JPH0829924B2 - Method for crushing high-purity silicon - Google Patents

Method for crushing high-purity silicon

Info

Publication number
JPH0829924B2
JPH0829924B2 JP16856487A JP16856487A JPH0829924B2 JP H0829924 B2 JPH0829924 B2 JP H0829924B2 JP 16856487 A JP16856487 A JP 16856487A JP 16856487 A JP16856487 A JP 16856487A JP H0829924 B2 JPH0829924 B2 JP H0829924B2
Authority
JP
Japan
Prior art keywords
silicon
particles
crushing
purity silicon
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP16856487A
Other languages
Japanese (ja)
Other versions
JPS6414110A (en
Inventor
智弘 安部
博治 宮川
健二 岩田
圭一 池田
健二 沖本
Original Assignee
三井東圧化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井東圧化学株式会社 filed Critical 三井東圧化学株式会社
Priority to JP16856487A priority Critical patent/JPH0829924B2/en
Publication of JPS6414110A publication Critical patent/JPS6414110A/en
Publication of JPH0829924B2 publication Critical patent/JPH0829924B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は高純度珪素の破砕方法に関する。TECHNICAL FIELD The present invention relates to a method for crushing high-purity silicon.

〔従来の技術〕[Conventional technology]

高純度珪素の破砕品は、無機シランガスまたは無機シ
ランガスと水素ガスまたは/および不活性ガスを吹込み
珪素結晶粒子を流動状態に保持しながら、その表面に珪
素を析着させ珪素結晶粒子を成長させる方法(流動層
法)において、種珪素結晶粒子として用いられる。又、
チョクラルスキー法による単結晶の原料としても使用さ
れる。
A crushed product of high-purity silicon grows silicon crystal particles by depositing silicon on the surface while keeping the silicon crystal particles in a fluidized state by injecting an inorganic silane gas or an inorganic silane gas and hydrogen gas and / or an inert gas. In the method (fluidized bed method), it is used as seed silicon crystal particles. or,
It is also used as a raw material for single crystals by the Czochralski method.

流動層法で高純度珪素を製造する方法は米国特許3,01
2,861、3,012,861等に示されているごとく公知である。
その代表的な方法の一つとして、水素ガスまたは不活性
ガスと前駆体ガスであるクロロシランガスあるいはモノ
シランガスで流動状態に保持された珪素結晶粒子の表面
に、該前駆体ガスの還元反応または熱分解反応で珪素を
析着させ珪素結晶粒子を成長させる方法がある。この方
法によれば従来のベルジャー反応方式に比べて反応面が
粒状珪素であるため、単位反応容積当たりの表面積が莫
大に増加し生産性は著るしく向上すると云う利点があ
る。更に小粒径の種珪素粒子を連続的に供給し、成長し
た大粒径の珪素粒子を連続的に抜き出せば連続運転が可
能となり製造能率は著しく向上する。更に製造した珪素
が粒状であるためこれを単結晶化のために溶融する場合
汚染の恐れのある破砕工程を必要とせずそのまま使用で
きる利点を有する。このように流動層法による粒状珪素
の製造は数々の利点が期待されるため各所で精力的に開
発研究がなされており数多くの提案がなされている。
A method for producing high-purity silicon by the fluidized bed method is disclosed in US Pat.
It is publicly known as shown in 2,861, 3,012, 861 and the like.
As one of the typical methods, a reduction reaction or thermal decomposition of the precursor gas is performed on the surface of silicon crystal particles held in a fluid state by hydrogen gas or an inert gas and a precursor gas such as chlorosilane gas or monosilane gas. There is a method of depositing silicon by reaction to grow silicon crystal grains. According to this method, the reaction surface is granular silicon as compared with the conventional bell jar reaction method, so that there is an advantage that the surface area per unit reaction volume is enormously increased and the productivity is remarkably improved. Further, if seed silicon particles having a small particle diameter are continuously supplied and the grown silicon particle having a large particle diameter is continuously extracted, continuous operation becomes possible and the production efficiency is remarkably improved. Furthermore, since the produced silicon is granular, it has an advantage that when it is melted for single crystallization, it can be used as it is without the need of a crushing step which may cause contamination. As described above, the production of granular silicon by the fluidized bed method is expected to have various advantages, and thus vigorous development and research have been carried out at various places and numerous proposals have been made.

しかしながら、流動層法による高純度珪素の製造方法
には、解決されなければならない問題点もいくつか含ま
れている。
However, the method for producing high-purity silicon by the fluidized bed method includes some problems that must be solved.

その一つに使用する小粒径を種珪素粒子を如何にして
製造するか、特に大粒径の珪素粒子から小粒計の種珪素
粒子を如何にして得るかと云うことがある。従来、大粒
径珪素から小粒径珪素を得る方法としては、ロールクラ
ッシャーで大粒径珪素を機械的に粉砕し得られた粉粒体
を篩により分級する方法やジェットガス雰囲気下の中に
大粒子径の珪素粒子を投入し粒子の激しい衝突でもって
粉砕し得られた粉粒体を風篩法により分級する方法等が
公知である。
One of them is how to produce seed silicon particles having a small particle size used for one of them, and in particular, how to obtain seed silicon particles of a small particle analyzer from silicon particles having a large particle size. Conventionally, as a method of obtaining small particle size silicon from large particle size silicon, a method of mechanically crushing large particle size silicon with a roll crusher to classify the obtained powder or granules with a sieve or in a jet gas atmosphere There is known a method in which silicon particles having a large particle diameter are charged and pulverized by violent collision of particles, and the obtained powder or granules are classified by a wind sieving method.

また、ベルジャー方式による高純度珪素の製造方法
は、ベルジャー型反応機にクロロシラン類と水素の混合
物あるいはモノシモンガスを供給し通電加熱された棒状
珪素に珪素を析出成長させ棒状珪素を得、該得られた棒
状珪素を適当な大きさに粉砕して、これが高純度珪素種
粒子として、チョクラルスキー法による単結晶製造のた
めの原料に用いられる。この種粒子製造時用いられてい
る従来の破砕方法としては、ハンマーのごときもので機
械的に激しい衝激を加えて破砕するか、高温に加熱した
棒状珪素を、水で急冷して破砕する方法が公知である。
Further, a method of producing high-purity silicon by the bell jar method is a method of supplying a mixture of chlorosilanes and hydrogen or monosimmon gas to a bell jar type reactor to deposit and grow silicon on rod-shaped silicon that has been electrically heated to obtain rod-shaped silicon. The rod-shaped silicon thus obtained is pulverized to an appropriate size and used as high-purity silicon seed particles as a raw material for producing a single crystal by the Czochralski method. As a conventional crushing method used in the production of these seed particles, a method such as a hammer is used to mechanically apply a violent shock to crush, or a method of rapidly crushing rod-shaped silicon heated to high temperature with water. Is known.

しかしながら、これ等の方法では、粉砕及び分級の際
に珪素粒子と装置の激しい接触による摩耗があり製品へ
の汚染はさけられないと云う問題点がある。さらに従来
の方法では、粉砕工程の際に生成する微細粒子の完全な
分離が難かしい。そのため単位面積の大きい残存微粉粒
子は製品への不純物のメッセンジャーとして悪い役割を
はたす結果となっている。
However, these methods have a problem in that the silicon particles are abraded by the violent contact between the apparatus and the apparatus during the crushing and classification, and the product cannot be contaminated. Furthermore, in the conventional method, it is difficult to completely separate the fine particles generated during the crushing process. Therefore, the residual fine powder particles having a large unit area play a bad role as a messenger of impurities to the product.

また、水を用いた急冷破砕方法は、高温に加熱された
珪素と、水や水中の溶存酸素との反応が惹起して、酸素
取り込みによる製品汚染はさけられない。さらに、水中
に含まれる他元素による汚染も問題となりうるのであ
る。
Further, in the quenching and crushing method using water, reaction of silicon heated to a high temperature with water or dissolved oxygen in water is caused, and product contamination due to oxygen uptake cannot be avoided. Furthermore, contamination by other elements contained in water can be a problem.

〔発明の目的〕[Object of the Invention]

本発明はの目的は、上記のような粉砕の際に起こる製
品汚染を最小限にし、かつ微粉粒子生成の無い、高純度
珪素の破砕方法を提供することにある。
It is an object of the present invention to provide a method for crushing high-purity silicon that minimizes product contamination that occurs during crushing as described above and does not generate fine powder particles.

〔発明の開示〕[Disclosure of Invention]

本発明は、加熱された高純度珪素を液状不活性冷却媒
体と接触せしめて急冷し破砕することを特徴とする高純
度珪素の破砕方法、であり、好ましくは、高純度珪素の
加熱温度500℃乃至1,600℃の温度範囲である方法であ
り、好ましくは、加熱された高純度珪素が粒子状もしく
は溶融液であり、また好ましくは、液状不活性冷却媒体
が液化ガスである方法、であり、また好ましくは、液状
不活性冷却媒体がヘリウム、ネオン、アルゴン、窒素お
よび水素から選択される方法、を要旨とするものであ
る。
The present invention is a method for crushing high-purity silicon, which comprises heating heated high-purity silicon in contact with a liquid inert cooling medium to rapidly cool and crush, and preferably heating temperature of high-purity silicon 500 ° C. To a temperature range of 1,600 ° C., preferably a method in which heated high-purity silicon is in the form of particles or a molten liquid, and more preferably a liquid inert cooling medium is a liquefied gas, and Preferably, the method is characterized in that the liquid inert cooling medium is selected from helium, neon, argon, nitrogen and hydrogen.

本発明の実施の態様をより具体的に述べれば、500℃
乃至1,600程度の高温に加熱した粒子状もしくは融解液
である高純度珪素粒子を、液状不活性媒体好ましくは液
体窒素、液体アルゴン中に投入するか、又は逆に、高温
に加熱した高純度珪素に液状不活性媒体好ましくは液体
窒素、液体アルゴンを吹きつけ急冷することより珪素粒
子を破砕する方法である。ここで用いられる破砕前の珪
素粒子は流動層法で製造された製品粒子やベルジャー法
で製造した棒状珪素又は破砕珪素が使用される。
More specifically, the embodiment of the present invention is 500 ° C.
To high-purity silicon particles, which are particles or a molten liquid heated to a high temperature of about 1,600 to 1,600, are charged into a liquid inert medium, preferably liquid nitrogen or liquid argon, or conversely, to high-purity silicon heated to a high temperature. A method of crushing silicon particles by spraying a liquid inert medium, preferably liquid nitrogen or liquid argon, and quenching. As the silicon particles before crushing used here, product particles manufactured by the fluidized bed method or rod-shaped silicon or crushed silicon manufactured by the bell jar method are used.

以下、本発明を添付図面に基づいて説明する。第1図
は本発明を実施するに適した装置である。まず図中の加
熱容器3に破砕原料である高純度の珪素(この場合は粒
子)2を供給口4より投入し、加熱装置、例えば加熱用
ヒーター6で加熱する。使用する加熱容器は、製品の汚
染を防止するため、少なくともその内面が高純度珪素層
で被覆された、珪素炭化珪素、ガラス状炭素、石英また
は窒素珪素製等のものが好ましい。本発明において、高
純度の珪素粒子は高温に加熱されるが、加熱落度は500
℃乃至1600℃が適応できる。しかして、より好ましく
は、800℃乃至珪素粒子の溶融温度である。珪素の溶融
温度以上に加熱した場合は、勿論原料の珪素は溶融し
て、液状になる。加熱温度が500℃より低いと急冷によ
る破砕効果が期待できず、また逆に1600℃を超えると、
加熱に要するエネギーが徒に増大するだけであり、経済
的に好ましくない。もっともさらに高い加熱温度を使用
することは自由である。なお、1は不活性ガスたとえば
アルゴンガスの入口、5は出口である。
The present invention will be described below with reference to the accompanying drawings. FIG. 1 is an apparatus suitable for implementing the present invention. First, high-purity silicon (particles in this case) 2 as a crushing raw material is charged into a heating container 3 in the figure from a supply port 4, and heated by a heating device, for example, a heater 6 for heating. In order to prevent the product from being contaminated, the heating container used is preferably made of silicon silicon carbide, glassy carbon, quartz or silicon nitride, at least the inner surface of which is coated with a high-purity silicon layer. In the present invention, high-purity silicon particles are heated to a high temperature, but the heating drop rate is 500
℃ to 1600 ℃ can be applied. Therefore, more preferably, it is 800 ° C. to the melting temperature of silicon particles. When heated above the melting temperature of silicon, the raw material silicon will of course melt and become liquid. If the heating temperature is lower than 500 ° C, the crushing effect due to rapid cooling cannot be expected, and conversely, if it exceeds 1600 ° C,
The energy required for heating only increases unnecessarily, which is not economically preferable. The use of even higher heating temperatures is free. In addition, 1 is an inlet of an inert gas such as argon gas, and 5 is an outlet.

しかして、高純度の珪素粒子2が、上記した所定の温
度に加熱された時点で、開閉板9を操作し、珪素粒子抜
き出し管7より加熱された珪素粒子2を液状不活性冷却
媒体8を充填した受器10中に滴下し、該液状不活性冷却
媒体と接触せしめて急冷する。なお、12は該不活性媒体
入口である。勿論加熱温度が珪素の溶融温度以上の場合
は、珪素粒子は溶融していて、液滴として滴下されるこ
とになる。ここで使用される液状不活性冷却媒体は好ま
しくは液化ガスであり、液体ヘリウム、ネオン、アルゴ
ン、窒素および水素等の液化ガスから選択される。そし
て、特に経済性から考えてアルゴン、窒素が好ましい。
なお、11は不活性ガス出口である。
Then, when the high-purity silicon particles 2 are heated to the above-mentioned predetermined temperature, the opening / closing plate 9 is operated to remove the heated silicon particles 2 from the silicon particle extracting pipe 7 into the liquid inert cooling medium 8. It is dropped into the filled receiver 10 and brought into contact with the liquid inert cooling medium to quench it. In addition, 12 is the inert medium inlet. Of course, when the heating temperature is equal to or higher than the melting temperature of silicon, the silicon particles are molten and are dropped as droplets. The liquid inert cooling medium used here is preferably a liquefied gas and is selected from liquefied gases such as liquid helium, neon, argon, nitrogen and hydrogen. Argon and nitrogen are preferable in view of economy.
In addition, 11 is an inert gas outlet.

かくして、滴下され、液状不活性冷却媒体と接触した
高純度珪素の粒子もしくは溶融液は、急激に冷却(融解
液の場合は冷却・固化)され、直ちに小径粒子に破砕さ
れる。
Thus, the particles of high-purity silicon or the molten liquid that have been dropped and contacted with the liquid inert cooling medium are rapidly cooled (in the case of a molten liquid, cooled and solidified), and immediately crushed into small-diameter particles.

なお、場合によっては、小径の粒子にまで破砕されな
い粒子も一部残るが、本発明に従えば、急冷によるクラ
ックが粒子内部まで入っており、受器から取り出した後
わずかな衝撃、たとえば流動床内で珪素粒子を不活性ガ
ス等により流動状態に保つだけで小粒子径に容易に破砕
されるのである。
Incidentally, in some cases, some particles that are not crushed to particles of a small diameter remain, but according to the present invention, cracks due to rapid cooling are contained inside the particles, and a slight impact after removal from the receiver, for example, a fluidized bed The silicon particles can be easily crushed into small particles only by keeping the silicon particles in a fluidized state by an inert gas or the like.

また、第2図は、上記した如く、珪素の溶融温度以上
に加熱容器23中で加熱した場合の例を示すもので、溶融
した珪素22が、ノズル29より、液滴33として、滴下さ
れ、急冷破砕される状態を示している。なお、第2図に
おける他の符号は、第1図の対応箇所に準ずるので特に
説明しない。
Further, FIG. 2 shows an example of heating in the heating container 23 to a temperature above the melting temperature of silicon as described above. Molten silicon 22 is dropped from the nozzle 29 as droplets 33, It shows the state of rapid crushing. The other reference numerals in FIG. 2 correspond to corresponding portions in FIG. 1 and will not be particularly described.

なお、第1図、第2図に示した方法は一例にすぎず、
本発明がこれらに限定されるものでないことは勿論であ
る。
The method shown in FIGS. 1 and 2 is merely an example,
Of course, the present invention is not limited to these.

〔効果〕〔effect〕

本発明の方法は従来の方法に比較して、装置及び操作
がはるかに単純であるにもかかわらず、得られた破砕粒
子も破砕工程からの汚染が実質的に見られない、高純度
の粒子なのである。
Although the method of the present invention is much simpler in equipment and operation as compared with the conventional method, the obtained crushed particles are also particles of high purity with substantially no contamination from the crushing step. That is why.

また、得られた破砕後の小粒子径珪素中には、微粉粒
子珪素には実質的にほとんど存在しない為、流動層法の
種粒子として使用する場合、篩又は風篩等による分級の
必要がないのである。
Further, in the obtained small particle size silicon after crushing, there is substantially no fine powder particle silicon, so when used as seed particles in the fluidized bed method, it is necessary to classify with a sieve or a wind sieve. There is no.

(実施例−1) 高純度珪素で内面を被覆した炭化珪素で第1図に示す
ような、加熱容器3、受器10、珪素粒子抜き出し管7、
開閉板9を作成し使用した。主な機器の仕様を下記に示
す。
(Example-1) As shown in FIG. 1, a heating container 3, a receiver 10, a silicon particle extracting pipe 7, and silicon carbide whose inner surface was coated with high-purity silicon.
The opening / closing plate 9 was created and used. The specifications of the main equipment are shown below.

加熱容器 内径 30mm、 高サ 500mm 受 器 内径 100mm、 高サ 500mm 珪素抜き出し管 内径 10mm、 高さ 100mm 流動層法で製造した製品珪素粒子で、粒径800μm乃
至1300μmの珪素粒子200gを供給口4から加熱容器に仕
込み、加熱容器内のガス置換を入口1よりアルゴンガス
を供給して行った。その後加熱用ヒータ6を用いて珪素
粒子温度が900℃になるまで加熱した。受器10に液体に
アルゴンを受器容積の約1/3用量供給し、珪素粒子抜き
出し管7及び受器内のガス置換を十分確認後、開閉板9
を操作して珪素粒子200gを約30分間で抜き出し、液体ア
ルゴン中に落とし急冷破砕した。途中数回液体アルゴン
を補給しレベルを合せた。落された珪素粒子の粒径を測
定した結果大部分(170g)が、100μm乃至300μmの粒
子に破砕されており、ただ、300μm以上の粒子が30gあ
った。そこでさらにこの300μm以上の粒子をアルゴン
ガスで10分間噴流流動状態下に置くことにより全ての粒
子が容易に100μm乃至300μmになった。
Heating container 30 mm inside diameter, 500 mm high height Receiver 100 mm inside diameter, 500 mm high height Silicon extraction tube 10 mm inside diameter, 100 mm height Product silicon particles manufactured by the fluidized bed method, 200 g of silicon particles with a particle size of 800 μm to 1300 μm from the supply port 4 A heating container was charged, and the gas inside the heating container was replaced by supplying argon gas from the inlet 1. Then, the heating heater 6 was used to heat the silicon particles until the temperature of the silicon particles reached 900 ° C. Argon is supplied to the receiver as a liquid at a dose of about 1/3 of the receiver volume, and after confirming the gas replacement in the silicon particle extraction tube 7 and the receiver, the opening / closing plate 9
Was operated to extract 200 g of silicon particles in about 30 minutes, dropped into liquid argon and rapidly crushed. Liquid argon was replenished several times on the way to adjust the level. As a result of measuring the particle size of the dropped silicon particles, most of them (170 g) were crushed into particles of 100 μm to 300 μm, and 30 g of particles of 300 μm or more were present. Therefore, by further placing the particles of 300 μm or more in a jet flow state with argon gas for 10 minutes, all the particles were easily made to be 100 μm to 300 μm.

(実施例−2) ベルジャー法で製造した棒状珪素の破砕品で粒径800
μm乃至1,300μmの珪素粒子200gを使用するした以外
はに同様に実験を行った。破砕された珪素粒子の粒径を
測定した結果、大部分(180g)の粒子が100μm乃至300
μmのものに粉砕されており、ただ、300μm以上の粒
子が20gあった。そこでさらにこの300μm以上の粒子を
アルゴンガスで10分間噴流流動状態下に置くことによ
り、全ての粒子が容易に100μm乃至300μmになった。
(Example-2) A crushed rod-shaped silicon produced by the bell jar method has a particle size of 800.
The same experiment was conducted except that 200 g of silicon particles having a size of 1 μm to 1300 μm was used. As a result of measuring the particle size of the crushed silicon particles, most of the particles (180 g) are 100 μm to 300 μm.
It was crushed to a size of μm, but there were 20 g of particles of 300 μm or larger. Therefore, by further placing the particles of 300 μm or more in a jet flow state with argon gas for 10 minutes, all the particles easily became 100 μm to 300 μm.

(実施例−3) 加熱容器内粒子の加熱温度が1,200℃とした以外は実
施例−1と同様の実験を行った。破砕された珪素粒子を
アルゴンガスで10分間噴流流動状態下に置いた後珪素粒
子粒径を測定した結果は全ての粒子が100μm乃至300μ
mに破砕されていた。
(Example-3) The same experiment as in Example-1 was carried out except that the heating temperature of the particles in the heating container was 1,200 ° C. After crushing the crushed silicon particles with argon gas for 10 minutes under a jet flow condition, the particle size of the silicon particles was measured, and all the particles were 100 μm to 300 μm.
It was crushed to m.

(実施例−4) 高純度珪素で内面を被覆した炭化珪素で第2図に示す
ような加熱容器23、受器30、溶融珪素抜き出し管27、ノ
ズル口29を製作し使用した。主な機器の仕様はノズル口
径2.0mm、溶融珪素抜き出し管内径10mm、長サ100mmとし
た。それ以外の機器仕様は実施例−1と同じとした。流
動層法で製造した製品珪素粒子で粒径800μm乃至1,300
μmの珪素粒子100gを供給口24から加熱容器23に仕込
み、加熱容器内のガス置換を21よりアルゴンガスを供給
して行なった。その後加熱用ヒーター26を用いて珪素粒
子を1,500℃に加熱し溶融した。溶融した珪素はノズル
口29より液滴33となって窒素ガスで充分に置換された溶
融珪素抜き出し管27を通り、液体窒素28が入った受器30
に滴下され急冷破砕された。途中数回液体窒素を補給し
受器内の液体窒素量のレベルを合せた。滴下された珪素
粒子をアルゴンガスで10分間噴流流動状態下に置いた
後、珪素粒子粒径を測定した結果は滴下した全ての粒子
が100μm〜300μmに破砕されていた。
(Embodiment 4) A heating container 23, a receiver 30, a molten silicon extraction pipe 27, and a nozzle port 29 as shown in FIG. 2 were manufactured and used with silicon carbide whose inner surface was coated with high-purity silicon. The main equipment specifications were a nozzle diameter of 2.0 mm, a molten silicon extraction tube inner diameter of 10 mm, and a length of 100 mm. The other device specifications were the same as in Example-1. Product made by fluidized bed method Silicon particles with a particle size of 800 μm to 1,300
100 g of silicon particles of μm were charged into the heating container 23 through the supply port 24, and the gas inside the heating container was replaced by supplying argon gas from 21. Thereafter, the heating heater 26 was used to heat the silicon particles to 1,500 ° C. to melt them. The molten silicon becomes droplets 33 from the nozzle port 29, passes through the molten silicon extraction pipe 27 sufficiently replaced with nitrogen gas, and receives the liquid nitrogen 28 in the receiver 30.
It was dripped at and rapidly crushed. Liquid nitrogen was replenished several times on the way to adjust the level of liquid nitrogen in the receiver. After the dropped silicon particles were placed in a jet flow state with argon gas for 10 minutes, the particle size of the silicon particles was measured. As a result, all the dropped particles were crushed to 100 μm to 300 μm.

【図面の簡単な説明】[Brief description of drawings]

第1図および第2図は、本発明を実施するのに適した装
置を示す模式図である。
1 and 2 are schematic diagrams showing an apparatus suitable for carrying out the present invention.

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】加熱された高純度珪素を液状不活性冷却媒
体と接触せしめて急冷し破砕することを特徴とする高純
度珪素の破砕方法。
1. A method for crushing high-purity silicon, which comprises bringing heated high-purity silicon into contact with a liquid inert cooling medium, rapidly cooling and crushing.
【請求項2】高純度珪素の加熱温度が500℃乃至1,600℃
の温度範囲である特許請求範囲第1項記載の破砕方法。
2. The heating temperature of high-purity silicon is 500 ° C. to 1,600 ° C.
The crushing method according to claim 1, wherein the crushing method is in the temperature range of.
【請求項3】加熱された高純度珪素が粒子状である特許
請求の範囲第1記載の方法。
3. The method according to claim 1, wherein the heated high-purity silicon is in the form of particles.
【請求項4】加熱された高純度珪素が溶融液である特許
請求の範囲第1記載の方法。
4. The method according to claim 1, wherein the heated high-purity silicon is a molten liquid.
【請求項5】液状不活性冷却媒体が液化ガスである特許
請求の範囲第1項記載の方法。
5. The method according to claim 1, wherein the liquid inert cooling medium is a liquefied gas.
【請求項6】液状不活性冷却媒体がヘリウム、ネオン、
アルゴン、窒素および水素から選択される特許請求の範
囲第5項記載の方法。
6. The liquid inert cooling medium is helium, neon,
A method according to claim 5 selected from argon, nitrogen and hydrogen.
【請求項7】液状不活性冷却媒体がアルゴンもしくは窒
素である特許請求範囲第6項記載の方法。
7. The method of claim 6 wherein the liquid inert cooling medium is argon or nitrogen.
【請求項8】破砕された珪素粒子が種珪素結晶粒子とし
て使用するに適したものである特許請求の範囲第1項乃
至第8項の何れかに記載の方法。
8. A method according to claim 1, wherein the crushed silicon particles are suitable for use as seed silicon crystal particles.
JP16856487A 1987-07-08 1987-07-08 Method for crushing high-purity silicon Expired - Lifetime JPH0829924B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16856487A JPH0829924B2 (en) 1987-07-08 1987-07-08 Method for crushing high-purity silicon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16856487A JPH0829924B2 (en) 1987-07-08 1987-07-08 Method for crushing high-purity silicon

Publications (2)

Publication Number Publication Date
JPS6414110A JPS6414110A (en) 1989-01-18
JPH0829924B2 true JPH0829924B2 (en) 1996-03-27

Family

ID=15870373

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16856487A Expired - Lifetime JPH0829924B2 (en) 1987-07-08 1987-07-08 Method for crushing high-purity silicon

Country Status (1)

Country Link
JP (1) JPH0829924B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0791048B2 (en) * 1988-02-18 1995-10-04 アドバンスド、シリコン、マテリアルズ、インコーポレイテッド Method for forming pre-sized particles from silicon rods
DE3811091A1 (en) * 1988-03-31 1989-10-12 Heliotronic Gmbh METHOD FOR COMMANDING LOW CONTAMINATION OF SOLID, PIECE OF SILICONE
KR940006017B1 (en) * 1992-03-19 1994-07-02 재단법인 한국화학연구소 Method of jet pulverize for silicone particle
DE102009044991A1 (en) * 2009-09-24 2011-03-31 Wacker Chemie Ag Rod-shaped polysilicon with improved fracture property
DE102013215257A1 (en) * 2013-08-02 2015-02-05 Wacker Chemie Ag Process for comminuting silicon and use of comminuted silicon in a lithium-ion battery
CN111921665B (en) * 2020-07-17 2023-09-12 自贡佳源炉业有限公司 Annular material crushing treatment system and method
CN112192770A (en) * 2020-10-13 2021-01-08 浙江欧亚光电科技有限公司 Cooling liquid collecting and separating device of diamond wire silicon wafer cutting machine
CN114214723B (en) * 2021-12-14 2023-06-13 山东大学 Preparation method of quasi-intrinsic semi-insulating silicon carbide single crystal

Also Published As

Publication number Publication date
JPS6414110A (en) 1989-01-18

Similar Documents

Publication Publication Date Title
CA2377892C (en) Polycrystalline silicon, method and apparatus for producing the same
KR100411180B1 (en) Method for preparing polycrystalline silicon
JP4567430B2 (en) Dust-free and pore-free high-purity polycrystalline silicon granules and their production and use
CN102084038B (en) Direct silicon or reactive metal casting
JP4157281B2 (en) Reactor for silicon production
JPH0829924B2 (en) Method for crushing high-purity silicon
US5006317A (en) Process for producing crystalline silicon ingot in a fluidized bed reactor
US20100047148A1 (en) Skull reactor
JPH02164711A (en) Manufacture of high-purity boron
JP2007284321A (en) Method and apparatus for manufacturing granular silicon
JP2003020216A (en) Method for manufacturing silicon
JP2003002626A (en) Reaction apparatus for producing silicon
JP4231951B2 (en) Polycrystalline silicon foam and method for producing the same
RU2405674C1 (en) Method of producing high-purity silicon granules
JP2004000881A (en) Method for producing silicon sphere and its production apparatus
JP2003002627A (en) Method for manufacturing silicon
JPS63225516A (en) Production of high-purity granular silicon
JP2009033013A (en) Method of producing crystalline silicon particles
JPH06127926A (en) Production of granular polycrystalline silicon
JPH11180710A (en) Apparatus for production of silicon ingot
JPH06127927A (en) Production of granular polycrystalline silicon
JPH0753568B2 (en) Method and apparatus for producing high-purity granular silicon
JPS62292607A (en) Method and apparatus for producing fine powder by cvd
JPH0692618A (en) Production of granular polycrystalline silicon