Bi,Pb):
(Sr,Ba):Ca:Cuが2:2:2:3に近似し
た割合になる様に混合した後、非酸化性雰囲気中700
〜830℃の温度で熱処理することによって調製された
ものが最適である。
[Means for Solving the Problems] A book that has achieved the above object
Inventive method means (Bi1-x Pbx )2 (Sr1-y Ba
y )2 CaCu2 OTen- δ (however, 0.05 ≦ x ≦ 0.
Powder having a chemical structure of 7,0 ≦ y ≦ 0.2), and Ca
-Sr-Cu-O-based compound powder, and (C
a, Sr)2 PbOFour Raw material mixed powder containing no compound
In the mixed powder (Bi, Pb): (Sr, Ba):
So that the ratio of Ca: Cu is close to 2: 2: 2: 3
Prepared in advance, and then enclose this mixed powder in the sheath material.
Plastic working, and then in air or in a non-oxidizing atmosphere.
The powder mixture in the sheath material is heat treated in air (Bi, P
b)2 (Sr, Ba)2 Ca2 Cu3 O-type oxide superconductivity
Bi-based oxide superconductor wire having the gist in the body phase
Is a manufacturing method. The raw material mixed powder used at this time
Is a Bi compound, Pb compound, Sr compound, Ba compound
And the Ca compound and the Cu compound are (Bi, Pb):
(Sr, Ba): Ca: Cu approximates 2: 2: 2: 3
After mixing in different proportions, 700 in a non-oxidizing atmosphere
Prepared by heat treatment at a temperature of ~ 830 ° C
The ones are the best.

【0009】上記製造方法では、原料混合粉末を、該混
合粉末中に(Ca,Sr)2 PbO 4 化合物を含まない
様にして予め調整することを趣旨とするものであるが、
(Bi1-x Pbx2 (Sr1-y Bay2 CaCu2
10- δ(但し、0.05≦x≦0.7,0≦y≦0.
2)の化学構造を有し、且つ(Ca,Sr)2 PbO 4
化合物を含まない原料粉末と、Ca−Sr−Cu−O系
化合物粉末を別々に準備しておき、これらを(Bi,P
b):(Sr,Ba):Ca:Cuが2:2:2:3に
近似した割合となる様に混合した後、シース材に封入し
て塑性加工を行い、以下、上述の方法と同様に線材を製
造する様にしてもよい。またこのとき用いる(Bi1-x
Pbx2 (Sr1-y Bay2 CaCu210- δ系
原料粉末は、Bi化合物、Pb化合物、Sr化合物、B
a化合物、Ca化合物およびCu化合物を、(Bi,P
b):(Sr,Ba):Ca:Cuが2:2:1:2に
近似した割合となる様に混合した後、非酸化性雰囲気中
700〜830℃の温度で熱処理することによって製造
されたものが最適である。
In the above manufacturing method, the raw material mixed powder is mixed with
In the mixed powder (Ca, Sr)2 PbO Four Contains no compounds
In this way, the purpose is to adjust in advance,
(Bi1-x Pbx )2 (Sr1-y Bay )2 CaCu2 
OTen- δ (however, 0.05 ≦ x ≦ 0.7, 0 ≦ y ≦ 0.
It has the chemical structure of 2) and (Ca, Sr)2 PbO Four 
Compound-free raw material powder and Ca-Sr-Cu-O system
Compound powders are prepared separately, and these (Bi, P
b) :( Sr, Ba): Ca: Cu becomes 2: 2: 2: 3
After mixing so that the ratio is similar, enclose in a sheath material.
Plastic working is performed, and then the wire rod is manufactured in the same manner as above.
You may choose to build it. Also used at this time (Bi1-x 
Pbx )2 (Sr1-y Bay )2 CaCu2 OTen- δ system
Raw material powders are Bi compound, Pb compound, Sr compound, B
The a compound, the Ca compound and the Cu compound are (Bi, P
b) :( Sr, Ba): Ca: Cu becomes 2: 2: 1: 2
Mix in similar proportions and then in a non-oxidizing atmosphere
Manufactured by heat treatment at a temperature of 700-830 ° C
What was done is the best.

【0010】更に、本発明の目的は、Pbを含まないB
2 (Sr1-y Bay)2 CaCu210- δ(但し、0
≦y≦0.2)系原料粉末と、Ca−Pb−Sr−Cu
−O系化合物粉末を別々に準備しておき、これらを(B
i,Pb):(Sr,Ba):Ca:Cuが2:2:
2:3に近似した割合となる様に混合した後、非酸化性
雰囲気中700〜830℃の温度で熱処理を行い(Bi
1-x Pbx)2 (Sr1-yBay2 CaCu210- δ
(但し、0.05≦x≦0.7、yは前と同じ意味)の
化学構造を有する超電導体相を生成させた原料混合粉末
とし、これをシース材に封入して塑性加工を行った後、
大気中若しくは非酸化性雰囲気中で熱処理してシース材
中の原料混合粉末を(Bi,Pb)2 (Sr,Ba)2
Ca2 Cu 3 O型酸化物超電導体相とする様な構成を採
用することによっても達成される。尚この製造方法にお
いて、非酸化性雰囲気中で熱処理する前に、上記混合粉
末をシース材に封入し、その後非酸化性雰囲気中700
〜830℃の温度で熱処理し、シース材中で(Bi1-x
Pbx2 (Sr1-y Bay2 CaCu210- δ
(但し、0.05≦x≦0.7、yは前と同じ意味)の
化学構造を有する超電導体相を生成させた原料混合粉末
とした後、該シース材に塑性加工を行い、引き続き大気
中若しくは非酸化性雰囲気で熱処理してシース材中の混
合粉末を(Bi,Pb)2 (Sr,Ba)2 Ca2 Cu
3 O型酸化物超電導体相とする様な技術的応用も可能で
ある。
Furthermore, an object of the present invention is to include B containing no Pb.
i2 (Sr1-y Bay)2 CaCu2OTen- δ (however, 0
≦ y ≦ 0.2) -based raw material powder and Ca-Pb-Sr-Cu
-O-based compound powders are prepared separately, and these (B
i, Pb) :( Sr, Ba): Ca: Cu is 2: 2:
After mixing in a ratio close to 2: 3, non-oxidizing
Heat treatment is performed in an atmosphere at a temperature of 700 to 830 ° C. (Bi
1-x Pbx)2 (Sr1-yBay )2 CaCu2 OTen- δ
(However, 0.05 ≦ x ≦ 0.7, y has the same meaning as before)
Raw material mixed powder in which a superconductor phase having a chemical structure is generated
After encapsulating this in a sheath material and performing plastic working,
Sheath material heat treated in air or non-oxidizing atmosphere
The raw material mixed powder in (Bi, Pb)2 (Sr, Ba)2 
Ca2 Cu 3 O-type oxide superconductor phase
It is also achieved by using. In addition, in this manufacturing method
The mixed powder before heat treatment in a non-oxidizing atmosphere.
Enclose the powder in a sheath material and then 700 in a non-oxidizing atmosphere.
Heat-treated at a temperature of ~ 830 ° C and then in a sheath material (Bi1-x 
Pbx )2 (Sr1-y Bay )2 CaCu2 OTen- δ
(However, 0.05 ≦ x ≦ 0.7, y has the same meaning as before)
Raw material mixed powder in which a superconductor phase having a chemical structure is generated
After that, the sheath material is plastically worked and
Heat treatment in a medium or non-oxidizing atmosphere and mix in the sheath material.
Combined powder (Bi, Pb)2 (Sr, Ba)2 Ca2 Cu
3 It is also possible to have technical applications such as using an O-type oxide superconductor phase.
is there.

【0011】[0011]

【作用】本発明者らは、シース材中でのBi−2223
相の生成促進と不純物相の低減を図る為に、様々な角度
から検討を重ねた。そしてまず、シース材中でBi−2
223相の生成速度が遅くなるのは、原料粉末中に含ま
れる(Ca,Sr)2 PbO4 化合物に起因していると
考えられた。即ち、原料粉末中に含まれる(Ca,S
r)2 PbO4 化合物が、熱処理中に分解して酸素ガス
を発生し、これがシース材中の酸素分圧を大気圧より高
くすることによってBi−2223相の生成が抑制され
ると考えられた。またこの(Ca,Sr)2 PbO4
合物がシース材中の不純物相になると考えられた。この
様な化合物は、酸化性雰囲気で作成される従来の原料粉
末では、その生成を抑制することはできない。
The present inventors have confirmed that Bi-2223 in the sheath material is used.
In order to promote the generation of phases and reduce the amount of impurity phases, studies were repeated from various angles. And first, in the sheath material, Bi-2
It was considered that the reason why the formation rate of the 223 phase was slow was due to the (Ca, Sr) 2 PbO 4 compound contained in the raw material powder. That is, it is contained in the raw material powder (Ca, S
It was considered that the r) 2 PbO 4 compound decomposed during the heat treatment to generate oxygen gas, which caused the oxygen partial pressure in the sheath material to be higher than atmospheric pressure, thereby suppressing the formation of the Bi-2223 phase. . It was also considered that this (Ca, Sr) 2 PbO 4 compound becomes an impurity phase in the sheath material. Generation of such a compound cannot be suppressed by a conventional raw material powder prepared in an oxidizing atmosphere.

【0012】そこで本発明者らは、(Ca,Sr)2
bO4 化合物を含有しない原料粉末を作製する為に更に
検討を進めた。その結果、非酸化性雰囲気中700〜8
30℃の温度で熱処理しつつ原料粉末を作成すれば原料
粉末中に(Ca,Sr)2 PbO4 化合物が生成されな
いことがわかった。そしてこの様な原料粉末を用い、シ
ース法を適用して酸化物超電導体線材を製造すれば、
(Ca,Sr)2 PbO 4 を含有する従来の原料粉末を
使用した場合と比べて、短時間で且つ1回のプレスにて
Bi−2223相がほぼ単相化し、不純物相が極めて少
ない高Jc線材ができることを見出し、本発明を完成し
た。
Therefore, the present inventors have found that (Ca, Sr)2 P
bOFour In order to produce a raw material powder containing no compound,
We proceeded with the examination. As a result, 700 to 8 in a non-oxidizing atmosphere
Raw material if heat-treated at a temperature of 30 ° C.
In powder (Ca, Sr)2 PbOFour No compound is produced
I found out Then, using such raw material powder,
If the oxide superconducting wire is manufactured by applying the
(Ca, Sr)2 PbO Four The conventional raw material powder containing
Compared to the case of using it, it takes a short time and with one press
Bi-2223 phase is almost single phase, and the impurity phase is extremely small.
We have found that we can produce high Jc wire without
It was

【0013】本発明によって、従来の課題が解決できた
主な要因を従来法と比較して更に詳細に説明する。大気
中で熱処理した原料粉末を用いて作製した線材の場合、
線材を840℃付近で熱処理すると(Ca,Sr)2
bO4 化合物の分解反応が起こり、Pb4+からPb2+
の反応に伴う酸素ガスが発生する。しかしながらシース
材の酸素の拡散速度は化学反応で生じる酸素の生成速度
よりはるかに遅いので、発生した酸素はシース材内部か
ら瞬時に大気中に放出されない。このためシース材内部
の酸素分圧は大気中よりやや高くなりBi−2223相
の生成は抑制される。このためシース材中でのBi−2
223相の生成速度は銀中の酸素の拡散速度に依存して
しまい、Bi−2223相がシース材中で生成するため
には、約200時間もの長時間の熱処理を必要とし、且
つ反応性と配向度の向上のために3回の一軸プレスを必
要としていた。
The main factors by which the present invention can solve the conventional problems will be described in more detail in comparison with the conventional method. In the case of a wire made using raw material powder that has been heat treated in the atmosphere,
When the wire is heat treated at around 840 ° C, (Ca, Sr) 2 P
The decomposition reaction of the bO 4 compound occurs, and oxygen gas is generated by the reaction from Pb 4+ to Pb 2+ . However, since the diffusion rate of oxygen in the sheath material is much slower than the production rate of oxygen generated by the chemical reaction, the generated oxygen is not instantaneously released from the inside of the sheath material to the atmosphere. Therefore, the oxygen partial pressure inside the sheath material is slightly higher than that in the atmosphere, and the generation of the Bi-2223 phase is suppressed. Therefore, Bi-2 in the sheath material
The production rate of the 223 phase depends on the diffusion rate of oxygen in silver, and in order for the Bi-2223 phase to be produced in the sheath material, a long heat treatment of about 200 hours is required, and the reactivity is high. Three uniaxial presses were required to improve the degree of orientation.

【0014】一方、非酸化性雰囲気中で作製した原料粉
末には、(Ca,Sr)2 PbO4化合物が生成してい
ない。これは非酸化雰囲気中で熱処理しているので、P
bがPb2+の状態でBi−2212相[(Bi1-x Pb
x2 (Sr1-y Bay2CaCu210- δ相の意
味]に固溶したためであると考えられる。このため上記
従来法で生じていたPb4+からPb2+の反応に伴う酸素
ガスの発生が起こらず、シース材中で酸化雰囲気化しな
い。従ってシース材中の酸素分圧は高くならず、Bi−
2223相の生成が抑制されず、一回のプレスと合計約
100時間の2回の熱処理でシース材中でBi−222
3相を作製できる。また原料粉末中に(Ca,Sr)2
PbO4 等を含まないため最終熱処理後に残存する不純
物相もわずかとなる。更に、短時間熱処理でBi−22
23相が生成しているため、プレスの回数が減少出来、
プレスによるBi−2223相の破壊が無くなる。
On the other hand, the (Ca, Sr) 2 PbO 4 compound is not formed in the raw material powder produced in the non-oxidizing atmosphere. Since this is heat treated in a non-oxidizing atmosphere, P
b is Bi-2212 phase in the form of Pb 2+ [(Bi 1-x Pb
x ) 2 (Sr 1-y Bay y ) 2 CaCu 2 O 10- δ phase] is considered to be a solid solution. For this reason, the oxygen gas is not generated by the reaction of Pb 4+ to Pb 2+ generated in the above conventional method, and an oxidizing atmosphere is not created in the sheath material. Therefore, the oxygen partial pressure in the sheath material does not increase and Bi-
The formation of the 2223 phase was not suppressed, and Bi-222 was formed in the sheath material by one pressing and two heat treatments for about 100 hours in total.
Three phases can be produced. In addition, (Ca, Sr) 2
Since it does not contain PbO 4 etc., the impurity phase remaining after the final heat treatment becomes small. Furthermore, the heat treatment for a short time causes Bi-22
Since 23 phases are generated, the number of presses can be reduced,
Destruction of Bi-2223 phase by pressing is eliminated.

【0015】本発明で用いる原料粉末は、上述した様
に、Bi化合物、Pb化合物、Sr化合物、Ba化合
物、Ca化合物およびCu化合物を、(Bi,Pb):
(Sr,Ba):Ca:Cuが2:2:2:3に近似し
た割合になる様に混合した後、非酸化性雰囲気中700
〜830℃の温度で熱処理することによって製造された
ものが最も基本的な構成であるが、上記各化合物を(B
i,Pb):(Sr,Ba):Ca:Cuが2:2:
1:2に近似した割合になる様に混合した後、非酸化性
雰囲気中700〜830℃の温度で熱処理することによ
って、(Ca,Sr)2PbO4 化合物を含まない(Bi
1-x Pbx)2 (Sr1-y Bay2 CaCu210- δ
系原料粉末を予め製造し、この原料粉末とCa−Sr−
Cu−O系化合物を混合して原料混合粉末としてもよ
い。尚上記Ca−Sr−Cu−O系化合物は、Pbを基
本的に含まないものであるが、微量のPbを含有するこ
とはあり得る。
As described above, the raw material powder used in the present invention contains the Bi compound, the Pb compound, the Sr compound, the Ba compound, the Ca compound and the Cu compound (Bi, Pb):
After mixing (Sr, Ba): Ca: Cu in a ratio close to 2: 2: 2: 3, 700 in a non-oxidizing atmosphere
The most basic constitution is one produced by heat treatment at a temperature of ˜830 ° C.
i, Pb) :( Sr, Ba): Ca: Cu is 2: 2:
After mixing so as to have a ratio close to 1: 2, the mixture is heat-treated at a temperature of 700 to 830 ° C. in a non-oxidizing atmosphere to obtain no (Ca, Sr) 2 PbO 4 compound (Bi.
1-x Pb x) 2 ( Sr 1-y Ba y) 2 CaCu 2 O 10- δ
System raw material powder is manufactured in advance, and this raw material powder and Ca-Sr-
A Cu-O-based compound may be mixed to form a raw material mixed powder. The Ca-Sr-Cu-O-based compound basically does not contain Pb, but may contain a trace amount of Pb.

【0016】また本発明で用いる原料粉末としては、P
bを含まないBi2 (Sr1-y Ba y2 CaCu2
10- δ(但し、0≦y≦0.2)系粉末と、Ca−Pb
−Sr−Cu−O系化合物粉末を別々に準備しておき、
これらを(Bi,Pb):(Sr,Ba):Ca:Cu
が2:2:2:3に近似した割合となる様に混合した
後、非酸化性雰囲気中700〜830℃の温度で熱処理
を行い(Bi1-x Pbx2 (Sr1-y Bay2 Ca
Cu210- δ(但し、0.05≦x≦0.7、yは前
と同じ意味)の化学構造を有する超電導体相を生成させ
た原料混合粉末も用いることができる。尚この様な原料
粉体をシース材中で調整する様にしてもよい。即ちPb
を含まないBi2 (Sr1-y Bay)2 CaCu210-
δ(但し、0≦y≦0.2)系原料粉末と、Ca−Pb
−Sr−Cu−O系化合物粉末を別々に準備しておき、
これらを(Bi,Pb):(Sr,Ba):Ca:Cu
が2:2:2:3に近似した割合となる様に混合し、こ
れをシース材に封入した後、非酸化性雰囲気中700〜
830℃の温度で熱処理し、シース材中で(Bi1-x
x)2 (Sr1-y Bay2 CaCu210- δ(但
し、0.05≦x≦0.7、yは前と同じ意味)の化学
構造を有する超電導体相を生成させた原料混合粉末とし
た後、該シース材に塑性加工を行い、引き続き大気中若
しくは非酸化性雰囲気で熱処理しても本発明の目的が達
成される。
The raw material powder used in the present invention is P
Bi not including b2 (Sr1-y Ba y )2 CaCu2 O
Ten- δ (however, 0 ≦ y ≦ 0.2) system powder and Ca-Pb
-Sr-Cu-O-based compound powder is prepared separately,
These are (Bi, Pb) :( Sr, Ba): Ca: Cu
Were mixed so that the ratio was close to 2: 2: 2: 3.
After that, heat treatment at a temperature of 700 to 830 ° C. in a non-oxidizing atmosphere
(Bi1-x Pbx)2 (Sr1-y Bay )2 Ca
Cu2 OTen- δ (however, 0.05 ≦ x ≦ 0.7, y is before
The same meaning) as the superconducting phase
Raw material mixed powder can also be used. Raw materials like this
The powder may be adjusted in the sheath material. That is, Pb
Bi not including2 (Sr1-y Bay)2 CaCu2 OTen- 
δ (where 0 ≦ y ≦ 0.2) -based raw material powder and Ca-Pb
-Sr-Cu-O-based compound powder is prepared separately,
These are (Bi, Pb) :( Sr, Ba): Ca: Cu
Are mixed in a ratio close to 2: 2: 2: 3.
After enclosing it in a sheath material, 700 ~ in a non-oxidizing atmosphere
Heat treatment was performed at a temperature of 830 ° C., and (Bi1-xP
bx)2 (Sr1-y Bay )2 CaCu2 OTen- δ (however
, 0.05 ≤ x ≤ 0.7, y has the same meaning as before)
As a raw material mixed powder in which a superconductor phase having a structure is generated
After that, the sheath material is subjected to plastic working,
The object of the present invention is achieved even if heat treatment is performed in a non-oxidizing atmosphere.
Is made.

【0017】ところで本発明に係るBi系酸化物超電導
体は基本的にPbを含んだものであるが、これはPbを
含まないとBi−2223相が生成されないからであ
る。このPbはBiの5〜70原子%を置換して固溶させ
たものであるが(0.05≦x≦0.7)、例えば(Bi1-x
x)2 Sr2 CaCu210- δの場合は、Pbの固溶
量は結晶の格子定数によって特徴づけられる。即ち、
(Bi1-x Pbx)2 Sr2CaCu210- δの結晶構
造が正方晶のときは格子定数が5.395<a,b<
5.430(Å),30.58<c<30.90(Å)
の範囲にあり、斜方晶のときは格子定数が5.395<
a<5.445,5.390<b<5.440,30.
58<c<30.95(Å)の範囲にある。また本発明
に係るBi系酸化物超電導体は、Srの一部(20原子
%以下、即ち0≦y≦0.2)をBaで置換したものも
含まれるが、Baの有無は超電導特性にほとんど影響を
与えない。
By the way, the Bi-based oxide superconductor according to the present invention basically contains Pb, because the Bi-2223 phase is not generated unless Pb is included. This Pb is obtained by substituting 5 to 70 atomic% of Bi and forming a solid solution (0.05 ≦ x ≦ 0.7). For example, (Bi 1-x P
For b x) 2 Sr 2 CaCu 2 O 10- δ, solid solution amount of Pb is characterized by the lattice constant of the crystal. That is,
(Bi 1-x Pb x) 2 Sr 2 CaCu 2 O 10- δ lattice constant when the crystal structure of the tetragonal of 5.395 <a, b <
5.430 (Å), 30.58 <c <30.90 (Å)
, The lattice constant is 5.395 <in the case of orthorhombic crystal.
a <5.445, 5.390 <b <5.440, 30.
It is in the range of 58 <c <30.95 (Å). Further, the Bi-based oxide superconductor according to the present invention includes one in which a part of Sr (20 atomic% or less, that is, 0 ≦ y ≦ 0.2) is replaced with Ba, but the presence or absence of Ba is a superconducting property. Has almost no effect.

【0018】尚本発明で原料粉末を調製する際に用いる
化合物については、特に限定するものではないが、例え
ばBi23 ,Pb23 ,SrCO3 ,CaCO3
CuO等の酸化物や炭酸塩、または各構成元素の硝酸塩
が挙げられる。またシース法を適用する際に用いるシー
ス材は、酸素を拡散できるものであれば良く、特に限定
するものではないが、例えば銀、銀合金および金等が挙
げられる。更に、最終的にシース材中でBi−2223
相を生成するときの雰囲気は、大気中若しくは非酸化性
雰囲気のどちらでも良く、そのときの温度は830〜8
50℃程度である。但し、シース材に封入しないときの
Bi−2223相生成温度はもう少し高い温度範囲であ
る。
The compound used in preparing the raw material powder in the present invention is not particularly limited, but for example, Bi 2 O 3 , Pb 2 O 3 , SrCO 3 , CaCO 3 ,
Examples thereof include oxides and carbonates such as CuO, and nitrates of each constituent element. The sheath material used when applying the sheath method is not particularly limited as long as it can diffuse oxygen, and examples thereof include silver, a silver alloy, and gold. Furthermore, finally in the sheath material, Bi-2223 is used.
The atmosphere in which the phase is generated may be either the air or a non-oxidizing atmosphere, and the temperature at that time is 830 to 8
It is about 50 ° C. However, the Bi-2223 phase generation temperature when not enclosed in the sheath material is a slightly higher temperature range.

【0019】以下本発明を実施例によって更に詳細に説
明するが、下記実施例は本発明を限定するものではな
く、前・後記の趣旨に徴して設計変更することはいずれ
も本発明の技術的範囲に含まれるものである。
The present invention will be described in more detail with reference to the following examples, but the following examples are not intended to limit the present invention, and any modification of the design in view of the spirit of the preceding and the following will be technical technical aspects of the present invention. It is included in the range.

【0020】[0020]

【実施例】【Example】

実施例1 純度99.9%以上のBi23 ,Pb23 ,SrC
3 ,BaCO3 ,CaCO3 ,CuOの各粉末を用
い、各元素のモル比がBi:Pb:Sr:Ba:Ca:
Cu=1.9:0.3:1.9:0.1:2.0:3.
0:となる様に秤量、混合し、大気中750℃で1回目
の仮焼を行った後、これを粉砕し、800℃で48時間
仮焼した。
Example 1 Bi 2 O 3 , Pb 2 O 3 , and SrC having a purity of 99.9% or more
Powders of O 3 , BaCO 3 , CaCO 3 , and CuO were used, and the molar ratio of each element was Bi: Pb: Sr: Ba: Ca :.
Cu = 1.9: 0.3: 1.9: 0.1: 2.0: 3.
The mixture was weighed and mixed so that the ratio became 0: and the first calcination was performed at 750 ° C. in the atmosphere, then, this was crushed and calcined at 800 ° C. for 48 hours.

【0021】得られた仮焼粉を再び粉砕した後、直径:
約2cm、厚さ:約3mmのディスク状ペレットとし、
これをAr雰囲気中800℃で18時間熱処理を行っ
た。図1にAr雰囲気中800℃で仮焼を行った原料粉
末のXRDパターンを示す。Ar雰囲気中で原料粉末の
仮焼を行うと、試料中に(Ca,Sr)2 PbO4 は全
く存在せず、PbはBi−2212相に固溶し、Pb2+
の状態で存在していることが分かる。
After the obtained calcined powder was pulverized again, the diameter:
Disc-shaped pellets of about 2 cm and thickness: about 3 mm,
This was heat-treated at 800 ° C. for 18 hours in an Ar atmosphere. FIG. 1 shows an XRD pattern of the raw material powder calcined at 800 ° C. in an Ar atmosphere. When the raw material powder is calcined in an Ar atmosphere, (Ca, Sr) 2 PbO 4 does not exist at all in the sample, Pb is solid-solved in the Bi-2212 phase, and Pb 2+
It can be seen that it exists in the state of.

【0022】この試料を53μm以下に粉砕し、銀パイ
プ(シース材)に詰め、伸線、圧延加工した後、大気中
でBi−2223相が生成する温度域(830℃)で熱
処理を行なった。図2に1回焼成後の銀シース材中の粉
末のXRDパターンを、図3にその粉末の帯磁率(X
g)の結果を示す。これらの図から1回の熱処理によっ
て、銀シース材中にBi−2223相が体積分率で約8
0%以上生成していることが分かる。
This sample was crushed to a size of 53 μm or less, packed in a silver pipe (sheath material), drawn and rolled, and then heat-treated in the atmosphere at a temperature range (830 ° C.) where a Bi-2223 phase was formed. . Fig. 2 shows the XRD pattern of the powder in the silver sheath material after firing once, and Fig. 3 shows the magnetic susceptibility (X
The result of g) is shown. From these figures, the Bi-2223 phase is contained in the silver sheath material in a volume fraction of about 8 by one heat treatment.
It can be seen that 0% or more is generated.

【0023】この後約7トン/cm2 の圧力で線材をプ
レスし、再び830℃で熱処理を行った。図4に2回熱
処理後の銀シース材中の粉末のXRDパターンを、図5
にその粉末の帯磁率測定を夫々示す。これらの図から、
2回の熱処理によって、Bi−2223相を主体とし、
Bi−2212相および(Ca,Sr)2 PbO4 化合
物が微量に含まれる線材が得られていることが分かる。
後述する比較例と対比すれば、従来法で作製した銀シー
ス線材の場合、2回の処理ではBi−2223相は十分
に生成していないことに対し、本発明では2回でほぼB
i−2223相が単相化している。このことからBi−
2223相の生成速度が本発明により飛躍的に向上した
ことが分かる。なおこの線材のJcは35,000A/
cm2 (77K,0T)であった。
After this, the wire was pressed at a pressure of about 7 ton / cm 2 and heat-treated again at 830 ° C. FIG. 4 shows the XRD pattern of the powder in the silver sheath material after the heat treatment twice.
The magnetic susceptibility measurement of the powder is shown in each. From these figures,
Bi-2223 phase as a main component by two heat treatments,
It can be seen that a wire containing a small amount of the Bi-2212 phase and the (Ca, Sr) 2 PbO 4 compound was obtained.
In comparison with the comparative example described later, in the case of the silver sheath wire produced by the conventional method, the Bi-2223 phase was not sufficiently generated by the two treatments, whereas in the present invention, the B-2223 phase was almost not produced by the two treatments.
The i-2223 phase is a single phase. From this, Bi-
It can be seen that the production rate of the 2223 phase was dramatically improved by the present invention. The Jc of this wire is 35,000A /
It was cm 2 (77K, 0T).

【0024】実施例2 元素のモル比がBi:Pb:Sr:Ba:Ca:Cu=
1.8:0.4:2.0:2.0:3.2:となる原料
粉末を上記と全く同じ手法で作製し、この原料粉末を用
いて銀シース線材を作製した。この線材を835℃で熱
処理し、約7トン/cm2 の圧力でプレスした後、再度
835℃で熱処理したところ、Bi−2223相がほぼ
単相化した。尚このときの線材のJcは34,000A
/cm2(77K,0T)であった。
Example 2 The molar ratio of elements is Bi: Pb: Sr: Ba: Ca: Cu =
A raw material powder of 1.8: 0.4: 2.0: 2.0: 3.2: was produced by the same method as above, and a silver sheath wire rod was produced using this raw material powder. When this wire was heat-treated at 835 ° C., pressed at a pressure of about 7 ton / cm 2 , and then heat-treated again at 835 ° C., the Bi-2223 phase almost became a single phase. The Jc of the wire at this time was 34,000A.
/ Cm 2 (77K, 0T).

【0025】比較例 純度99.9%以上のBi23 ,Pb23 ,SrC
3 ,BaCO3 ,CaCO3 ,CuOの各粉末を用
い、これらを各元素のモル比がBi:Pb:Sr:B
a:Ca:Cu=1.9:0.3:1.9:0.1:
2.0:3.0:となるよう秤量混合し、大気中750
℃で1回目の仮焼を行った後、これを粉砕し、800℃
で48時間仮焼を行った。
Comparative Example Bi 2 O 3 , Pb 2 O 3 and SrC having a purity of 99.9% or more
O 3 , BaCO 3 , CaCO 3 , and CuO powders were used, and the molar ratio of these elements was Bi: Pb: Sr: B.
a: Ca: Cu = 1.9: 0.3: 1.9: 0.1:
Weighed and mixed so as to be 2.0: 3.0 :, and 750 in air
After calcination for the first time at ℃, crush this, 800 ℃
It was calcined for 48 hours.

【0026】得られた仮焼粉を再び粉砕した後、直径:
約2cm、厚さ:約3mmのディスク状ペレットとし、
これを大気中830℃で24時間熱処理した。図6にこ
の原料粉末のXRDパターンを示す。この図から、この
原料粉末中にはBi−2212相、(Ca,Sr)2
bO4 ,(Ca,Sr)2 CuO3 ,CuO,微量のB
i−2223相が存在していることが分かる。
After the obtained calcined powder was pulverized again, the diameter:
Disc-shaped pellets of about 2 cm and thickness: about 3 mm,
This was heat-treated in the air at 830 ° C. for 24 hours. FIG. 6 shows the XRD pattern of this raw material powder. From this figure, it can be seen that Bi-2212 phase, (Ca, Sr) 2 P is contained in this raw material powder.
bO 4 , (Ca, Sr) 2 CuO 3 , CuO, trace B
It can be seen that the i-2223 phase is present.

【0027】この粉末を53μm以下に粉砕した後、銀
パイプ(シース材)に詰め、伸線、圧延加工を施しテー
プ線材を作製し、これを大気中830℃で72時間熱処
理をした。図7に1回焼成後の銀シース材中の粉末のX
RDパターンを、図8にその粉末の帯磁率を夫々示す。
これらの図から1回焼成ではBi−2223相はあまり
生成しておらず、主としてBi−2212相が生成して
いることが分かる。
After pulverizing this powder to 53 μm or less, it was packed in a silver pipe (sheath material) and subjected to wire drawing and rolling to prepare a tape wire material, which was heat-treated in the atmosphere at 830 ° C. for 72 hours. Fig. 7 shows the X of the powder in the silver sheath material after firing once.
The RD pattern is shown in FIG. 8, and the magnetic susceptibility of the powder is shown.
From these figures, it can be seen that the Bi-2223 phase is not so much produced in the single firing, but the Bi-2212 phase is mainly produced.

【0028】この後約7トン/cm2 の圧力で線材をプ
レスし、再び830℃で72時間熱処理を行った。図9
に2回熱処理後の銀シース材中の粉末のXRDパターン
を、図10にその粉末の帯磁率を夫々示す。これらの図
から、2回熱処理することによって、Bi−2223相
の生成量は増加しているが、未だBi−2212相や不
純物相が残っていることが分かる。尚この線材のJcは
8000A/cm2 (77K,0T)程度であり、上記
実施例の線材のJcと比較するとかなり小さい値であ
る。
After that, the wire was pressed at a pressure of about 7 ton / cm 2 and heat-treated again at 830 ° C. for 72 hours. Figure 9
10 shows the XRD pattern of the powder in the silver sheath material after the heat treatment twice, and FIG. 10 shows the magnetic susceptibility of the powder. From these figures, it can be seen that although the production amount of the Bi-2223 phase is increased by performing the heat treatment twice, the Bi-2212 phase and the impurity phase still remain. The Jc of this wire is about 8000 A / cm 2 (77K, 0T), which is a considerably smaller value than the Jc of the wire of the above embodiment.

【0029】この線材にさらに約7トン/cm2 の圧力
でプレスした後、830℃で72時間熱処理を行った。
この結果不純物相は低減し、Bi−2223相はほぼ単
相化した。図11に3回焼成後の銀シース材中の粉末の
XRDパターンを、図12にその粉末の帯磁率を夫々示
す。これらの結果から、3回熱処理することによって、
銀シース材中でBi−2223相がほぼ単相化している
ことが分かる。しかしながらこの線材のJcは25,0
00A/cm2 (77K,0T)であり、実施例のもの
と比べてかなり低い値であった。
The wire was further pressed at a pressure of about 7 ton / cm 2 and then heat-treated at 830 ° C. for 72 hours.
As a result, the impurity phase was reduced, and the Bi-2223 phase was almost single phase. FIG. 11 shows the XRD pattern of the powder in the silver sheath material after firing three times, and FIG. 12 shows the magnetic susceptibility of the powder. From these results, by heat treatment three times,
It can be seen that the Bi-2223 phase is almost a single phase in the silver sheath material. However, the Jc of this wire is 25,0
The value was 00 A / cm 2 (77 K, 0 T), which was considerably lower than that of the example.

【0030】[0030]

【発明の効果】本発明は以上の様に構成されており、シ
ース材中でBi−2223相が従来法の半分の時間と1
回の一軸プレスでほぼ単相化し、かつ高Jcを示す線材
が製造できた。また本発明によって得られる線材は、超
電導マグネット等の素材として最適である。
The present invention is constructed as described above, and in the sheath material, the Bi-2223 phase requires half the time and half of the conventional method.
A single-phase press could produce a wire having almost a single phase and a high Jc. Further, the wire rod obtained by the present invention is optimal as a material for a superconducting magnet and the like.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例1における仮焼後の原料粉末のXRDパ
ターンである。
FIG. 1 is an XRD pattern of raw material powder after calcination in Example 1.

【図2】実施例1における1回焼成後の銀シース材中の
粉末のXRDパターンである。
FIG. 2 is an XRD pattern of the powder in the silver sheath material after firing once in Example 1.

【図3】実施例1における1回焼成後の銀シース材中の
粉末の帯磁率を示すグラフである。
FIG. 3 is a graph showing the magnetic susceptibility of the powder in the silver sheath material after firing once in Example 1.

【図4】実施例1における2回熱処理後の銀シース材中
の粉体のXRDパターンである。
FIG. 4 is an XRD pattern of powder in the silver sheath material after heat treatment twice in Example 1.

【図5】実施例1における2回熱処理後の銀シース材中
の粉末の帯磁率を示すグラフである。
FIG. 5 is a graph showing the magnetic susceptibility of the powder in the silver sheath material after heat treatment twice in Example 1.

【図6】比較例における仮焼後の原料粉末のXRDパタ
ーンである。
FIG. 6 is an XRD pattern of raw material powder after calcination in a comparative example.

【図7】比較例における1回焼成後の銀シース材中の粉
末のXRDパターンである。
FIG. 7 is an XRD pattern of the powder in the silver sheath material after firing once in the comparative example.

【図8】比較例における1回焼成後の銀シース材中の粉
末の帯磁率を示すグラフである。
FIG. 8 is a graph showing the magnetic susceptibility of the powder in the silver sheath material after one-time firing in the comparative example.

【図9】比較例における2回熱処理後の銀シース材中の
粉末のXRDパターンである。
FIG. 9 is an XRD pattern of the powder in the silver sheath material after the heat treatment was performed twice in the comparative example.

【図10】比較例における2回熱処理後の銀シース材中
の粉末の帯磁率を示すグラフである。
FIG. 10 is a graph showing the magnetic susceptibility of the powder in the silver sheath material after the heat treatment was performed twice in the comparative example.

【図11】比較例における3回焼成後の銀シース材中の
粉末のXRDパターンである。
FIG. 11 is an XRD pattern of powder in a silver sheath material after firing three times in a comparative example.

【図12】比較例における3日焼成後の銀シース材中の
粉末の帯磁率を示すグラフである。
FIG. 12 is a graph showing the magnetic susceptibility of the powder in the silver sheath material after firing for 3 days in the comparative example.

フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 H01L 39/24 ZAA Z 9276−4M Continuation of front page (51) Int.Cl. 5 Identification number Office reference number FI technical display location H01L 39/24 ZAA Z 9276-4M

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 Bi系酸化物超電導体線材をシース法に
よって製造するに当たり、(Bi1-x Pbx2 (Sr
1-y Bay2 CaCu210- δ(但し、0.05≦
x≦0.7,0≦y≦0.2)の化学構造を有する粉末
と、Ca−Sr−Cu−O系化合物粉末とからなり、且
つ(Ca,Sr)2 PbO4 化合物を含まない原料混合
粉末を、該混合粉末中の(Bi,Pb):(Sr,B
a):Ca:Cuが2:2:2:3に近似した割合にな
る様にして予め調製しておき、この混合粉末をシース材
に封入して塑性加工を行った後、大気中若しくは非酸化
性雰囲気中で熱処理してシース材中の混合粉末を(B
i,Pb)2 (Sr,Ba) 2 Ca2 Cu3 O型酸化物
超電導体相とすることを特徴とするBi系酸化物超電導
体線材の製造方法。
1. A sheathing method for a Bi-based oxide superconductor wire rod.
Therefore, when manufacturing (Bi1-x Pbx )2 (Sr
1-y Bay )2 CaCu2 OTen- δ (however, 0.05 ≦
x ≦ 0.7, 0 ≦ y ≦ 0.2) powder having a chemical structure
And a Ca-Sr-Cu-O-based compound powder, and
One (Ca, Sr)2 PbOFour Raw material mixture containing no compounds
The powder is mixed with (Bi, Pb) :( Sr, B in the mixed powder.
a): Ca: Cu becomes a ratio close to 2: 2: 2: 3
Prepared in advance, and then mix this powder with the sheath material.
In the air or after non-oxidizing
The mixed powder in the sheath material (B
i, Pb)2 (Sr, Ba) 2 Ca2 Cu3 O-type oxide
Bi-based oxide superconductor characterized by having a superconductor phase
Manufacturing method of body wire.
【請求項2】 請求項1に記載の製造方法で用いる原料
混合粉末が、Bi化合物、Pb化合物、Sr化合物、B
a化合物、Ca化合物およびCu化合物を、(Bi,P
b):(Sr,Ba):Ca:Cuが2:2:2:3に
近似した割合になる様に混合した後、非酸化性雰囲気中
700〜830℃の温度で熱処理することによって調製
されたものであるBi系酸化物超電導体線材製造用原料
粉末。
2. The raw material mixed powder used in the manufacturing method according to claim 1, is a Bi compound, a Pb compound, a Sr compound, or B.
The a compound, the Ca compound and the Cu compound are (Bi, P
b) :( Sr, Ba): Ca: Cu are mixed in a ratio close to 2: 2: 2: 3, and then heat treated at a temperature of 700 to 830 ° C. in a non-oxidizing atmosphere. A raw material powder for producing a Bi-based oxide superconductor wire rod.
【請求項3】 Bi系酸化物超電導体線材をシース法に
よって製造するに当たり、(Bi1-x Pbx2 (Sr
1-y Bay2 CaCu210- δ(但し、0.05≦
x≦0.7,0≦y≦0.2)の化学構造を有し、且つ
(Ca,Sr)2 PbO4 化合物を含まない原料粉末
と、Ca−Sr−Cu−O系化合物粉末を別々に準備し
ておき、これらを(Bi,Pb):(Sr,Ba):C
a:Cuが2:2:2:3に近似した割合となる様に混
合した後、シース材に封入して塑性加工を行い、大気中
若しくは非酸化性雰囲気中で熱処理してシース材中の混
合粉末を(Bi,Pb)2 (Sr,Ba)2 Ca2 Cu
3 O型酸化物超電導体相とすることを特徴とするBi系
酸化物超電導体線材の製造方法。
3. When manufacturing a Bi-based oxide superconducting wire by a sheath method, (Bi 1-x Pb x ) 2 (Sr
1-y Ba y) 2 CaCu 2 O 10- δ ( where, 0.05 ≦
(x ≦ 0.7, 0 ≦ y ≦ 0.2) and a raw material powder containing no (Ca, Sr) 2 PbO 4 compound and a Ca—Sr—Cu—O compound powder are separated. And prepare them in (Bi, Pb) :( Sr, Ba): C
After mixing a: Cu in a ratio close to 2: 2: 2: 3, the mixture is sealed in a sheath material, plastically processed, and heat-treated in the atmosphere or a non-oxidizing atmosphere to remove the heat from the sheath material. The mixed powder was mixed with (Bi, Pb) 2 (Sr, Ba) 2 Ca 2 Cu.
A method for producing a Bi-based oxide superconductor wire, which comprises a 3 O-type oxide superconductor phase.
【請求項4】 請求項3に記載の製造方法で用いる(B
1-x Pbx2 (Sr1-y Bay2 CaCu2
10- δ系原料粉末が、Bi化合物、Pb化合物、Sr化
合物、Ba化合物、Ca化合物およびCu化合物を、
(Bi,Pb):(Sr,Ba):Ca:Cuが2:
2:1:2に近似した割合となる様に混合した後、非酸
化性雰囲気中700〜830℃の温度で熱処理すること
によって製造されたものであるBi系酸化物超電導体線
材製造用原料粉末。
4. Use in the manufacturing method according to claim 3 (B
i 1-x Pb x) 2 (Sr 1-y Ba y) 2 CaCu 2 O
The 10- δ type raw material powder contains Bi compound, Pb compound, Sr compound, Ba compound, Ca compound and Cu compound,
(Bi, Pb) :( Sr, Ba): Ca: Cu is 2:
Raw material powder for producing a Bi-based oxide superconductor wire rod, which is produced by mixing in a ratio close to 2: 1: 2 and then heat-treating at a temperature of 700 to 830 ° C. in a non-oxidizing atmosphere. .
【請求項5】 Bi系酸化物超電導体線材をシース法に
よって製造するに当たり、Pbを含まないBi2 (Sr
1-y Bay2 CaCu210- δ(但し、0≦y≦
0.2)系原料粉末と、Ca−Pb−Sr−Cu−O系
化合物粉末を別々に準備しておき、これらを(Bi,P
b):(Sr,Ba):Ca:Cuが2:2:2:3に
近似した割合となる様に混合した後、非酸化性雰囲気中
700〜830℃の温度で熱処理を行い(Bi1-x Pb
x2 (Sr1-y Bay2 CaCu210- δ(但
し、0.05≦x≦0.7、yは前と同じ意味)の化学
構造を有する超電導体相を生成させた原料混合粉末と
し、これをシース材に封入して塑性加工を行った後、大
気中若しくは非酸化性雰囲気中で熱処理してシース材中
の原料混合粉末を(Bi,Pb)2 (Sr,Ba)2
2 Cu3 O型酸化物超電導体相とすることを特徴とす
るBi系酸化物超電導体線材の製造方法。
5. When manufacturing a Bi-based oxide superconducting wire by a sheath method, Bi 2 (Sr containing no Pb is used).
1-y Ba y) 2 CaCu 2 O 10- δ ( where, 0 ≦ y ≦
0.2) -based raw material powder and Ca-Pb-Sr-Cu-O-based compound powder are separately prepared, and these (Bi, P
b) :( Sr, Ba): Ca: Cu are mixed in a ratio close to 2: 2: 2: 3, and then heat-treated at a temperature of 700 to 830 ° C. in a non-oxidizing atmosphere (Bi 1 -x Pb
x) 2 (Sr 1-y Ba y) 2 CaCu 2 O 10- δ ( where, 0.05 ≦ x ≦ 0.7, y is to produce a superconductor phase having the chemical structure of the same meaning) as before The raw material mixed powder is sealed in a sheath material, subjected to plastic working, and then heat-treated in the air or in a non-oxidizing atmosphere to convert the raw material mixed powder in the sheath material to (Bi, Pb) 2 (Sr, Ba). ) 2 C
An a 2 Cu 3 O type oxide superconductor phase is provided, which is a method for producing a Bi-based oxide superconductor wire.
【請求項6】 Bi系酸化物超電導体線材をシース法に
よって製造するに当たり、Pbを含まないBi2 (Sr
1-y Bay2 CaCu210- δ(但し、0≦y≦
0.2)系原料粉末と、Ca−Pb−Sr−Cu−O系
化合物粉末を別々に準備しておき、これらを(Bi,P
b):(Sr,Ba):Ca:Cuが2:2:2:3に
近似した割合となる様に混合し、これをシース材に封入
した後、非酸化性雰囲気中700〜830℃の温度で熱
処理し、シース材中で(Bi1-xPbx2 (Sr1-y
Bay2 CaCu210- δ(但し、0.05≦x≦
0.7、yは前と同じ意味)の化学構造を有する超電導
体相を生成させた原料混合粉末とした後、該シース材に
塑性加工を行い、引き続き大気中若しくは非酸化性雰囲
気で熱処理してシース材中の混合粉末を(Bi,Pb)
2 (Sr,Ba)2Ca2 Cu3 O型酸化物超電導体相
とすることを特徴とするBi系酸化物超電導体線材の製
造方法。
6. When manufacturing a Bi-based oxide superconducting wire by a sheath method, Pb-free Bi 2 (Sr
1-y Ba y) 2 CaCu 2 O 10- δ ( where, 0 ≦ y ≦
0.2) -based raw material powder and Ca-Pb-Sr-Cu-O-based compound powder are separately prepared, and these (Bi, P
b) :( Sr, Ba): Ca: Cu are mixed so as to have a ratio close to 2: 2: 2: 3, and this is sealed in a sheath material, and then the mixture is heated at 700 to 830 ° C. in a non-oxidizing atmosphere. Heat treatment at temperature, and in the sheath material (Bi 1-x Pb x ) 2 (Sr 1-y
Ba y) 2 CaCu 2 O 10- δ ( where, 0.05 ≦ x ≦
0.7, y is the same meaning as before), after forming a raw material mixed powder in which a superconductor phase having a chemical structure is generated, the sheath material is subjected to plastic working, and subsequently heat treated in the atmosphere or a non-oxidizing atmosphere. The mixed powder in the sheath material (Bi, Pb)
2 (Sr, Ba) 2 Ca 2 Cu 3 O-type oxide superconductor phase is used for producing a Bi-based oxide superconductor wire.
JP4308880A 1992-11-18 1992-11-18 Manufacture of bi oxide superconductor wire rod and raw material powder for manufacturing bi oxide superconductor wire rod Withdrawn JPH06162842A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4308880A JPH06162842A (en) 1992-11-18 1992-11-18 Manufacture of bi oxide superconductor wire rod and raw material powder for manufacturing bi oxide superconductor wire rod

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4308880A JPH06162842A (en) 1992-11-18 1992-11-18 Manufacture of bi oxide superconductor wire rod and raw material powder for manufacturing bi oxide superconductor wire rod

Publications (1)

Publication Number Publication Date
JPH06162842A true JPH06162842A (en) 1994-06-10

Family

ID=17986377

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4308880A Withdrawn JPH06162842A (en) 1992-11-18 1992-11-18 Manufacture of bi oxide superconductor wire rod and raw material powder for manufacturing bi oxide superconductor wire rod

Country Status (1)

Country Link
JP (1) JPH06162842A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6694600B2 (en) 1995-06-06 2004-02-24 American Superconductor Corporation Simplified deformation-sintering process for oxide superconducting articles
CN102866117A (en) * 2012-09-10 2013-01-09 江苏大学 Portable fruit internal quality nondestructive detection device and method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6694600B2 (en) 1995-06-06 2004-02-24 American Superconductor Corporation Simplified deformation-sintering process for oxide superconducting articles
CN102866117A (en) * 2012-09-10 2013-01-09 江苏大学 Portable fruit internal quality nondestructive detection device and method

Similar Documents

Publication Publication Date Title
US4933317A (en) Bismuth oxide superconductors, and devices and systems comprising such a superconductor
JPH04237910A (en) Manufacture of bismuth oxide superconducting wire rod
JP2719518B2 (en) Manufacturing method of oxide superconducting material
US5389603A (en) Oxide superconductors, and devices and systems comprising such a superconductor
JPH06162842A (en) Manufacture of bi oxide superconductor wire rod and raw material powder for manufacturing bi oxide superconductor wire rod
US6481091B2 (en) Method of preparing bismuth oxide superconducting wire
JPH0764560B2 (en) Layered copper oxide
JPH10236821A (en) Low-anisotropy high-temperature superconductor based on uncertainty principle and its production
JP3165770B2 (en) Manufacturing method of oxide superconductor
JP2992422B2 (en) Oxide superconductor
JPH06176637A (en) Manufacture of bi oxide superconductive wire
JP2588400B2 (en) Superconducting ceramics
US6240619B1 (en) Thermomechanical means to improve the critical current density of BSCCO tapes
US7008906B2 (en) Oxide high-critical temperature superconductor acicular crystal and its production method
JP2803823B2 (en) Method for producing T1-based oxide superconductor
JP2588398B2 (en) Superconducting ceramics
JP2803819B2 (en) Manufacturing method of oxide superconductor
JP2838312B2 (en) Oxide superconducting material
JP2597578B2 (en) Superconductor manufacturing method
JP2749194B2 (en) Method for producing Bi-Sr-Ca-Cu-O-based superconductor
JPS63230563A (en) Superconducting ceramics
JP2597579B2 (en) Superconductor manufacturing method
JP2590242B2 (en) Manufacturing method of oxide superconductor
JP2588399B2 (en) Superconducting ceramics
JPH06176636A (en) Manufacture of bi oxide superconductor

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20000201