JPS63225329A - Production of alpha,beta-unsaturated ketone - Google Patents

Production of alpha,beta-unsaturated ketone

Info

Publication number
JPS63225329A
JPS63225329A JP62253960A JP25396087A JPS63225329A JP S63225329 A JPS63225329 A JP S63225329A JP 62253960 A JP62253960 A JP 62253960A JP 25396087 A JP25396087 A JP 25396087A JP S63225329 A JPS63225329 A JP S63225329A
Authority
JP
Japan
Prior art keywords
ketone
catalyst
hydroxide
formula
alkyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62253960A
Other languages
Japanese (ja)
Other versions
JPH082831B2 (en
Inventor
Takao Maki
真木 隆夫
Toshiharu Yokoyama
横山 寿治
Yumiko Sumino
角野 由美子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Kasei Corp
Original Assignee
Mitsubishi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Kasei Corp filed Critical Mitsubishi Kasei Corp
Publication of JPS63225329A publication Critical patent/JPS63225329A/en
Publication of JPH082831B2 publication Critical patent/JPH082831B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

PURPOSE:To obtain the titled compound useful as a raw material for organic synthesis and solvent by one-stage reaction, by condensing ketones through dehydration by the use of an oxide or hydroxide of a metal selected from the group consisting of Ce, Ti, Zr, Hf, Ta and Cr as a catalyst. CONSTITUTION:A ketone shown by formula I (R<1> is H or alkyl; R<2> is alkyl) is condensed with a ketone shown by formula II (R<3> is H or alkyl; R<4> is alkyl) through dehydration by the use of a highly active ketone condensation catalyst comprising at least one metallic oxide or hydroxide (e.g. ceric hydroxide, titanium tetrabutoxide, hafnium oxychloride and tantalum pentachloride) of metal selected from the group consisting of cerium, titanium, zirconium, hafnium, tantalum and chromium to give an alpha,beta-unsaturated ketone (e.g. mesityl oxide or 5-methyl-4-hepten-3-one). The ketone shown by formula I may be the same or different from the ketone shown by formula II.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は有機合成原料、溶剤等として有用なα、β−不
飽和ケトンの製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for producing α,β-unsaturated ketones useful as raw materials for organic synthesis, solvents, and the like.

〔従来の技術〕[Conventional technology]

α、β−不飽和ケトンの製造法として従来、種種の方法
が提案されている。例えば代表的なα、β−不飽和ケト
ンであるメシチルオキシド(4t−メチル−3−ペンテ
ンーコーオン)の製造法について述べると、アセトンを
触媒の存在下に縮合させてメシチルオキシドを製造する
方法が良く知られておシ、代表的なものは次の通シであ
る。
Conventionally, various methods have been proposed for producing α,β-unsaturated ketones. For example, to describe a method for producing mesityl oxide (4t-methyl-3-pentene-kone), which is a typical α,β-unsaturated ketone, mesityl oxide is produced by condensing acetone in the presence of a catalyst. There are well-known methods to do this, the most typical of which are as follows.

■ アセトンを塩基性触媒の存在下にアルドール付加(
いわゆるアルドール縮合)させてジアセトンアルコール
を得、次いでこれを酸触媒の存在下に脱水反応させてメ
シチルオキシドを得る方法。
■ Aldol addition of acetone in the presence of a basic catalyst (
A method of obtaining mesityl oxide by conducting a so-called aldol condensation) to obtain diacetone alcohol, and then dehydrating this in the presence of an acid catalyst.

■ アセトンをリン酸ジルコニウム、アルミナ等の触媒
の存在下に脱水縮合させてメシチルオキシドを得る方法
■ A method to obtain mesityl oxide by dehydrating and condensing acetone in the presence of a catalyst such as zirconium phosphate or alumina.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、上記■の方法は、反応がツ段階であり、
かつアセトンのアルドール付加反応を高転化率で進行さ
せることが困難であるので、効率的に十分であるとは言
えない。また、上記■の方法は、/段階反応であるが、
触媒活性が比較的低いので、大量の触媒を用いる必要が
あシ、実用上問題がある。
However, in method (■) above, the reaction is in two stages;
In addition, it is difficult to carry out the aldol addition reaction of acetone at a high conversion rate, so it cannot be said to be efficient enough. In addition, the method (■) above is a /step reaction, but
Since the catalyst activity is relatively low, it is necessary to use a large amount of catalyst, which poses a practical problem.

〔問題点を解決するための手段〕[Means for solving problems]

本発明者らは従来技術のかかる問題点を解決すべく、高
活性のケトン縮合触媒の探策に鋭意努めた結果、特定の
金属の酸化物又は水酸化物を触媒として用いることによ
シ、上記問題点が解決できることを見い出して本発明に
到達した。
In order to solve the problems of the prior art, the present inventors have worked hard to find a highly active ketone condensation catalyst. As a result, by using a specific metal oxide or hydroxide as a catalyst, The inventors have discovered that the above problems can be solved and have arrived at the present invention.

即ち、本発明の要旨は、 一般式(I): R1(H2C!0R2 (式中 R1は水素又はアルキル基を表わし R2はア
ルキル基を表わす。)で表わされるケトンを、 一般式(II): R8CH2COR’ (式中 R11は水素又はアルキル基を表わし R4は
アルキル基を表わす。)で表わされるケトンと脱水縮合
させて、 一般式(■): RI C!H2C! : CC!0R4(式中、R1、
R2、R3及びR4は前記に同じ)で表わされるα、β
−不飽和ケトンを製造するに当り、触媒として、セリウ
ム、チタン、ジルコニウム、ハフニウム、タンタル及び
クロムからなる群から選ばれた少なくとも7種の金属の
酸化物又は水酸化物を用いることを特徴とするα、β−
不飽和ケトンの製造方法、に存する。
That is, the gist of the present invention is to convert a ketone represented by general formula (I): R1(H2C!0R2 (wherein R1 represents hydrogen or an alkyl group, and R2 represents an alkyl group) into general formula (II): R8CH2COR' (in the formula, R11 represents hydrogen or an alkyl group, and R4 represents an alkyl group) is dehydrated and condensed with a ketone represented by the general formula (■): RI C!H2C!: CC!0R4 (in the formula, R1,
R2, R3 and R4 are the same as above)
- In producing the unsaturated ketone, oxides or hydroxides of at least seven metals selected from the group consisting of cerium, titanium, zirconium, hafnium, tantalum, and chromium are used as catalysts. α, β−
A method for producing an unsaturated ketone.

以下、本発明方法につき詳細に説明する。The method of the present invention will be explained in detail below.

本発明方法で原料として用いられる上記一般式(1)及
び一般式(■)で示されるケトンは相互に同一であって
も異なっていてもよい。このよりなケトンとして、好ま
しくはアルキル基の炭素数が/〜10のジアルキルケト
ンが使用され、具体的にはアセトン、メチルエチルケト
ン(コーフタノン)、コーベンタノン、3−ペンタノン
、コーヘキサノン、3−ヘキサノン、2−ヘプタノン、
3−ヘプタノン、コーオクタノン、3−オクタノン、グ
ーオクタノン、コーノナノン、3−ノナノン、グーノナ
ノン、!−ノナノン、ジノニルケトン等が挙げられる。
The ketones represented by the above general formula (1) and general formula (■) used as raw materials in the method of the present invention may be the same or different. As this stronger ketone, dialkyl ketones with an alkyl group having from / to 10 carbon atoms are preferably used, and specifically, acetone, methyl ethyl ketone (coftanone), cobentanone, 3-pentanone, cohexanone, 3-hexanone, 2- heptanone,
3-heptanone, co-octanone, 3-octanone, goo-octanone, conononanone, 3-nonanone, goononanone,! -nonanone, dinonyl ketone, etc.

本発明では、触媒としてセリウム、チタン、ジルコニウ
ム、ハフニウム、タンタル又ハクロムの酸化物又は水酸
化物を用いることが重要である。かかる金属の酸化物ま
たは水酸化物の調製方法としては、公知の方法が用いら
れ、例えば用いる金属種の可溶性塩の溶液にアルカリを
加えて沈澱させる方法、或いはかかる金属種のアルコキ
シドを加水分解する方法、熱分解する方法又は酸化する
方法等が挙げられる。
In the present invention, it is important to use an oxide or hydroxide of cerium, titanium, zirconium, hafnium, tantalum or hachromium as a catalyst. Known methods can be used to prepare such metal oxides or hydroxides, such as adding an alkali to a solution of a soluble salt of the metal species to precipitate it, or hydrolyzing an alkoxide of the metal species. methods, thermal decomposition methods, oxidation methods, etc.

このようにして調製された触媒は、水溶液中で調製され
た場合、かなシ水を含んだ水酸化物または酸化物として
得られるが、かかる状態のものを加熱すると脱水するこ
とができる。
When the catalyst thus prepared is prepared in an aqueous solution, it is obtained as a hydroxide or oxide containing water, but it can be dehydrated by heating the catalyst in such a state.

一般に、ケトンの縮合反応に用いられる触媒の活性は、
用いる金属種によシ、また加熱温度、脱水温度等によシ
種々変化し含水状態で最大活性を発現するもの、或いは
脱水後に最大活性を発現するもの等があるが、本発明の
触媒は公知の種々の触媒と比較して、含水状態の有無に
かかわらずケトンの縮合反応の反応活性の高いものであ
る。したがって、本発明の触媒の形態としては酸化物も
しくは水酸化物であるが、このうち酸化物は含水酸化物
であってもよい。
Generally, the activity of the catalyst used for the condensation reaction of ketones is
The catalyst of the present invention varies depending on the type of metal used, heating temperature, dehydration temperature, etc., and some exhibit maximum activity in a hydrated state, and others exhibit maximum activity after dehydration. Compared to various catalysts, it has high reaction activity for ketone condensation reactions regardless of the presence or absence of water content. Therefore, the catalyst of the present invention is in the form of an oxide or a hydroxide, but the oxide may be a hydrous oxide.

本発明の縮合反応は気相でも液相でも行なうことができ
る。通常、液相においてよシ高収率の結果が得られる。
The condensation reaction of the present invention can be carried out either in the gas phase or in the liquid phase. Higher yields are usually obtained in the liquid phase.

液相の場合、反応温度はケトンの臨界温度(アセトンの
場合は235℃)以下とするのが良い。あまりに低温で
は反応速度が小さくなるので反応温度は好ましくは3θ
ないし200℃の範囲で選ばれる。触媒は固定床で用い
ても懸濁床で用いても良い。懸濁床の場合、触媒の使用
量はケトンに対し/ないし30チ程度で良い。目的物の
選択性からみてケトンの転化率を20%以下に止めるの
が好ましい。反応圧力にはケトン自身の生ずる圧力があ
るが、これは決定的な要因とはならない。雰囲気には空
気の混入しないことが望ましい。反応生成物からの目的
化合物の分離は常法によシ行なうことができる。
In the case of a liquid phase, the reaction temperature is preferably lower than the critical temperature of the ketone (235°C in the case of acetone). If the temperature is too low, the reaction rate will be low, so the reaction temperature is preferably 3θ.
The temperature is selected within the range of 200°C to 200°C. The catalyst may be used in a fixed bed or in a suspended bed. In the case of a suspended bed, the amount of catalyst used may be about 30 to 30 grams per ketone. In view of the selectivity of the target product, it is preferable to keep the conversion rate of ketone to 20% or less. The reaction pressure includes the pressure generated by the ketone itself, but this is not a decisive factor. It is desirable that no air be mixed into the atmosphere. The target compound can be separated from the reaction product by a conventional method.

本発明方法によジケトンを脱水縮合させて対応する前記
一般式(It)のα、β−不飽和ケトンを得ることがで
きる。例えばアセトンからメシチルオキシドを、メチル
エチルケトンから!−メチルーグーへブテン−3−オン
ヲ、アセトンとメチルエチルケトン、!−カラJ−−メ
チルーグーヘキセン−3−オン及び/又ハ<’−メチル
ー3−ヘキセンーコーオンを、ジノニルケトンカラ//
−オクチル−/2−ノニル−//−ヘンエイコセン−1
0−オンを、それぞれ得ることができる。
The corresponding α,β-unsaturated ketone of the general formula (It) can be obtained by dehydration condensation of a diketone according to the method of the present invention. For example, mesityl oxide from acetone and methyl ethyl ketone! -Methyl-ghebutene-3-one, acetone and methyl ethyl ketone! -Cara J--Methyl-guhexen-3-one and/or C<'-methyl-3-hexene-kone, dinonylketone cara//
-octyl-/2-nonyl-//-heneicosene-1
0-on can be obtained respectively.

〔実施例〕〔Example〕

次に実施例により本発明の具体的態様をさらに詳細に説
明するが、本発明は、その要旨を越えない限シ、これら
の実施例によって限定されるものではない。
Next, specific embodiments of the present invention will be explained in more detail with reference to Examples, but the present invention is not limited by these Examples unless the gist thereof is exceeded.

実施例/ 市販の水酸化第二セリウム(和光紬薬社製)/、Q2と
アセトンコθ―とを内容積約70θ罰のステンレス製オ
ートクレーブに仕込み、750℃で7時間反応させた。
Example/ Commercially available ceric hydroxide (manufactured by Wako Tsumugi Co., Ltd.), Q2 and acetone θ- were placed in a stainless steel autoclave with an internal volume of about 70 θ, and reacted at 750° C. for 7 hours.

反応液は冷却後、ガスクロマトグラフィーにより分析し
た。結果を表−/に示した。
After cooling, the reaction solution was analyzed by gas chromatography. The results are shown in Table-/.

実施例2 実施例/に用いた水酸化第二セリウムを500℃で焼成
した後、0.72を触媒として用いた以外は実施例/と
同様に行なった。結果を表−/に示した。
Example 2 After calcining the ceric hydroxide used in Example 2 at 500° C., the same procedure as Example 2 was carried out except that 0.72 was used as a catalyst. The results are shown in Table-/.

実施例3〜グ チタンテトラブトキシドの加水分解により得たチタン酸
を700℃で乾燥した後、その/、θVを触媒として実
施例/と同じ条件で反応に用いた。また、このチタン酸
をSOO℃で焼成した後、八θ2を触媒とし同じ条件で
反応に用いた。反応結果を表−/に示した。
Example 3 - Titanic acid obtained by hydrolysis of titanium tetrabutoxide was dried at 700°C, and then used in a reaction using θV as a catalyst under the same conditions as in Example. Further, this titanic acid was calcined at SOO° C. and then used in a reaction using 8θ2 as a catalyst under the same conditions. The reaction results are shown in Table-/.

実施例j〜7 水酸化ジルコニウム(新日本金属社製)をそのまま(実
施例り或いは500℃(実施例6)及び700℃(実施
例7)で焼成して得られた触媒/、0tを用いた゛以外
は実施例/と同様に行なった。結果を表−/にまとめた
Examples j to 7 Zirconium hydroxide (manufactured by Shin Nippon Metal Co., Ltd.) was used as a catalyst (as in the example or as a catalyst obtained by firing at 500°C (Example 6) and 700°C (Example 7)), 0t Except for the above, the same procedure as in Example 1 was carried out.The results are summarized in Table 1.

実施例/〜9 オキシ塩化ノ・フニウム2Jrfを/lの水に溶解し、
jN−アンモニア水を加え、得られた沈殿を塩素イオン
が検出されなくなるまでよく水洗し、水酸化ハフニウム
を得た。この水酸化ノ・フニウムを700℃で乾燥後、
或いはSOO℃で焼成後、反応に用いた。触媒量は夫々
へO1で反応の条件は実施例/と同じである。結果を表
−/にまとめた。
Example/~9 Dissolve 2Jrf of oxychloride in /l of water,
jN-ammonia water was added, and the resulting precipitate was thoroughly washed with water until no chlorine ions were detected, to obtain hafnium hydroxide. After drying this hydroxide at 700℃,
Alternatively, it was used in the reaction after being calcined at SOO°C. The amount of catalyst was O1 for each reaction, and the reaction conditions were the same as in Example. The results are summarized in Table-/.

実施例/Q 五塩化タンタルよ2を!0dのエタノールに溶解してエ
トキシドとした後、水酸化カリウムのエタノール溶液(
ワ29/l)を滴下し沈殿を形成させた。この沈殿を/
 N −MCIで煮沸洗浄した後、脱塩水で十分煮沸洗
浄し、700℃で乾燥させてタンタル酸を得た。このタ
ンタル酸7.02を触媒として750℃で7時間反応さ
せた。結果を表−/に示した。
Example/Q Tantalum pentachloride 2! After dissolving in 0 d of ethanol to form ethoxide, a solution of potassium hydroxide in ethanol (
29/l) was added dropwise to form a precipitate. This precipitation/
After boiling and washing with N-MCI, the product was thoroughly boiled and washed with demineralized water and dried at 700°C to obtain tantalic acid. The reaction was carried out at 750°C for 7 hours using 7.02% of this tantalic acid as a catalyst. The results are shown in Table-/.

実施例//〜/2 硝酸クロム?水和物4toyを! 00 atの水に溶
かし、 4tN−アンモニア水を加え、得られた沈殿を
よく水洗し、700℃で乾燥させた(仮に0r(OH)
3と記す)。この0r(OH)3及び窒素気流中!0θ
℃で処理した酸化クロムそれぞれ八θVを触媒とし、実
施例/と同一条件で反応に用いた。結果を表−/に示し
た。
Example//~/2 Chromium nitrate? Hydrate 4 toys! The precipitate was dissolved in 00 at of water, 4tN-ammonia water was added, and the resulting precipitate was thoroughly washed with water and dried at 700°C (temporarily 0r(OH)).
3). In this 0r(OH)3 and nitrogen stream! 0θ
The reaction was carried out under the same conditions as in Example 1 using 8θV of chromium oxide treated at ℃ as a catalyst. The results are shown in Table-/.

/)Mho:  メシチルオキシド(二重結合異性体を
含む) 、2)DAA:  ジアセトンアルコール実施例/3 水酸化ジルコニウム(新日本金属社製)を300℃で焼
成して得られた触媒Q、!2とメチルエチルケトン20
m1とを内容積的700−のステンレス製オートクレー
ブに仕込み、750℃で7時間反応させた。反応液は冷
却後、ガスクロマトグラフィーによシ分析した。その結
果、メチルエチルケトンの転化率が/4t1%であシ、
生成物cv s−メチル−ターへブテン−3−オンの選
択率がり6.2チであった。
/) Mho: mesityl oxide (including double bond isomer), 2) DAA: diacetone alcohol Example/3 Catalyst Q obtained by calcining zirconium hydroxide (manufactured by Shin Nippon Metal Co., Ltd.) at 300°C ,! 2 and methyl ethyl ketone 20
m1 was charged into a stainless steel autoclave with an internal volume of 700 cm, and reacted at 750°C for 7 hours. After cooling, the reaction solution was analyzed by gas chromatography. As a result, the conversion rate of methyl ethyl ketone was /4t1%,
The selectivity for the product cv s-methyl-terhebuten-3-one was 6.2.

〔発明の効果〕〔Effect of the invention〕

本発明方法によシ有機合成原料、溶剤等として有用なα
、β−不飽和ケトンを経済的に製造することができる。
α useful as a raw material for organic synthesis, a solvent, etc. according to the method of the present invention
, β-unsaturated ketones can be produced economically.

特許出願人  三菱化成工業株式会社 代 理 人  弁理士 長谷用  − ほか/名Patent applicant: Mitsubishi Chemical Industries, Ltd. Representative Patent Attorney Hase - Others/names

Claims (1)

【特許請求の範囲】[Claims] (1)一般式( I ): R^1CH_2COR^2 (式中、R^1は水素又はアルキル基を表わし、R^2
はアルキル基を表わす。)で表わされるケトンを、 一般式(II): R^3CH_2COR^4 (式中、R^3は水素又はアルキル基を表わし、R^4
はアルキル基を表わす。)で表わされるケトンと脱水縮
合させて、 一般式(III): ▲数式、化学式、表等があります▼ (式中、R^1、R^2、R^3及びR^4は前記に同
じ)で表わされるα、β−不飽和ケトンを製造するに当
り、触媒として、セリウム、チタン、ジルコニウム、ハ
フニウム、タンタル及びクロムからなる群から選ばれた
少なくとも1種の金属の酸化物又は水酸化物を用いるこ
とを特徴とするα、β−不飽和ケトンの製造方法。
(1) General formula (I): R^1CH_2COR^2 (wherein, R^1 represents hydrogen or an alkyl group, and R^2
represents an alkyl group. ) is represented by the general formula (II): R^3CH_2COR^4 (wherein, R^3 represents hydrogen or an alkyl group, and R^4
represents an alkyl group. ) is dehydrated and condensed with a ketone represented by the general formula (III): ▲There are mathematical formulas, chemical formulas, tables, etc.▼ (In the formula, R^1, R^2, R^3 and R^4 are the same as above. ), an oxide or hydroxide of at least one metal selected from the group consisting of cerium, titanium, zirconium, hafnium, tantalum, and chromium as a catalyst. A method for producing an α,β-unsaturated ketone, the method comprising:
JP62253960A 1986-10-08 1987-10-08 Method for producing α, β-unsaturated ketone Expired - Lifetime JPH082831B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP24005686 1986-10-08
JP61-240056 1986-10-08

Publications (2)

Publication Number Publication Date
JPS63225329A true JPS63225329A (en) 1988-09-20
JPH082831B2 JPH082831B2 (en) 1996-01-17

Family

ID=17053826

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62253960A Expired - Lifetime JPH082831B2 (en) 1986-10-08 1987-10-08 Method for producing α, β-unsaturated ketone

Country Status (1)

Country Link
JP (1) JPH082831B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113578298A (en) * 2021-08-30 2021-11-02 合肥工业大学 Preparation of composite catalyst and application of composite catalyst in preparation of alpha, beta-unsaturated ketene by catalytic dehydration of acyloin compound

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113578298A (en) * 2021-08-30 2021-11-02 合肥工业大学 Preparation of composite catalyst and application of composite catalyst in preparation of alpha, beta-unsaturated ketene by catalytic dehydration of acyloin compound
CN113578298B (en) * 2021-08-30 2023-07-25 合肥工业大学 Preparation of composite catalyst and application of composite catalyst in preparation of alpha, beta-unsaturated ketene by catalytic dehydration of acyloin compound

Also Published As

Publication number Publication date
JPH082831B2 (en) 1996-01-17

Similar Documents

Publication Publication Date Title
JP4654516B2 (en) Ester production catalyst and ester production method
JPH05221912A (en) Preparation of 3-hydroxyalkanal with 3-12 carbon atoms
JPH04250854A (en) Catalytic composition for production of methacrylic acid by gas phase oxidation of methacrolein
US3342858A (en) Preparation of alkoxy-alkanoic acids by the oxidation of alkoxy-alkanols
EP0466128B1 (en) Method for producing a cycloolefin
US4232171A (en) Process for producing methyl formate
US4491637A (en) Cobalt-containing supported catalysts and their preparation
JPS63225329A (en) Production of alpha,beta-unsaturated ketone
JPS58146528A (en) Manufacture of asymmetrical fatty ketone
JPH11152245A (en) Production of unsaturated ketone
JP3238456B2 (en) Method for producing catalyst precursor for hydrogenation reaction, and method for producing alcohol using said catalyst precursor
JPH05168923A (en) Dehydration catalyst for aldol condensation, production thereof and production of aldol condensation dehydration product using the catalyst
JP3221047B2 (en) Aldol condensation dehydration catalyst, method for producing magnesium / aluminum composite compound, and method for producing aldol condensation dehydration product using the same
JPH04247041A (en) Process for separating cyclohexene from mixture of benzene with cyclohexane
JPS63225330A (en) Production of alpha,beta-unsaturated ketone
JPS60257837A (en) Catalyst for decomposing/reforming methanol and its preparation
EP0230286A2 (en) Method of synthesizing esters
TW434042B (en) Supported catalysts which contain a platinum metal and a process for preparing diaryl carbonates
JPS62258335A (en) Production of methyl isobutyl ketone
JPS58213727A (en) Preparation of alcohol
JPH0436739B2 (en)
JP2719928B2 (en) Method for stereoisomerizing methyl-delta-4-tetrahydrophthalic anhydride
JPH02718A (en) Production of aromatic alcohol
JP2000302714A (en) Production of trimethylhydroquinone
JP4219484B2 (en) Method for producing aliphatic nitrile

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080117

Year of fee payment: 12