JPS63225516A - Production of high-purity granular silicon - Google Patents

Production of high-purity granular silicon

Info

Publication number
JPS63225516A
JPS63225516A JP5983887A JP5983887A JPS63225516A JP S63225516 A JPS63225516 A JP S63225516A JP 5983887 A JP5983887 A JP 5983887A JP 5983887 A JP5983887 A JP 5983887A JP S63225516 A JPS63225516 A JP S63225516A
Authority
JP
Japan
Prior art keywords
silicon
gas
particles
velocity
grains
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5983887A
Other languages
Japanese (ja)
Other versions
JPH07100605B2 (en
Inventor
Toshihiro Abe
智弘 安部
Hiroji Miyagawa
博治 宮川
Kenji Iwata
健二 岩田
Keiichi Ikeda
圭一 池田
Kenji Okimoto
沖本 健二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP62059838A priority Critical patent/JPH07100605B2/en
Publication of JPS63225516A publication Critical patent/JPS63225516A/en
Publication of JPH07100605B2 publication Critical patent/JPH07100605B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Silicon Compounds (AREA)

Abstract

PURPOSE:To obtain the dense silicon having a low void coefficient and a smooth outer surface, by evenly supplying a fluidization gas to the horizontal cross section of a fluidized-bed reactor packed with silicon crystal grains to fluidize the grains, and supplying silicon hydrides, etc., from the center part. CONSTITUTION:Silicon crystal grains are packed as seeds from a line 4 into the fluidized-bed reactor 6 made of the SiC, quartz, Si3N4, etc., with the contact part with the grains and gases coated with a high-purity silicon layer. A fluidization gas consisting of gaseous H2 and/or an inert gas such as Ar is introduced from a line 1 at the >=1.2 times supply velocity for the minimum fluidization velocity, and evenly supplied through a gas diffusing plate 7 to the horizontal cross section vertical to the gravitational direction to fluidize the grains. The grains are heated to 550-1,000 deg.C by a heater 10, silicon hydrides such as monosilane and/or disilane or the hydrides and gaseous H2 and/or an inert gas are supplied from a line 2 at the center part at the velocity higher than the terminal velocity of the largest silicon crystal grain, a reaction is initiated, and the titled silicon having 500-1,500mu grain diameter is obtained.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は高純度粒状珪素の製造方法に関し、さらに詳し
くいえば、溶融加工されて多結晶珪素の状態であるいは
単結晶化されて太陽電池や半導体素子の原料として用い
られる高純度粒状珪素の製造方法に関するものである。
Detailed Description of the Invention (Field of Industrial Application) The present invention relates to a method for producing high-purity granular silicon, and more specifically, it can be melt-processed to form polycrystalline silicon or monocrystalline silicon for use in solar cells and other products. The present invention relates to a method for producing high-purity granular silicon used as a raw material for semiconductor devices.

(従来の技術) 従来、高純度多結晶珪素の製造方法としては、ペルジャ
ー型反応器にクロロシラン類と水素の混合ガスあるいは
モノシランガスを供給し1通電加熱された棒状珪素に珪
素を析出成長させる方法(以下ペルジャー反応方式と呼
称する)が工業的に用いられてきた。この方法を用いれ
ば容易に高純度珪素を製造できるものの、棒状珪素を用
いるため反応面である棒状珪素の単位反応容積当りの表
面積が小さく生産性が低い、ペルジャー型反応器表面か
らの放熱が大きく電力消費量が大きい。
(Prior Art) Conventionally, as a method for manufacturing high-purity polycrystalline silicon, a mixed gas of chlorosilanes and hydrogen or monosilane gas is supplied to a Pelger type reactor, and silicon is deposited and grown on rod-shaped silicon heated with electricity. (hereinafter referred to as Pelger reaction method) has been used industrially. Although high-purity silicon can be easily produced using this method, since rod-shaped silicon is used, the surface area per unit reaction volume of the rod-shaped silicon, which is the reaction surface, is small and productivity is low. Heat radiation from the Pelger reactor surface is large. Power consumption is large.

製品珪素が棒状であるため製造が回分式となり製造能率
が悪いことと、さらにこれを熔融して単結晶とする場合
に破砕する必要があるなど種々の欠点があった。
Since the silicon product is rod-shaped, it has to be manufactured in batches, resulting in poor manufacturing efficiency, and it also has various drawbacks, such as the need to crush it when melting it into a single crystal.

近年これら従来法の種々の欠点を解消した安価な高純度
多結晶珪素の新しい製造方法の開発研究が盛んに行われ
ている。その代表的な方法の1つとして水素ガスまたは
不活性ガスと前駆体ガスであるクロロシランガスあるい
はモノシランガスで流動状態に保持された珪素結晶粒子
の表面に該前駆体の還元反応または熱分解反応で珪素を
析着させ珪素結晶粒子を成長させる流動床反応方式があ
り1例えばこの方法は米国特許第3,012,861号
、同第3,012,862号に示されている。この方法
によれば従来のペルジャー反応方式に比べて反応面が粒
状珪素であるため単位反応容積当りの表面積か重大に増
加し生産性は著しく向上する。さらに小粒径の珪素種粒
子を連続的に供給し、成長した大粒径の珪素粒子を連続
的に抜き出せば、連続運転が可能となり製造能率は著し
く向上する。さらに製造した珪素が粒状であるため、こ
れを単結晶化のために熔融する場合、汚染の恐れのある
破砕工程を必要とせずそのまま使用できる利点を有する
。このように流動床反応方式による粒状珪素の製造は数
々の利点が期待されるため各社で精力的に開発研究がな
されており数多くの特許出願がなされている。
In recent years, research and development efforts have been actively conducted to develop new methods for producing inexpensive, high-purity polycrystalline silicon that eliminates the various drawbacks of these conventional methods. One of the typical methods is to apply silicon to the surface of silicon crystal particles maintained in a fluidized state using hydrogen gas or an inert gas and a precursor gas such as chlorosilane gas or monosilane gas through a reduction reaction or thermal decomposition reaction of the precursor. There is a fluidized bed reaction method for depositing silicon crystal particles to grow silicon crystal particles. For example, this method is shown in US Pat. No. 3,012,861 and US Pat. No. 3,012,862. According to this method, since the reaction surface is made of granular silicon, the surface area per unit reaction volume is significantly increased and the productivity is significantly improved compared to the conventional Pelger reaction method. Furthermore, by continuously supplying small-sized silicon seed particles and continuously extracting grown large-sized silicon particles, continuous operation becomes possible and production efficiency is significantly improved. Furthermore, since the produced silicon is granular, it has the advantage that when it is melted for single crystallization, it can be used as is without requiring a crushing step that may cause contamination. As described above, the production of granular silicon by the fluidized bed reaction method is expected to have many advantages, and therefore various companies are actively researching and developing it, and numerous patent applications have been filed.

(発明が解決しようとする問題点) 前述したように流動床反応方式による粒状珪素の製造方
法は既に工業化されているペルジャー反応方式に比べて
数々の利点が考えられるため多結晶珪素の安価な製造法
として期待される。
(Problems to be Solved by the Invention) As mentioned above, the production method of granular silicon using the fluidized bed reaction method has many advantages compared to the already industrialized Pelger reaction method, so it is possible to produce polycrystalline silicon at low cost. expected as a law.

本発明者らは前駆体ガスとして珪素水素化物を用いた流
動床反応方式による粒状珪素の製造方法を開発すべく研
究を進めた結果、製造条件により珪素結晶粒子に析着し
た珪素層が多孔質なものとなることを見出した。走査型
電子顕微鏡で粒子断面を観察すると数ILm乃至数lO
μmの無数の孔が観測された。この粒子の外表面の近傍
は特に著しい状態であった。孔の内面を仔細に調べると
サブミクロンから2pm程度の多数の微小粒子て被われ
ている。このままの状態で製品とすると下記の問題が懸
念される。
The present inventors conducted research to develop a method for producing granular silicon using a fluidized bed reaction method using silicon hydride as a precursor gas, and found that depending on the production conditions, the silicon layer deposited on silicon crystal particles becomes porous. I discovered that it can become something. When observing the particle cross section with a scanning electron microscope, it is found that the particle size ranges from several ILm to several 1O.
Numerous pores of μm size were observed. The condition was particularly severe near the outer surface of this particle. A close examination of the inner surface of the pore reveals that it is covered with numerous microparticles ranging from submicron to about 2 pm in size. If the product is manufactured in this state, the following problems may occur.

(1)製品の単位重量当りの表面積(以下比表面積と呼
称)が大きいため製品を保存する場合雰囲気ガス中に存
在する物質の吸着が大きくなり製品が汚染される。
(1) Since the product has a large surface area per unit weight (hereinafter referred to as specific surface area), when the product is stored, substances present in the atmospheric gas are adsorbed to a large extent, resulting in contamination of the product.

(2)空気中など酸素雰囲気下に保存すると酸素に触れ
た表面部分が酸化されるため比表面積の大きい分だけ製
品中への酸素の取込みが多くなる。
(2) If the product is stored in an oxygen atmosphere such as in the air, the surface area that comes into contact with oxygen will be oxidized, so the larger the specific surface area, the more oxygen will be taken into the product.

(3)製品粒子の機械強度、耐摩耗性が低下するため、
取扱う場合に割れ、摩耗による微粉の発生が増加し、(
l)、(2)による製品汚染が増加する。
(3) The mechanical strength and abrasion resistance of the product particles decrease.
Cracks occur when handled, and the generation of fine powder due to wear increases (
Product contamination due to l) and (2) increases.

この多結晶珪素製品を熔融加工して多結晶あるいは単結
晶を製造する場合高品質のものが得られない、あるいは
製品の歩留まりが悪いなど種々の問題が起こる。
When this polycrystalline silicon product is melt-processed to produce polycrystals or single crystals, various problems occur, such as not being able to obtain high quality products or poor product yields.

本発明者らは流動床により高純度粒状珪素を製造する場
合、この問題を解決することが非常に重要な課題である
ことを鑑み鋭意研究を重ねた結果本発明に到達した。
In view of the fact that solving this problem is a very important issue when manufacturing high-purity granular silicon using a fluidized bed, the present inventors conducted extensive research and arrived at the present invention.

(問題点を解決するための手段) すなわち本発明は、珪素結晶粒子を流動状態に保持しな
がらその表面に珪素を析着させ、珪素結晶粒子を成長さ
せるに当り、水素ガスまたは/および不活性ガスを重力
方向に垂直な断面に対して均等に供給して珪素結晶粒子
を流動状態に保持し、中心部から珪素水素化物または珪
素水素化物と水素ガスまたは/および不活性ガスの混合
ガスを供給することを特徴とする高純度粒状珪素の製造
方法を提供するものである。
(Means for Solving the Problems) That is, the present invention deposits silicon on the surface of silicon crystal particles while maintaining them in a fluid state and grows the silicon crystal particles using hydrogen gas or/and an inert gas. Gas is supplied evenly to the cross section perpendicular to the direction of gravity to maintain the silicon crystal particles in a fluid state, and silicon hydride or a mixed gas of silicon hydride and hydrogen gas or/and inert gas is supplied from the center. The present invention provides a method for producing high-purity granular silicon characterized by the following.

本発明方法により析着した珪素層中に孔が少なく、かつ
、外表面の平滑な粒状珪素を製造することができる。
By the method of the present invention, it is possible to produce granular silicon with fewer pores in the deposited silicon layer and with a smooth outer surface.

本発明において中心部から珪素水素化物または珪素水素
化物と水素ガスまたは/および不活性ガスの混合ガスを
供給する場合に、水素ガスまたは/および不活性ガスを
重力方向に垂直な断面に対して均等に供給して珪素結晶
粒子を流動状態に保持する理由は1反応系全体を安定な
流動状態に保つことと粒子の循環を容易にするためであ
る。このうよにしないと噴流相外にある粒子同志の固結
が起こり、運転不能に陥る。この水素ガスまたは不活性
ガスの供給速度は少なくとも最低流動化速度の1.2倍
以上である。
In the present invention, when supplying silicon hydride or a mixed gas of silicon hydride and hydrogen gas or/and inert gas from the center, the hydrogen gas or/and inert gas is distributed evenly in a cross section perpendicular to the direction of gravity. The reason why the silicon crystal particles are maintained in a fluidized state by supplying them is to maintain the entire reaction system in a stable fluidized state and to facilitate the circulation of the particles. If this is not done, particles outside the jet phase will solidify together, resulting in an inoperable operation. The supply rate of hydrogen gas or inert gas is at least 1.2 times the minimum fluidization rate.

本発明において、中心部から供給する珪素水素化物また
は珪素水素化物と水素ガスまたは/および不活性ガスの
混合ガスの吹出し部における速度が最大珪素結晶粒子の
終末沈降速度以上であるのが好ましい。
In the present invention, it is preferable that the velocity of the silicon hydride or the mixed gas of silicon hydride and hydrogen gas or/and inert gas supplied from the center at the blowing part is equal to or higher than the terminal sedimentation velocity of the maximum silicon crystal particle.

以下最大珪素結晶粒子の終末沈降速度について説明する
The terminal sedimentation velocity of the largest silicon crystal particle will be explained below.

流動床反応器内にある珪素結晶粒子は一般に粒径分布を
有する。例えば一つの流動床反応器を用いて連続的に高
純度粒状珪素を製造する場合、供給される種結晶粒径か
ら抜き出される製品結晶粒径までの粒径分布を持つこと
になる。終末沈降速度とは中心部から供給されるガスの
静止状態下における珪素結晶粒子の重力下終末沈降速度
で、その最大値が最大珪素結晶粒子の終末沈降速度であ
る。換言すれば同一形状係数を有する粒子で比較すると
最大粒径粒子の終末沈降速度となる。
The silicon crystal particles in a fluidized bed reactor generally have a particle size distribution. For example, when high-purity granular silicon is continuously produced using one fluidized bed reactor, the particle size distribution will be from the seed crystal particle size supplied to the product crystal particle size extracted. The final sedimentation velocity is the final sedimentation velocity of the silicon crystal particles under gravity under a stationary state of gas supplied from the center, and its maximum value is the maximum final sedimentation velocity of the silicon crystal particles. In other words, when comparing particles having the same shape factor, the final sedimentation velocity is that of the largest particle.

最大珪素結晶粒子の終末沈降速度以上の速度で中心部か
らガスを供給することにより、中心部に噴流相が形成さ
れ、最大の粒径な持つ粒子まで気流に乗り激しい粒子同
志の衝突及びガスとの接触が起こる。激しい粒子同志の
衝突は1粒子上に付着した弱い多孔質層を剥離させ緻密
な層のみ析着させる効果をもたらす。
By supplying gas from the center at a speed higher than the terminal settling velocity of the largest silicon crystal particles, a jet phase is formed in the center, and particles with the largest size are carried by the airflow, causing violent collisions between the particles and the gas. contact occurs. Vigorous collision between particles has the effect of peeling off the weak porous layer adhering to one particle and depositing only a dense layer.

珪素水素化物を熱分解して粒子に珪素を析着させる反応
機構は基本的に2つの経路で構成されていると考えられ
る。1つは粒子表面で直接気相から珪素を析出する反応
である(以下粒子表面反応と略称)。この反応は孔の無
い緻密な析着珪素層を形成する。もう一方の経路は一旦
気相分解で生じた珪素微粒子が粒子表面に付着し粒子表
面反応と協奏して析着珪素層を形成する0粒子表面には
捕捉されなかった珪素微粒子は反応器から排出される。
The reaction mechanism for depositing silicon onto particles by thermally decomposing silicon hydride is thought to basically consist of two routes. One is a reaction in which silicon is directly deposited from the gas phase on the particle surface (hereinafter abbreviated as particle surface reaction). This reaction forms a dense deposited silicon layer without pores. The other route is that the silicon fine particles generated by gas phase decomposition adhere to the particle surface and form a deposited silicon layer in cooperation with the particle surface reaction.The silicon fine particles that are not captured on the particle surface are discharged from the reactor. be done.

多孔質な珪素析着層は後者の経路で形成されると考えら
れる。反応器から排出された珪素微粒子を仔細に観察す
ると、その形態は一次粒子の大きさがサブミクロンから
21Lm程度の粒径でそれが単一あるいは数個乃至数十
個が弱く凝集したフロック状となっている。流動床の操
作条件によりこのフロック状の珪素微粒子が粒子表面に
付着し多孔質な珪素析着層ができると判断される0本発
明者らはこのフロック状の珪素微粒子の粒子表面への付
着を防止すれば緻密な珪素析着層ができることに気付き
種々の実験を行った結果本発明に到達できた。すなわち
最大珪素結晶粒子の終末沈降速度以上の速度で中心部か
らガスを供給して中心部に噴流相を形成して激しい粒子
同志の衝突を起こさせ1粒子表面に付着したフロック状
の珪素微粒子を破壊し剥離させ緻密な析着層を形成させ
る方法である。
It is believed that the porous silicon deposit layer is formed by the latter route. If we closely observe the silicon fine particles discharged from the reactor, we can see that the primary particle size ranges from submicron to about 21 Lm, and the shape is a single particle or a floc of several to dozens of particles weakly aggregated. It has become. It is determined that the floc-like fine silicon particles adhere to the particle surface depending on the operating conditions of the fluidized bed, forming a porous silicon deposit layer. They realized that if they were prevented, a dense silicon deposit layer could be formed, and as a result of various experiments, they were able to arrive at the present invention. In other words, gas is supplied from the center at a speed higher than the terminal sedimentation velocity of the largest silicon crystal particle to form a jet phase in the center to cause intense particle collisions and remove the floc-like silicon particles attached to the surface of each particle. This is a method of breaking and peeling off to form a dense deposited layer.

この方法を採用すれば、さらにガス相に浮遊する珪素微
粒子との接触効率が増大して気相分解で生じた珪素微粒
子が粒子表面反応により余り増大しない段階で粒子表面
に捕捉でき効果は倍加する。同様の効果は流動床反応器
内に強力な攪拌羽根を設けて珪素結晶粒子を激しく攪拌
する方法でも得られると考えられるが、攪拌羽根へ珪素
が析着して連続運転が不能になったり、選定した材質に
よつては攪拌羽根からの成分の浸入による珪素結晶粒子
の汚染が危惧されるため実際的でない。
If this method is adopted, the contact efficiency with silicon fine particles floating in the gas phase will further increase, and the silicon fine particles generated by gas phase decomposition can be captured on the particle surface at a stage when they have not increased significantly due to particle surface reactions, thus doubling the effect. . It is thought that a similar effect can be obtained by providing a strong stirring blade in the fluidized bed reactor and violently stirring the silicon crystal particles, but silicon may deposit on the stirring blade, making continuous operation impossible. Depending on the selected material, there is a risk of contamination of the silicon crystal particles due to infiltration of components from the stirring blade, which is not practical.

中心部から供給するガスの速度を最大珪素結晶粒子の終
末沈降速度を下まわると速度低下につれて急激に効果が
低下する。これは最大珪素結晶粒子の終末沈降速度を境
として粒子の擾乱状態が大きく低下するためと解釈され
る。
When the velocity of the gas supplied from the center is lower than the terminal sedimentation velocity of the largest silicon crystal particle, the effect rapidly decreases as the velocity decreases. This is interpreted to be because the disturbance state of the particles decreases significantly after reaching the terminal sedimentation velocity of the largest silicon crystal particle.

なお、ここで最大珪素結晶粒子は定常状態に達した後に
生成した製品粒状珪素のうちで最大のものをいう。
In addition, the largest silicon crystal particle here refers to the largest one among the product granular silicon produced after reaching a steady state.

本発明において用いられる珪素水素化物はモノシランま
たはジシランあるいはこれらの混合ガスである。また不
活性ガスとしてはヘリウム、アルゴンいずれも用いられ
るが、安価な点からアルゴンが好ましい。
The silicon hydride used in the present invention is monosilane, disilane, or a mixed gas thereof. Further, as the inert gas, both helium and argon can be used, but argon is preferable because it is inexpensive.

本発明の実施態様を図面に従って具体的に説明する。Embodiments of the present invention will be specifically described with reference to the drawings.

第1図は本発明の概略装置構成図である。6は流動床反
応器で通常円筒形が使用されるが特に形状については限
定するものてはなく角型であってもかまわない、また粒
子の飛び出しを防止するため頂部に拡大部を設けること
もてきる。また流動床反応器は製品の汚染を防止するた
め粒子及びガスが接触する部分を高純度珪素層で被覆し
た珪。
FIG. 1 is a schematic diagram of the configuration of an apparatus according to the present invention. 6 is a fluidized bed reactor, which is usually cylindrical in shape, but there are no particular restrictions on the shape, and it may be square.Also, an enlarged part may be provided at the top to prevent particles from flying out. I'll come. In addition, the fluidized bed reactor is made of silicon whose parts that come in contact with particles and gas are coated with a high-purity silicon layer to prevent product contamination.

素、炭化珪素、ガラス状炭素、石英または窒化珪素が用
いられる。7はガス分散板で珪素水素化物の熱分解で生
じる珪素固体が該ガス分散板に析着することを防止する
ため、冷却水等の冷媒で珪素水素化物の分解温度以下に
冷却されている。またガス分散板はステンレス鋼等の金
属性の多孔板、焼結板、金網が最も簡便に使用できるが
製品汚染防止のため粒子接触部は高純度珪素多孔板で被
覆するのが望ましい。また?:!I純度珪素粒子の充填
層で代替えすることもできる。
silicon carbide, glassy carbon, quartz, or silicon nitride. Reference numeral 7 denotes a gas distribution plate which is cooled to a temperature below the decomposition temperature of the silicon hydride with a coolant such as cooling water in order to prevent silicon solids generated by thermal decomposition of the silicon hydride from being deposited on the gas distribution plate. As the gas distribution plate, a perforated plate made of metal such as stainless steel, a sintered plate, or a wire mesh can be most easily used, but it is preferable to cover the particle contact area with a high-purity silicon perforated plate to prevent product contamination. Also? :! A packed bed of I-purity silicon particles can also be used instead.

図中lOは加熱用ヒーターで流動床反応器を所定の温度
に加熱するために用いられる。9は原料ガス供給ノズル
で流動床反応器の中心軸の位置に設置される。第2図に
拡大して原料ガス供給ノズル9の構造の1例を示した。
In the figure, lO is a heating heater used to heat the fluidized bed reactor to a predetermined temperature. Reference numeral 9 denotes a raw material gas supply nozzle, which is installed at the central axis of the fluidized bed reactor. FIG. 2 shows an example of the structure of the raw material gas supply nozzle 9 in an enlarged manner.

図中14は原料ガス導管でライン11から導入されたM
料ガス(珪素水素化物)が通過する。この原料ガス導管
の先端には孔19を有する吹出しノズル18が取付けで
ある。原料ガス導管14及び吹出しノズル18は、この
部分での珪素水素化物の分解を防止するため冷却水で冷
却できる構造とされる。第2図の例ではライン12から
冷却水導入管15に冷却水を導入し、ライン13から排
出して冷却する構造を示している。
In the figure, 14 is a raw material gas conduit, and M is introduced from line 11.
Feed gas (silicon hydride) passes through. A blowout nozzle 18 having a hole 19 is attached to the tip of this raw material gas conduit. The raw material gas conduit 14 and the blow-off nozzle 18 are constructed so that they can be cooled with cooling water to prevent the silicon hydride from being decomposed in these parts. The example in FIG. 2 shows a structure in which cooling water is introduced from line 12 into cooling water introduction pipe 15 and discharged from line 13 for cooling.

吹出しノズル18は必要に応じて複数個取付けることも
できる。またガスの噴出方向も上向きに限定するもので
はなく第3図に示したように原料ガス導管14に対して
吹出しノズル20を傾斜させてもよい。粒子に接触する
原料ガス供給ノズル9の部分は保護管17で被覆する。
A plurality of blowing nozzles 18 can be attached as necessary. Further, the direction in which the gas is ejected is not limited to the upward direction, and the blowing nozzle 20 may be inclined with respect to the source gas conduit 14 as shown in FIG. The portion of the raw material gas supply nozzle 9 that comes into contact with the particles is covered with a protection tube 17.

この保護管17は流動床反応器と同等の材質で製作され
、製品の汚染を防止する目的て設置される。原料ガス導
管14及び冷却水導管15はステンレス鋼や銅のような
金属材料が堅牢で熱伝導性が良く工作も容易で安価なた
め用いられる。第2図には示していないが保護管17と
冷却水導出管16の間に石英ウール等の断熱材を充填す
れば流動床からの熱の侵入量を下げることができ便利で
ある。
This protection tube 17 is made of the same material as the fluidized bed reactor, and is installed for the purpose of preventing product contamination. For the source gas conduit 14 and the cooling water conduit 15, metal materials such as stainless steel and copper are used because they are robust, have good thermal conductivity, are easy to work with, and are inexpensive. Although not shown in FIG. 2, it is convenient to fill a heat insulating material such as quartz wool between the protection tube 17 and the cooling water outlet tube 16 to reduce the amount of heat entering from the fluidized bed.

第1図において、原料ガス供給ノズル9の先端はガス分
散板7より上方に設置される。粒子の動きをよくするた
めには2cm乃至10cmの位置が好ましい、8は粒子
抜出し管で反応器と同等の材質で製作される。
In FIG. 1, the tip of the raw material gas supply nozzle 9 is installed above the gas distribution plate 7. In order to improve the movement of particles, a position of 2 cm to 10 cm is preferable. 8 is a particle extraction tube made of the same material as the reactor.

第1図においてlは水素ガスまたは不活性ガスの供給ラ
イン、2は原料ガスの供給ライン、3は反応排ガスの排
出ライン、4は種結晶珪素粒子の導入ラインであり、5
は製品粒状結晶珪素粒子の取出しラインである。
In FIG. 1, l is a hydrogen gas or inert gas supply line, 2 is a raw material gas supply line, 3 is a reaction exhaust gas discharge line, 4 is a seed crystal silicon particle introduction line, and 5 is a supply line for hydrogen gas or inert gas.
is the line for taking out the product granular crystalline silicon particles.

次に図面に従って本発明の製造方法をさらに詳細に説明
する。
Next, the manufacturing method of the present invention will be explained in more detail with reference to the drawings.

流動床反応器6に種結晶粒子を充填した後、ラインlか
ら水素ガスまたは/および不活性ガスを供給し粒子を流
動化しながら加熱用ヒーター10を用いて流動床反応器
6を加熱する。所定の温度に到達したらライン2から珪
素水素化物または珪素水素化物と水素ガスまたは/およ
び不活性ガスの混合ガスを供給し反応を開始する。本発
明に於て反応温度は通常550℃乃至1ooo”cであ
り、好ましくは600℃乃至900℃である。
After filling the fluidized bed reactor 6 with seed crystal particles, the fluidized bed reactor 6 is heated using the heating heater 10 while supplying hydrogen gas and/or inert gas from the line 1 to fluidize the particles. When a predetermined temperature is reached, silicon hydride or a mixed gas of silicon hydride and hydrogen gas or/and inert gas is supplied from line 2 to start the reaction. In the present invention, the reaction temperature is usually 550°C to 1ooo''c, preferably 600°C to 900°C.

550℃より低いと粒子同志の固結が起こり易く安定し
た流動状態の保持が困難となる。また1000℃を越え
ると加熱に要するエネルギーが増大し、経済的に好まし
くない0反応圧力は特に限定しないが容易に実施するた
めには大気圧以上が用いられ、好ましくは常圧乃至5気
圧である。
If the temperature is lower than 550°C, particles tend to solidify together, making it difficult to maintain a stable fluid state. Moreover, if the temperature exceeds 1000°C, the energy required for heating will increase, which is economically undesirable.Although there is no particular limitation on the 0 reaction pressure, in order to carry out the reaction easily, atmospheric pressure or higher is used, and preferably normal pressure to 5 atm. .

それ以上の圧力は設備費の増大を招き好ましくない。More pressure than that is undesirable as it increases equipment costs.

ライン1から入るガス供給速度は前述した理由から最低
流動化速度の1.2倍以上必要とする。
The gas supply rate entering from line 1 is required to be at least 1.2 times the minimum fluidization rate for the reasons mentioned above.

さらにフィンlとフィン2から供給されるガス量の合計
は、最低流動化速度の2乃至10倍になるように調整さ
れる。2倍を下まわると粒子同志の固結が起こり易く安
定した流動状態の保持が困難となる。また10倍を越え
ると微粉の生成量が増加し好ましくない、微粉の生#t
、量を下げるには出来るだけガス速度が小さい方が好ま
しい、ライン2から供給されるガス速度は、吹出し部で
最大珪素結晶粒子の終末沈降速度以上になるように調整
するのが好ましい。上限については特に限定しないが、
余り大きいと粒子同志の衝突による粒子の割れが危惧さ
れる。一般に最大珪素結晶粒子の終末沈降速度の1乃至
100倍が好ましい。
Further, the total amount of gas supplied from fin 1 and fin 2 is adjusted to be 2 to 10 times the minimum fluidization speed. If it is less than 2 times, particles tend to clump together, making it difficult to maintain a stable fluid state. Moreover, if the amount exceeds 10 times, the amount of fine powder generated increases, which is undesirable.
In order to reduce the amount, it is preferable that the gas velocity be as low as possible.The gas velocity supplied from line 2 is preferably adjusted to be equal to or higher than the terminal sedimentation velocity of the largest silicon crystal particle at the blowout section. There is no particular limit on the upper limit, but
If it is too large, there is a fear that the particles may crack due to collisions between particles. Generally, 1 to 100 times the terminal sedimentation velocity of the largest silicon crystal grain is preferred.

反応の進行に従い粒子が成長して粒子層高が増加するの
で、ライン5から粒子を抜き出し粒子層高を一定に保つ
。目標とする製品粒径に到達したら粒子層高を一定に保
持しながら連続的にライン4から種結晶粒子を供給し、
またジイン5から製品粒子を抜き出し定常運転に入る。
As the reaction progresses, the particles grow and the height of the particle layer increases, so the particles are extracted from line 5 to keep the height of the particle layer constant. When the target product particle size is reached, seed crystal particles are continuously supplied from line 4 while keeping the particle layer height constant.
Also, product particles are extracted from the inlet 5 and steady operation begins.

反応排ガスはライン3から排出される粒子抜き出し管8
を通して粒子を抜き出す場合、粒子の流れ方向と逆向き
に水素ガスまたは不活性ガスを通して公知の風篩法を採
用すれば目的とする粒径以上の粒子のみを取出すことが
できる0本法で使用する種結晶粒子の粒径は流動床反応
器の操作条件下に於て反応排ガスで吹き飛ばされないも
のを下限とする。すなわち流動床反応器の流動粒子層の
頂部におけるガス速度を越える終末沈降速度を持っ粒径
のものが使用される。また種結晶粒子は製品珪素結晶粒
子を破砕したものまたは熔融噴霧して冷却し造粒したも
のいずれも用いられる。製品の粒子径は平均500gm
乃至15004mのものが推奨される。
Reaction exhaust gas is discharged from line 3 through particle extraction pipe 8
When extracting particles through a particle, by passing hydrogen gas or inert gas in the opposite direction to the flow direction of the particles and adopting a known wind sieving method, only particles larger than the target particle size can be extracted. The lower limit of the particle size of the seed crystal particles is one that will not be blown away by the reaction exhaust gas under the operating conditions of the fluidized bed reactor. That is, particles having a terminal settling velocity exceeding the gas velocity at the top of the fluidized particle bed of the fluidized bed reactor are used. As the seed crystal particles, either crushed product silicon crystal particles or particles obtained by melt-spraying, cooling, and granulation can be used. The average particle size of the product is 500gm
A length between 15,004 m and 15,004 m is recommended.

(発明の効果) 本発明の方法を用いれば、ボイド率が小さく緻密で外表
面が滑らかな高純度粒状珪素を製造することができる。
(Effects of the Invention) By using the method of the present invention, it is possible to produce high-purity granular silicon that has a small void ratio, is dense, and has a smooth outer surface.

(実施例) 以下実施例及び比較例に基づき本発明を具体的に説明す
る。
(Example) The present invention will be specifically described below based on Examples and Comparative Examples.

実施例1〜12及び比較例1〜3 第1図に示す反応装置を用い、粒状珪素を製造した。流
動床反応器6は内径40■■、高さ1000■−の寸法
の高純度珪素で内面を被覆した炭化珪素製反応管を用い
て粒子抜き出し管8を除き製作し使用した。原料ガス供
給ノズルは第2図に示す構造のものを使用し、原料ガス
供給ノズルの先端とガス分散板の間隔は2cmとした。
Examples 1 to 12 and Comparative Examples 1 to 3 Particulate silicon was manufactured using the reaction apparatus shown in FIG. The fluidized bed reactor 6 was manufactured using a reaction tube made of silicon carbide having an inner diameter of 40 mm and a height of 1000 mm, the inner surface of which was coated with high-purity silicon, except for the particle extraction tube 8. The raw material gas supply nozzle had the structure shown in FIG. 2, and the distance between the tip of the raw material gas supply nozzle and the gas distribution plate was 2 cm.

また吹出し速度の変更は、ノズル口径の異なる原料ガス
供給ノズルに交換することにより行った。
Further, the blowing speed was changed by replacing the raw material gas supply nozzle with a different nozzle diameter.

バッチ反応で流動床反応方式により粒状珪素を製造した
。製造条件は表−1に記載した0表−1で使用した記号
は次の通りである。
Particulate silicon was produced in a batch reaction using a fluidized bed reaction method. The manufacturing conditions are listed in Table 1. The symbols used in Table 1 are as follows.

ut;最大珪素結晶粒子の終末沈降速度(cm/秒) uN;ノズルからのガス吹出し速度(017秒)uD:
ガス分散板から供給したガスのガス分散板真上でのガス
速度(C−7秒) μ■f:粒子の最低流動化速度(c1/秒)uR;粒子
層真上部におけるガス速度 (017秒) なお、製造時時間経過とともに粒子径が増大するので、
連続的にノズル及びガス分散板からのガス供給速度を増
加させ、J /ut、 u□ /umf、及びじH/u
vfを略一定に保った。
ut: Terminal sedimentation velocity of the largest silicon crystal particle (cm/sec) uN: Gas blowing velocity from the nozzle (017 seconds) uD:
Gas velocity of the gas supplied from the gas distribution plate directly above the gas distribution plate (C-7 seconds) μ■f: Minimum fluidization speed of particles (c1/second) uR: Gas velocity directly above the particle layer (017 seconds) ) Please note that the particle size increases over time during manufacturing, so
Continuously increasing the gas supply rate from the nozzle and gas distribution plate, J /ut, u□ /umf, and H/u
vf was kept approximately constant.

製造した珪素粒子の表面及び破断面を走査型電子顕微鏡
て観察したところ、実施例1〜12で製造した粒子表面
には凹凸はきわめて少なく、平滑で内部まで緻密な析着
珪素層であったのに対し。
When the surfaces and fractured surfaces of the silicon particles produced were observed using a scanning electron microscope, the surfaces of the particles produced in Examples 1 to 12 had very few irregularities, and the deposited silicon layer was smooth and dense to the inside. Against.

比較例1〜3の方は表面がきわめて無数の凹凸があり、
粒子内部は多孔質であることが認められた。析着珪素層
中に存在する孔(空隙)は、破断面の写真から析着珪素
層の面積と孔(空隙)の面積を測定して ボイド率(%)= [孔の面積/析着珪素層の面積]x100で求めた。こ
の測定結果を表−1に示した。
The surfaces of Comparative Examples 1 to 3 had numerous irregularities;
It was observed that the inside of the particle was porous. The pores (voids) existing in the deposited silicon layer can be determined by measuring the area of the deposited silicon layer and the area of the pores (voids) from a photograph of the fracture surface, and calculating the void ratio (%) = [Area of pores / Deposited silicon Layer area] x 100. The measurement results are shown in Table-1.

比較例1〜3はuN/じtを小さくして製造し粒子を測
定した。
Comparative Examples 1 to 3 were produced with a smaller uN/dt and the particles were measured.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明方法に用いられる製造装置の概略構成図
、第2図は原料ガス供給ノズルの説明図、第3図は原料
ガス供給ノズルの他側の説明図を示す。 ”符号の説明 1・・・水素ガスまたは不活性ガス供給ライン2・・・
原料ガスの供給ライン 3・・・排ガスの排出ライン 4・・・種結品珪素粒子の導入ライン 5・・・製品取出ライン 6・・・流動床反応器 7・・・ガス分散板 8・・・粒子抜出し管 9・・・原料ガス供給ノズル lO・・・加熱用ヒーター 14・・・原料ガス導管 15・・・冷却水導入管 16・・・冷却水導入管 17・・・保護管 18・・・吹出しノズル 19・・・孔 特許出願人 三井東圧化学株式会社 第  1  図 第  2  図 第  3  図
FIG. 1 is a schematic diagram of a manufacturing apparatus used in the method of the present invention, FIG. 2 is an explanatory diagram of a raw material gas supply nozzle, and FIG. 3 is an explanatory diagram of the other side of the raw material gas supply nozzle. "Explanation of symbols 1...Hydrogen gas or inert gas supply line 2...
Raw material gas supply line 3...Exhaust gas discharge line 4...Seed silicon particle introduction line 5...Product take-out line 6...Fluidized bed reactor 7...Gas distribution plate 8... - Particle extraction pipe 9... Raw material gas supply nozzle lO... Heating heater 14... Raw material gas conduit 15... Cooling water introduction pipe 16... Cooling water introduction pipe 17... Protection tube 18. ...Blowout nozzle 19...hole Patent applicant Mitsui Toatsu Chemical Co., Ltd. Figure 1 Figure 2 Figure 3

Claims (4)

【特許請求の範囲】[Claims] (1)珪素結晶粒子を流動状態に保持しながらその表面
に珪素を析着させ、珪素結晶粒子を成長させるに当り、
水素ガスまたは/および不活性ガスを重力方向に垂直な
断面に対して均等に供給して珪素結晶粒子を流動状態に
保持し、中心部から珪素水素化物または珪素水素化物と
水素ガスまたは/および不活性ガスの混合ガスを供給す
ることを特徴とする高純度粒状珪素の製造方法。
(1) In growing silicon crystal particles by depositing silicon on the surface of the silicon crystal particles while maintaining them in a fluid state,
Hydrogen gas or/and inert gas is uniformly supplied to the cross section perpendicular to the direction of gravity to maintain the silicon crystal particles in a fluid state, and silicon hydride or silicon hydride and hydrogen gas or/and inert gas are supplied from the center. A method for producing high-purity granular silicon, which comprises supplying a mixed gas of active gas.
(2)中心部から供給する珪素水素化物または珪素水素
化物と水素ガスまたは/および不活性ガスの混合ガスの
吹出し部における速度が最大珪素結晶粒子の終末沈降速
度以上であることを特徴とする特許請求の範囲第1項記
載の高純度粒状珪素の製造方法。
(2) A patent characterized in that the velocity of silicon hydride or a mixed gas of silicon hydride and hydrogen gas or/and inert gas supplied from the center at the blowing part is equal to or higher than the terminal sedimentation velocity of the maximum silicon crystal particle A method for producing high purity granular silicon according to claim 1.
(3)珪素水素化物がモノシランまたはジシランあるい
はこれらの混合ガスであることを特徴とする特許請求の
範囲第1項記載の高純度粒状珪素の製造方法。
(3) The method for producing high-purity granular silicon according to claim 1, wherein the silicon hydride is monosilane, disilane, or a mixed gas thereof.
(4)不活性ガスがアルゴンであることを特徴とする特
許請求の範囲第1項記載の高純度粒状珪素の製造方法。
(4) The method for producing high-purity granular silicon according to claim 1, wherein the inert gas is argon.
JP62059838A 1987-03-14 1987-03-14 Method for producing high-purity granular silicon Expired - Lifetime JPH07100605B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62059838A JPH07100605B2 (en) 1987-03-14 1987-03-14 Method for producing high-purity granular silicon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62059838A JPH07100605B2 (en) 1987-03-14 1987-03-14 Method for producing high-purity granular silicon

Publications (2)

Publication Number Publication Date
JPS63225516A true JPS63225516A (en) 1988-09-20
JPH07100605B2 JPH07100605B2 (en) 1995-11-01

Family

ID=13124761

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62059838A Expired - Lifetime JPH07100605B2 (en) 1987-03-14 1987-03-14 Method for producing high-purity granular silicon

Country Status (1)

Country Link
JP (1) JPH07100605B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03150288A (en) * 1989-11-02 1991-06-26 Osaka Titanium Co Ltd Apparatus for heating polycrystalline silicon
JP2003535008A (en) * 2000-05-30 2003-11-25 アンヴァンシル Silicon powder for the preparation of alkyl- or aryl-halogensilanes

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61183113A (en) * 1985-02-09 1986-08-15 Osaka Titanium Seizo Kk Process and device for preparing polycrystalline silicon

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61183113A (en) * 1985-02-09 1986-08-15 Osaka Titanium Seizo Kk Process and device for preparing polycrystalline silicon

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03150288A (en) * 1989-11-02 1991-06-26 Osaka Titanium Co Ltd Apparatus for heating polycrystalline silicon
JP2003535008A (en) * 2000-05-30 2003-11-25 アンヴァンシル Silicon powder for the preparation of alkyl- or aryl-halogensilanes
JP4782968B2 (en) * 2000-05-30 2011-09-28 ロディア シリコンヌ エス.アー.エス. Silicon powder for the preparation of alkyl- or aryl-halogen silanes

Also Published As

Publication number Publication date
JPH07100605B2 (en) 1995-11-01

Similar Documents

Publication Publication Date Title
US6861144B2 (en) Polycrystalline silicon and process and apparatus for producing the same
JP3592660B2 (en) Polycrystalline silicon manufacturing equipment
CN102084038B (en) Direct silicon or reactive metal casting
JP4157281B2 (en) Reactor for silicon production
EP2294005B1 (en) Method and skull reactor for producing silicon or a reactive metal
JPS63225516A (en) Production of high-purity granular silicon
JPH02164711A (en) Manufacture of high-purity boron
JPH0829924B2 (en) Method for crushing high-purity silicon
JPH0755810B2 (en) High-purity granular silicon and method for producing the same
JPH06127924A (en) Production of polycrystalline silicon
JPS605013A (en) Preparation of silicon powder and its device
CN112756619B (en) Production method of submicron-level CuSn alloy powder with controllable element proportion
JPS63225514A (en) Production of high-purity granular silicon
JPS63225512A (en) Production of high-purity granular silicon
JPH06127926A (en) Production of granular polycrystalline silicon
JPS63225513A (en) Method and device for producing high-purity granular silicon
JPS62292607A (en) Method and apparatus for producing fine powder by cvd
JP3341314B2 (en) Polycrystalline silicon manufacturing method
JPH01208311A (en) Production of granular silicon and apparatus therefor