JPH02718A - Production of aromatic alcohol - Google Patents

Production of aromatic alcohol

Info

Publication number
JPH02718A
JPH02718A JP63138559A JP13855988A JPH02718A JP H02718 A JPH02718 A JP H02718A JP 63138559 A JP63138559 A JP 63138559A JP 13855988 A JP13855988 A JP 13855988A JP H02718 A JPH02718 A JP H02718A
Authority
JP
Japan
Prior art keywords
catalyst
group
formula
hydrogen
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63138559A
Other languages
Japanese (ja)
Inventor
Ren Hasebe
長谷部 連
Yoshiharu Shimazaki
由治 嶋崎
Noboru Saito
昇 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Shokubai Co Ltd
Original Assignee
Nippon Shokubai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Shokubai Co Ltd filed Critical Nippon Shokubai Co Ltd
Priority to JP63138559A priority Critical patent/JPH02718A/en
Publication of JPH02718A publication Critical patent/JPH02718A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Catalysts (AREA)

Abstract

PURPOSE:To stably obtain the objective compound in high yield for a long period using a specific catalyst having properties of a solid acid and base in producing the subject compound by intermolecular catalytic hydrogen transfer reaction in the vapor phase of an aromatic aldehyde or ketone with a primary or secondary alcohol. CONSTITUTION:A compound expressed by formula I or II [R<1> to R<3> are H or 1-2C alkyl; R<4> is H or 1-4C alkyl or alkoxy; n is an integer of 0-3; X<1> and X<2> are formula III or H (provided that X<1> and X<2> are not H)] and a compound expressed by formula IV (R<5> and R<6> are H, alkyl, hydroxyalkyl, etc.; the total number of carbon atoms of R<5> and R<6> is 0-8) are subjected to intermolecular catalytic hydrogen transfer reaction in the vapor phase in the presence of a catalyst expressed by formula V (X is Ca, Sr, Ba, La, Ce, yttrium or Zr; Y is Si, B, Al, Nb, Ti or P; Z is alkaline metal; a to d are atomic ratios; when a is 1, b is 0-0.5; c is 0-0.1; d is a numerical value determined by the valences and atomic ratios of the respective elements) to advantageously afford the objective compound expressed by formula VI or VII useful as an intermediate for perfumes, coatings, medicines, agricultural chemicals, etc.

Description

【発明の詳細な説明】 (産業上の利用分野) (式中R1、R2およびR3は同一であるか、または異
なり各々、水素または炭県数1〜2のアルキル基を示し
、R4は水素または炭素数1〜4のアルキル基もしくは
アルコキシル基を示し、nはO〜3の範囲の整数を表わ
し、Xlおよび×2は同時に水素ではない。)で表わさ
れる芳香液アルデヒドまたは芳香族ケトンと 一般式 R6−Cト10ト1 (式中、R5およびR6
は各々、水素、アルキル基、ヒドロキシアルキル基、ア
ルケニル基、フェニル基およびベンジル基の群から選ば
れ、R5とR6の炭素数の和はO〜8である。)で表わ
される一級または二級アルコールとの間の分子間接触気
相水素移動反応において固体酸塩基性質を有する触媒を
用いで相当する芳香族アルコールを製造する方法に関す
るものである。
Detailed Description of the Invention (Industrial Application Field) (In the formula, R1, R2 and R3 are the same or different and each represents hydrogen or an alkyl group having 1 to 2 carbon atoms, and R4 is hydrogen or represents an alkyl group or alkoxyl group having 1 to 4 carbon atoms, n represents an integer in the range of 0 to 3, and Xl and x2 are not hydrogen at the same time. R6-Cto10to1 (wherein, R5 and R6
are each selected from the group of hydrogen, an alkyl group, a hydroxyalkyl group, an alkenyl group, a phenyl group, and a benzyl group, and the sum of the carbon numbers of R5 and R6 is 0 to 8. This invention relates to a method for producing the corresponding aromatic alcohol using a catalyst having solid acid-base properties in an intermolecular catalytic gas phase hydrogen transfer reaction with a primary or secondary alcohol represented by

該反応は次の式で示される。The reaction is shown by the following formula.

I X2 芳香族アルコール類はその利用分野が広く、香料、塗料
、医IO薬等の分野において重要な原料または中間体と
して利用されている有用な化合物である。
I X2 Aromatic alcohols have a wide range of applications and are useful compounds that are used as important raw materials or intermediates in fields such as perfumes, paints, and pharmaceuticals.

(従来技術) 従来、芳香族アルデヒドまたは芳香族ケトンから対応す
る芳香族アルコールを製造する方法としては、例えば、
液相反応においてはパラジウム触媒を用い、水素添加に
より芳香族アルコールを製造する方法(特開昭51−8
6432丹、特開昭57−26634号)、ルテニウム
触媒を用い芳香族アルデヒドとホルマリンを交差力ニツ
ツアーロ反応させ芳香族アルコールを製造する方法(特
開昭57−136533号)などが開示されている。ま
た、芳香族カルボン酸およびその誘導体から対応する芳
香族アルコールを製造する方法も開示されている。例え
ば、レニウム触媒を用い、水素還元により芳香族アルコ
ールを製造する方法(特開昭57−32237号)、電
解還元により芳香族アルコールを製造する方法(特開昭
58−117887丹)などが聞丞されている。
(Prior Art) Conventionally, as a method for producing a corresponding aromatic alcohol from an aromatic aldehyde or an aromatic ketone, for example,
A method for producing aromatic alcohols by hydrogenation using a palladium catalyst in a liquid phase reaction (Japanese Patent Laid-Open No. 51-8
6432 Tan, Japanese Patent Application Laid-open No. 57-26634), and a method for producing an aromatic alcohol by subjecting an aromatic aldehyde and formalin to a cross-force nitzaro reaction using a ruthenium catalyst (Japanese Patent Application Laid-open No. 136533-1982). Also disclosed are methods for producing the corresponding aromatic alcohols from aromatic carboxylic acids and their derivatives. For example, methods for producing aromatic alcohols by hydrogen reduction using a rhenium catalyst (Japanese Unexamined Patent Publication No. 57-32237) and methods for producing aromatic alcohols by electrolytic reduction (Japanese Unexamined Patent Publications No. 117887-1988) are popular. has been done.

これらの製造方法は一般に10〜80 K’J / c
i Gの高圧反応条件を及するばかりが、反応後、溶媒
あるいは添加物等と生成した芳香族アルコールとを分離
する必要がある。一方、発明と同一分野である芳香族ア
ルデヒドまたは芳香液ケトンとアルコールとの水素移動
反応により相当する芳香族アルコールを製造する方法は
、液相または気相において、触媒として含水酸化ジルコ
ニウムを用いる方法(特開昭61−204143号)あ
るいはチタン、スズ、鉄、アルミニウム、セリウムおよ
びニオブから選ばれる1種または2種以上の金属の含水
酸化物を用いる方法(特開昭62−252737号)が
開示されている。同球に水素移動反応により、気相にお
いてマグネシウムを含む2種以上の元素(酸素は除く)
よりなる触媒を用いて芳香族アルコールを製造する方法
(特開昭62−30552号)が開示されている。
These manufacturing methods generally produce 10-80 K'J/c
Although the high-pressure reaction conditions of iG are applied, it is necessary to separate the solvent or additives from the aromatic alcohol produced after the reaction. On the other hand, a method for producing a corresponding aromatic alcohol by a hydrogen transfer reaction between an aromatic aldehyde or an aromatic liquid ketone and an alcohol, which is in the same field as the invention, is a method using hydrous zirconium oxide as a catalyst in the liquid phase or gas phase. JP-A No. 61-204143) or a method using a hydrous oxide of one or more metals selected from titanium, tin, iron, aluminum, cerium and niobium (JP-A No. 62-252737). ing. Two or more elements including magnesium (excluding oxygen) in the gas phase by a hydrogen transfer reaction in the same sphere.
A method for producing an aromatic alcohol using a catalyst (Japanese Unexamined Patent Publication No. 62-30552) has been disclosed.

(発明が解決しようとする問題点) 芳香族アルコールを製造する場合、液相水素化反応では
高価な金属を含む触媒を使用し、触媒は溶媒、生成物等
と分離・回収する必要がある。また高圧下で水素を反応
させることによる危険性も伴なう。
(Problems to be Solved by the Invention) When producing aromatic alcohols, a catalyst containing an expensive metal is used in the liquid phase hydrogenation reaction, and the catalyst needs to be separated and recovered from the solvent, products, etc. There is also the danger of reacting hydrogen under high pressure.

一方、気相反応により芳香族アルコールを合成すること
は、液相反応のように、多段階のプロセスを必要とせず
、工業的に生産する場合、非常に有利である。
On the other hand, synthesizing aromatic alcohols by gas phase reaction does not require multi-step processes like liquid phase reaction, and is very advantageous for industrial production.

しかしながら、芳香族アルコールを製造する方法に限れ
ば、従来技術の分子間接触気相水素移動反応における触
媒、例えば含水酸化ジルコニウム触媒(特開昭61−2
04143号)の使用温度は75〜110℃と低く、一
般に原料芳香族アルデヒドが高沸点物であるため、原料
濃度の向上が難しく、その場合の生成芳香液アルコール
の収率、触媒寿命に関して問題がある。
However, as far as the method for producing aromatic alcohol is concerned, catalysts used in conventional intermolecular catalytic gas phase hydrogen transfer reactions, such as hydrous zirconium oxide catalysts (Japanese Unexamined Patent Publication No. 61-2012)
04143) is used at a low temperature of 75 to 110°C, and the raw material aromatic aldehyde is generally a high-boiling substance, so it is difficult to improve the raw material concentration, and in that case, there are problems with the yield of the aromatic liquid alcohol produced and the catalyst life. be.

また、特開昭62−30552号に開示されているマグ
ネシウム系触媒は初期活性に優れているものの触媒寿命
の点で未だ改善される余地がある。
Further, although the magnesium-based catalyst disclosed in JP-A-62-30552 has excellent initial activity, there is still room for improvement in terms of catalyst life.

(発明の目的) 本発明の目的は、芳香族アルデヒドを、1級または2級
アルコールを水素源として、分子間接触気相水素移動反
応により対応する芳香族アルコールを高収率で、長期に
わたって安定的に製造する方法を提供することにある。
(Objective of the Invention) The object of the present invention is to convert an aromatic aldehyde into a corresponding aromatic alcohol in high yield and stably for a long period of time by an intermolecular catalytic gas phase hydrogen transfer reaction using a primary or secondary alcohol as a hydrogen source. The objective is to provide a method for manufacturing the same.

(問題を解決するための手段) 本発明者らは、従来の分子間接触気相水素移動反応用触
媒の欠点を考慮し、新触媒の開発に務めた。その結果、
カルシウム、ストロンチウム、バリウム、ランタン、セ
リウム、イツトリウムおよびジルコニウムからなる群か
ら選ばれた少なくとも−・種の金属酸化物が、目的とす
る芳香族アルコールの製造に有効であることを発見した
。さらに必要に応じて酸性成分として、ケイ素、ホウ素
、アルミニウム、ニオブ、チタンおよびリンからなる群
から選ばれた少なくとも一種を、塩基成分どしてアルカ
リ金民を含ませることにより、触媒の酸塩基岱および酸
塩基強度の最適化、触媒の機械的強度および表面積を向
上させることができた。
(Means for Solving the Problems) The present inventors took into consideration the shortcomings of conventional catalysts for intermolecular catalytic gas phase hydrogen transfer reactions and endeavored to develop a new catalyst. the result,
It has been discovered that at least one metal oxide selected from the group consisting of calcium, strontium, barium, lanthanum, cerium, yttrium, and zirconium is effective in producing the desired aromatic alcohol. Furthermore, if necessary, at least one selected from the group consisting of silicon, boron, aluminum, niobium, titanium, and phosphorus may be added as an acidic component, and an alkali metal may be added as a base component to increase the acid base of the catalyst. and optimization of acid-base strength, which could improve the mechanical strength and surface area of the catalyst.

そして、原料の芳香族アルデヒドまたは芳香族ケトンを
高濃度で供給でき、しかも、高収率で長期にわたって安
定的に対応する芳香族アルコールを製造できる触媒の開
発に成功し、本発明を完成するに致った。また、本発明
によれば、原料の1級または2級アルコールの種類をか
えることにより、有用なアルデヒド又はケトンをも同時
に製造しうる利点を兼ね備えており、工業的にも非常に
有利な方法でもある。
They succeeded in developing a catalyst that can supply the raw material aromatic aldehyde or aromatic ketone at a high concentration and also produce the corresponding aromatic alcohol in a high yield and stably over a long period of time, and completed the present invention. It happened. Furthermore, according to the present invention, useful aldehydes or ketones can also be produced at the same time by changing the type of primary or secondary alcohol used as a raw material, and this method is also very advantageous from an industrial perspective. be.

この反応に用いられる芳香族アルデヒドまたは芳香液ケ
トンとしては一般式 (式中R1、R2およびR3は同一であるが、または異
なり各々、水素または炭素数1〜2のアルキル基を示し
、R4は炭素数1〜4のアルキル基もしくはアルコキシ
ル基を示し、nは0〜3の範および水素の群から選ばれ
るが、同時に水素ではない。)で表わされ、これらの具
体例としては、例えば(a)ベンズアルデヒド、(b)
アニスアルデヒド、(C)フェニルアセトアルデヒド、
(d)m−トルアルデヒド、(e)クミンアルデヒド、
(f)シンナムアルデヒド、(Q)アトロバアルデヒド
および(h)アセトフェノン等があげられる。これらは
各々(a′ )ベンジルアルコール、(b′)アニスア
ルコール、(a′)β−フェニルエチルアルコール、(
d’)3−メチルベンジルアルコール、(e′)クミル
アルコール、(f′)シンナミルアルコール、(g’)
2−フェニル−2−プロペン−1−オールおよび(h′
)α−フェニルエチルアルコール等に転化される。
The aromatic aldehyde or aromatic liquid ketone used in this reaction has the general formula (wherein R1, R2 and R3 are the same or different, each represents hydrogen or an alkyl group having 1 to 2 carbon atoms, and R4 is a carbon represents an alkyl group or alkoxyl group of numbers 1 to 4, n is selected from the range of 0 to 3 and the group of hydrogen, but is not hydrogen at the same time), and specific examples thereof include (a ) benzaldehyde, (b)
Anisaldehyde, (C) phenylacetaldehyde,
(d) m-tolualdehyde, (e) cuminaldehyde,
Examples include (f) cinnamaldehyde, (Q) atrobaldehyde, and (h) acetophenone. These are (a') benzyl alcohol, (b') anis alcohol, (a') β-phenylethyl alcohol, (
d') 3-methylbenzyl alcohol, (e') cumyl alcohol, (f') cinnamyl alcohol, (g')
2-phenyl-2-propen-1-ol and (h'
) It is converted into α-phenylethyl alcohol, etc.

一方、水素源として用いる1級あるいは2級アルコール
としては、 一般式 R6−CHOH(式中、R5およびR6は各々
水素、アルキル基、ヒドロキシアルキル基、アルケニル
基、フェニル基およびベンジル基の群から選ばれ、R5
とR6の炭素数の和は0〜8である。)で表わされ、こ
れらの具体例としては、例えばメタノール、エタノール
、プロパツール、イソプロパツール、n−ブチルアルコ
ール、ベンジルアルコール、β−フェニルエチルアルコ
ール等のモノアルコール類およびエチレングリコール、
1,4−ブタンジオール等のグリコール類があげられる
On the other hand, the primary or secondary alcohol used as a hydrogen source has the general formula R6-CHOH (wherein R5 and R6 are each selected from the group of hydrogen, an alkyl group, a hydroxyalkyl group, an alkenyl group, a phenyl group, and a benzyl group). Re, R5
The sum of the carbon numbers of and R6 is 0 to 8. ), and specific examples thereof include monoalcohols such as methanol, ethanol, propatool, isopropanol, n-butyl alcohol, benzyl alcohol, and β-phenylethyl alcohol; and ethylene glycol.
Examples include glycols such as 1,4-butanediol.

本発明によれば、この様な分子間接触気相水素移動反応
において前述の様な従来の問題点を十分に解決し、目的
の芳香族アルコールを高収率で、しかも長期にわたり安
定して製造しうる触媒として、−形式XaYbZcOd
 (ここでXはカルシウム、ストロンチウム、バリウム
、ランタン、セリウム、イツトリウムおよびジルコニラ
lいの群から選ばれる一種またはそれ以上の元素を示し
、Yはケイ素、ホウ素、アルミニウム、ニオブ、チタン
およびリンの群から選ばれる一種またはそれ以上の元素
を示し、Zはアルカリ金腐の群から選ばれる一種または
それ以上の元素を示す。alb。
According to the present invention, the above-mentioned conventional problems in such an intermolecular catalytic gas phase hydrogen transfer reaction are fully solved, and the desired aromatic alcohol can be produced stably in high yield over a long period of time. As a possible catalyst, -form XaYbZcOd
(Here, X represents one or more elements selected from the group of calcium, strontium, barium, lanthanum, cerium, yttrium, and zirconyl, and Y represents one or more elements selected from the group of silicon, boron, aluminum, niobium, titanium, and phosphorus. Z represents one or more elements selected from the group of alkali metal rots. alb.

Cおよびdはそれぞれの元素の原子比を表し、a=1の
とき、b=o〜0.5好ましくは0〜0.1、C=O〜
0.1好ましくは0−0.02、dは各′元素の原子価
および原子比により定まる数値を表わず。)で表わされ
る触媒が提供される。
C and d represent the atomic ratio of each element, when a=1, b=o~0.5, preferably 0~0.1, C=O~
0.1, preferably 0-0.02, and d does not represent a numerical value determined by the valence and atomic ratio of each element. ) is provided.

本発明の触媒を調製するには、各柵添加元素(X1Yお
よびZ成分)の酸化物、水酸化物、硝酸塩、オキシ硝酸
塩、炭酸塩等の原料が使用できる。
To prepare the catalyst of the present invention, raw materials such as oxides, hydroxides, nitrates, oxynitrates, carbonates, etc. of each fence addition element (X1Y and Z component) can be used.

本発明による触媒の調製法としては、例えば各種原料を
水中に溶解もしくは懸濁せしめ、加熱攪拌、濃縮し、乾
燥後、成型し、さらに焼成を経て触媒とする方法;ある
いは各種原料を水中に溶解させ、アンモニア水の添加に
より水酸化物にした後、濾過、水洗を行ない、乾燥後、
成型し、ざらに焼成を経て触媒とする方法:さらには各
種元素の酸化物または水酸化物を粉体のまま混合し、適
当な成型助剤(例えば、水、アルコール等)を添加後、
成型し、乾燥後、焼成を経て触媒とする方法な・どがあ
げられる。
The method for preparing the catalyst according to the present invention includes, for example, dissolving or suspending various raw materials in water, heating and stirring, concentrating, drying, molding, and further calcination to obtain a catalyst; or dissolving various raw materials in water. After making it into hydroxide by adding ammonia water, filtering and washing with water, and drying,
A method of molding and rough calcination to make a catalyst: Furthermore, oxides or hydroxides of various elements are mixed in powder form, and after adding an appropriate molding aid (e.g., water, alcohol, etc.),
Examples include molding, drying, and calcination to use as a catalyst.

なお、触媒の焼成温度については、用いる原料の種類に
もよるが、300〜800℃の広い範囲をとれ、好まし
くは400〜700℃の範囲で−ある。
The firing temperature of the catalyst may vary widely from 300 to 800°C, preferably from 400 to 700°C, depending on the type of raw material used.

本発明の触媒を、芳香族アルデヒドまた1よ芳香族ケト
ンと、1級あるいは2級アルコールとの分子間接触気相
水素移動反応に用いた場合、原料アルデヒドまたはケト
ン濃度が高くても触媒は非常に高い活性を示し、また目
的の芳香族アルコールへの選択率も著しく高いものであ
った。しかも、この反応を長時間連続して行なった場合
でも、触媒の活性劣化は全く認められず、活性、選択性
ともに安定であり、従って、目的とする芳香族アルコー
ルの収率は著しく高い。
When the catalyst of the present invention is used in an intermolecular contact gas phase hydrogen transfer reaction between an aromatic aldehyde or a mono-aromatic ketone and a primary or secondary alcohol, the catalyst is very strong even if the raw material aldehyde or ketone concentration is high. It showed high activity and also had an extremely high selectivity to the target aromatic alcohol. Moreover, even when this reaction is continuously carried out for a long period of time, no deterioration in the activity of the catalyst is observed, and both the activity and selectivity are stable, and therefore the yield of the target aromatic alcohol is extremely high.

なお、触媒性能を公知の水素移動反応用触媒、例えば特
開11f?62−30552号のMg1Sio、1Nb
o、olKo、oloxと比較したところ、本発明によ
る触媒性能は1000時間経過した時点で明らかに上回
るものであった。
Note that the catalytic performance was determined using a known hydrogen transfer reaction catalyst, such as JP-A-11F? No. 62-30552 Mg1Sio, 1Nb
When compared with o, olKo, and olox, the catalyst performance according to the present invention was clearly superior after 1000 hours.

本発明の触媒を使用するにあたり、反応器は固定床流通
型および流動床型のいずれも使用できる。
When using the catalyst of the present invention, either a fixed bed flow type reactor or a fluidized bed type reactor can be used.

原料ガスは、原料芳香族アルデヒドまたは芳香族ケトン
と1級あるいは2級アルコールとのモル比が1:0.5
〜20の範囲、好ましくは1:1〜10の範囲であるよ
うな組成のものを必要に・応じ、窒素、ヘリウム、アル
ゴンなどの不活性ガスで希釈し、原料ガス濃度が1〜1
00容量%、好ましくは2〜80容借%となるように用
いる。
The raw material gas has a molar ratio of raw material aromatic aldehyde or aromatic ketone to primary or secondary alcohol of 1:0.5.
~20, preferably in the range of 1:1 to 10, is diluted with an inert gas such as nitrogen, helium, or argon as necessary to obtain a raw material gas concentration of 1 to 1.
00% by volume, preferably 2 to 80% by volume.

反応は、通常、常圧で行なうが、必要に応じて加圧また
は減圧下で行なうこともできる。
The reaction is usually carried out at normal pressure, but can also be carried out under increased pressure or reduced pressure if necessary.

反応温度は200〜450℃、好ましくは250〜40
0℃の範囲である。原料ガスの空間速度は原料ガス濃度
により異なるが100〜5000h「−1好ましくは5
00〜3000hr−1の範囲が適当である。
The reaction temperature is 200 to 450°C, preferably 250 to 40°C.
It is in the range of 0°C. The space velocity of the raw material gas varies depending on the raw material gas concentration, but is 100 to 5000 h "-1, preferably 5
A range of 00 to 3000 hr-1 is suitable.

以下、実施例において本発明を具体的に述べるが、実施
例中の転化率および選択率については、次の定義にした
がうものとする。
Hereinafter, the present invention will be specifically described in Examples, and the conversion rate and selectivity in the Examples shall be in accordance with the following definitions.

転化率(χ) = 消費された原料芳香族アルデヒ ドまたは芳香族ケトンのモル数 選択率(%) 生成した芳香族 アルコールのモル数 実施例1 水酸化カルシウムCa (OH)225gを水100d
に懸濁させ、充分に攪拌しながら90℃で加熱濃縮し、
これを温浴上で悉発乾固した後、外径5M、高さ5In
Inの円柱状に成型し、空気雰囲気下600℃で2時間
焼成し触媒とした。
Conversion rate (χ) = Number of moles of consumed raw material aromatic aldehyde or aromatic ketone Selectivity (%) Number of moles of aromatic alcohol produced Example 1 225 g of calcium hydroxide Ca (OH) was mixed with 100 d of water
Suspend it in , heat and concentrate at 90°C while stirring thoroughly,
After drying this in a warm bath, the outer diameter was 5M and the height was 5In.
It was molded into a cylindrical shape of In and fired at 600° C. for 2 hours in an air atmosphere to obtain a catalyst.

この触媒30−を内径20a++のステンレス製0字管
に充てんし、反応温度300℃、ベンズアルデヒド:イ
ソブ口パノール:窒素=10ニア0:20の原料ガスを
空間速度1500hr−1(STP)で連続反応を行な
った。反応生成物は、ガスクロマトグラフにより分析し
、表−1に示す結果を得た。
This catalyst 30- was filled in a stainless steel O-tube with an inner diameter of 20a++, and a continuous reaction was carried out at a reaction temperature of 300°C and a raw material gas of benzaldehyde: isobutylene: nitrogen = 10:0:20 at a space velocity of 1500 hr-1 (STP). I did it. The reaction product was analyzed by gas chromatography, and the results shown in Table 1 were obtained.

実施例2 実施例1の触媒を用い、アニスアルデヒドとイソプロパ
ツールを反応原料として、実施例1と同じ反応条件下で
連続反応を行ない、表−1に示す結果を得た。
Example 2 Using the catalyst of Example 1 and using anisaldehyde and isopropanol as reaction raw materials, a continuous reaction was carried out under the same reaction conditions as in Example 1, and the results shown in Table 1 were obtained.

実施例3 水酸化カルシウム22.5g、水酸化バリウムBa (
OH)2 −8820 10.64gを水100dに懸
濁させ、実施fIi41と同様に調製して酸素を除く原
子比でCao、9Bao、tなる組成の触媒を得た。
Example 3 Calcium hydroxide 22.5g, barium hydroxide Ba (
10.64 g of OH)2-8820 was suspended in 100 d of water and prepared in the same manner as in Example fIi41 to obtain a catalyst having an atomic ratio of Cao, 9Bao, and t excluding oxygen.

この触媒を用いて、反応温度350℃、フェニルアセト
アルデヒド:n−ブチルアルコール:窒素−5: 30
 : 65の容量比の原料ガスを空間速度1000hr
”(STP)t’通し、連続反応を行ない、表−1に示
す結果を得た。
Using this catalyst, the reaction temperature was 350°C, and the ratio of phenylacetaldehyde:n-butyl alcohol:nitrogen was 5:30.
: Raw material gas with a volume ratio of 65 at a space velocity of 1000 hr
"(STP)t', continuous reaction was carried out, and the results shown in Table 1 were obtained.

実施例4 水酸化カルシウム25g、無水ケイits i 020
、40 gおよび水酸化カリウムKOf−10,19g
を水100−に懸濁させ、実施例1と同様に調製して、
酸素を除く原子比でCa1.oSio、02K o、 
alなる組成の触媒を得た。
Example 4 Calcium hydroxide 25g, anhydrous silicon its i 020
, 40 g and potassium hydroxide KOf-10,19 g
was suspended in 100% of water and prepared in the same manner as in Example 1,
In terms of atomic ratio excluding oxygen, Ca1. oSio, 02K o,
A catalyst having a composition of al was obtained.

この触媒を用いて、反応温度300℃、アニスアルデヒ
ド:エタノール:窒素−10ニア0:20の容量比の原
料ガスを空間速度1500hr−1(STP)で通し、
連続反応を行ない、表−1に示す結果を得た。
Using this catalyst, a reaction temperature of 300°C and a raw material gas with a volume ratio of anisaldehyde:ethanol:nitrogen-10nia 0:20 were passed at a space velocity of 1500 hr-1 (STP).
Continuous reactions were carried out, and the results shown in Table 1 were obtained.

実施例5 実施例4の触媒を用いて、反応温度300℃、m−トル
アルデヒド=1,4−ブタンジオール:窒素−5:20
ニア5の容量比の原料ガスを空間速度1500hr−1
で通し、連続反応を行ない、表−1に示す結果を得た。
Example 5 Using the catalyst of Example 4, the reaction temperature was 300°C, m-tolualdehyde=1,4-butanediol:nitrogen-5:20
The raw material gas with a volume ratio of near 5 is heated to a space velocity of 1500 hr-1.
A continuous reaction was carried out, and the results shown in Table 1 were obtained.

実施例6 水酸化ストロンチウム3r (OH)2 ・8H202
5gを水100−に懸濁させ、実施例1と同様にwI製
して触媒とした。
Example 6 Strontium hydroxide 3r (OH)2 ・8H202
5 g was suspended in 100 ml of water, and prepared in the same manner as in Example 1 to obtain a catalyst.

この触媒を用いて、実施例2と同じ反応条件下で連続反
応を行ない表−1に示す結果を得た。
Using this catalyst, continuous reactions were carried out under the same reaction conditions as in Example 2, and the results shown in Table 1 were obtained.

実施例7 水酸化ストロンチウム26.58 g 、酸化ホウ素8
2030.07SF、水酸化ナトリウムNaOH0,0
8gを水10011!l!に懸濁させ、実施例1と同様
に調製して、酸素を除く原子比でS r i、 。
Example 7 Strontium hydroxide 26.58 g, boron oxide 8
2030.07SF, sodium hydroxide NaOH0,0
8g of water 10011! l! It was prepared in the same manner as in Example 1, with an atomic ratio of S r i, excluding oxygen.

8 o、 cn N a 0.02なる組成の触媒を得
た。
A catalyst having a composition of 8 o, cn Na 0.02 was obtained.

この触媒を用いて、反応温度350℃、クミンアルデヒ
ド:2−ブタノール:窒素−5: 30 :65の容量
比の原料ガスを空間速度1500hr”で通し、連続反
応を行ない、表−1に示す結果を得た。
Using this catalyst, a continuous reaction was carried out at a reaction temperature of 350°C and a raw material gas with a volume ratio of cuminaldehyde:2-butanol:nitrogen-5:30:65 passed through at a space velocity of 1500 hr.The results are shown in Table 1. I got it.

実施例8 水酸化ストロンチウム26.58g、無水ケイ酸0.1
2g、硝酸セシウムCsNO30,19gを水100#
!i!に懸濁させ、実施例1と同様に調製して、酸素を
除く原子比で3 rl、o S i o、o2cso、
olなる組成の触媒を得た。
Example 8 Strontium hydroxide 26.58g, silicic anhydride 0.1
2g, cesium nitrate CsNO30, 19g in water 100#
! i! It was prepared in the same manner as in Example 1, and the atomic ratio excluding oxygen was 3 rl, o Si o, o2cso,
A catalyst having the composition ol was obtained.

この触媒を用いて、反応温度300℃、アニスアルデヒ
ド:メタノール:窒素=5:30:65の容り比の原料
ガスを空間速度1500hr”で通し、連続反応を行な
い表−1に示す結果を得、た。
Using this catalyst, a continuous reaction was carried out at a reaction temperature of 300°C and a raw material gas having a volume ratio of anisaldehyde:methanol:nitrogen = 5:30:65 at a space velocity of 1500 hr'', and the results shown in Table 1 were obtained. ,Ta.

実施例9 水酸化ストロンチウム26.58g、酸化アルミニウム
Aj 20s O,15g、水酸化カリウム0、06 
gを水100dに懸濁させ、実施例1と同様に調製して
、酸素を除く原子比で、S i t 。
Example 9 Strontium hydroxide 26.58g, aluminum oxide Aj 20s O, 15g, potassium hydroxide 0.06
g was suspended in 100 d of water, prepared in the same manner as in Example 1, and S i t in the atomic ratio excluding oxygen.

AJo、o3Ko、olなる組成の触媒を得た。Catalysts having the following compositions were obtained: AJo, o3Ko, and ol.

この触媒を用いて、m−トルアルデヒドとイソプロパツ
ールを反応原料として、実7J例3と同じ反応条件下で
連続反応を行ない、表−1に示す結果を得た。
Using this catalyst, a continuous reaction was carried out using m-tolualdehyde and isopropanol as reaction materials under the same reaction conditions as in Example 3, and the results shown in Table 1 were obtained.

実施例10 硝’ttランタンLa(NO3)3 ・6日205(1
,85%リンMO,27gを水200teに溶解し、実
施例1と同様に1lll製して酸素を除く原子比で、L
a1.oPo、o2なる組成の触媒を得た。
Example 10 Ni'tt Lanthanum La (NO3) 3 ・6 days 205 (1
, 85% phosphorus MO, 27 g was dissolved in 200 te of water, and 1 lll was prepared in the same manner as in Example 1, and the atomic ratio excluding oxygen was L.
a1. A catalyst having the composition oPo, o2 was obtained.

この触媒を用いて、実施例3と同じ反応条件下で連続反
応を行ない、表−1に示す結果を得た。
Using this catalyst, a continuous reaction was carried out under the same reaction conditions as in Example 3, and the results shown in Table 1 were obtained.

実施例11 硝酸ランタン43.30g、水酸化カルシウム7゜41
g、酸化チタンTiO21,60gを水200Idに懸
濁させ、実施例1と同様に調製して、酸素を除く原子比
でLao、s C80,5T + o、1なる組成の触
媒を得た。
Example 11 Lanthanum nitrate 43.30g, calcium hydroxide 7°41
1.60 g of titanium oxide TiO2 was suspended in 200 Id of water and prepared in the same manner as in Example 1 to obtain a catalyst having an atomic ratio of Lao, s C80,5T + o, 1, excluding oxygen.

この触媒を用いて、フェニルアセトアルデヒドとベンジ
ルアルコールを反応原料として、実施例3と同じ反応条
件下で連続反応を行ない、表−1に示す結果を得た。
Using this catalyst, a continuous reaction was carried out using phenylacetaldehyde and benzyl alcohol as reaction materials under the same reaction conditions as in Example 3, and the results shown in Table 1 were obtained.

実施例12 実施例11においてランタンの代わりにセリウムを用イ
TCe0.5 Cao、s T i 0.1なる組成の
触媒を得た。
Example 12 In Example 11, cerium was used instead of lanthanum to obtain a catalyst having a composition of TCe0.5 Cao, s T i 0.1.

この触媒を用いて、実施例11と同じ反応原料、反応条
件下で連続反応を行ない、表−1に示す結果を得た。
Using this catalyst, continuous reactions were carried out under the same reaction materials and reaction conditions as in Example 11, and the results shown in Table 1 were obtained.

実施例13 硝酸ジルコニルZrO(NO3)2 ・2H205C1
を水200dに溶解し、28%アンモニア水で加水分解
づることにより沈殿を得る。この沈殿を濾別水洗し、1
20℃で乾燥後、外径5 mm 。
Example 13 Zirconyl nitrate ZrO(NO3)2 2H205C1
was dissolved in 200 d of water and hydrolyzed with 28% aqueous ammonia to obtain a precipitate. This precipitate was filtered, washed with water,
After drying at 20°C, the outer diameter is 5 mm.

高さ5門の円柱状に成型し、空気雰囲気中、600℃で
3時間焼成し触媒とした。この触媒を用いて、反喋瀉度
350℃、アニスアルデヒド:n−ブチルアルコール:
窒素=5:50:45の容立比の原料ガスを空間速度1
500hr”(3TP)で通し、連続反応を行ない表−
1に示す結果を得た。
It was molded into a cylindrical shape with a height of 5 gates and fired at 600° C. for 3 hours in an air atmosphere to obtain a catalyst. Using this catalyst, the repulsion degree was 350°C, anisaldehyde: n-butyl alcohol:
Nitrogen = 5:50:45 volume ratio raw material gas with space velocity 1
500 hr" (3TP) to carry out continuous reaction.
The results shown in 1 were obtained.

実施例14 硝酸ジルコニル50g、酸化ホウ素0.139、水酸化
ナトリウム0.159を水200dに溶解し、以下、実
施例13と同様に調製して、酸素を除く原子比でZ r
 1.OBo、02N ao、o2なる組成の触媒を得
た。この触媒を用いて、ベンズアルデヒドとエタノール
を原料として、実施例1と同じ反応条件下で連続反応を
行ない、表−1に示す結果を得た。
Example 14 50 g of zirconyl nitrate, 0.139 g of boron oxide, and 0.159 g of sodium hydroxide were dissolved in 200 d of water and prepared in the same manner as in Example 13 to obtain Z r in an atomic ratio excluding oxygen.
1. A catalyst having a composition of OBo, 02N ao, and o2 was obtained. Using this catalyst, a continuous reaction was carried out using benzaldehyde and ethanol as raw materials under the same reaction conditions as in Example 1, and the results shown in Table 1 were obtained.

実施例15 水酸化カルシウム22.5 g、三酸化イツトリウムY
2O33,81g、五酸化ニオブNb2050、90 
g水酸化リチウムL10日−H2C0,14gを水10
0−に懸濁させ、実施例1と同様に調製して、酸素を除
く原子比でCao、9Yo、1Nbo、o2Lio、o
lなる組成の触媒を得た。
Example 15 Calcium hydroxide 22.5 g, yttrium trioxide Y
2O33, 81g, niobium pentoxide Nb2050, 90
g Lithium hydroxide L10 days - H2C0,14g water 10 days
Cao, 9Yo, 1Nbo, o2Lio, o
A catalyst having a composition of 1 was obtained.

この触媒を用いて、アニスアルデヒドとエチレングリコ
ールを反応原料として実施例1と同じ反応条件下で連続
反応を行ない、表−1に示す結果を得た。
Using this catalyst, a continuous reaction was carried out using anisaldehyde and ethylene glycol as reaction raw materials under the same reaction conditions as in Example 1, and the results shown in Table 1 were obtained.

実施例16 実茄例1の触媒を用い、アセトフェノンとイソプロパツ
ールを反応原料として実施例1と同じ反応条件下で連続
反応を行ない、表−1に示す結果を得た。
Example 16 A continuous reaction was carried out using the catalyst of Example 1 and acetophenone and isopropanol as reaction materials under the same reaction conditions as in Example 1, and the results shown in Table 1 were obtained.

実施例17 実施例4の触媒を用い、シンナムアルデヒドとイソプロ
パツールを反応原料として実施例1と同じ反応条件下で
連続反応を行ない、表−1に示す結果を得た。
Example 17 Using the catalyst of Example 4 and using cinnamaldehyde and isopropanol as reaction raw materials, a continuous reaction was carried out under the same reaction conditions as in Example 1, and the results shown in Table 1 were obtained.

実施例18 実施例4の触媒を用い、アトロバアルデヒドとイソプロ
パツールを反応原料として実施例1と同じ反応条件下で
連続反応を行ない、表−1に示す結果を得た。
Example 18 Using the catalyst of Example 4 and using atrobaldehyde and isopropanol as reaction raw materials, a continuous reaction was carried out under the same reaction conditions as in Example 1, and the results shown in Table 1 were obtained.

比較例1 水酸化マグネシウムMO(OH)225gと酸化ホウ素
0.6gを水100にに懸濁させ、実施例1と同様に調
製して、酸素を除く原子比でMQl、0BO,Oflな
る組成の触媒を得た。
Comparative Example 1 225 g of magnesium hydroxide MO (OH) and 0.6 g of boron oxide were suspended in 100 g of water, prepared in the same manner as in Example 1, and had a composition of MQl, 0BO, Ofl in atomic ratio excluding oxygen. I got a catalyst.

この触媒は特開昭62−30552号の実施例に開示さ
れた触媒と同組成のものである。この触媒を用いて実施
例1と同様の反応を行ない、表−2に示す結果を得た。
This catalyst has the same composition as the catalyst disclosed in the Examples of JP-A-62-30552. Using this catalyst, the same reaction as in Example 1 was carried out, and the results shown in Table 2 were obtained.

比較例2 水酸化マグネシウム25g、無水ケイ!2.59グ、五
酸化ニオブ0.57gおよび水酸化カリウム0、24 
gを水100ai!に懸濁させ、実施例1と同様にW4
製して酸素を除(原子比でMOl、03io、1N b
o、olKo、olなる組成の触媒を得た。コノ触媒は
特開昭62−30552号の実りに開示された触媒と同
組成のものである。この触媒を用いて実施例4と同様の
反応を行ない、表−2に示す結果を得た。
Comparative Example 2 Magnesium hydroxide 25g, anhydrous silicon! 2.59 g, niobium pentoxide 0.57 g and potassium hydroxide 0.24
g to 100 ai of water! W4 in the same manner as in Example 1.
and remove oxygen (in atomic ratio MOl, 03io, 1N b
Catalysts having the following compositions were obtained: o, olKo, and ol. The Kono catalyst has the same composition as the catalyst disclosed in JP-A-62-30552. Using this catalyst, the same reaction as in Example 4 was carried out, and the results shown in Table 2 were obtained.

比較例3 比較例2において、五酸化ニオブを除き、同様に調製し
て酸素を除く原子比でfvll、osio、o2K o
、 olなる組成の触媒を得た。この触媒は特開昭62
−30552号の実施例に開示された触媒と同組成のも
のである。この触媒を用いて、実施例5と同様の反応を
行ない、表−2に示す結果を得・た。
Comparative Example 3 In Comparative Example 2, except for niobium pentoxide, the atomic ratios of fvll, osio, o2K o
A catalyst having the following composition was obtained. This catalyst was published in Japanese Patent Application Publication No. 62
It has the same composition as the catalyst disclosed in the Examples of No.-30552. Using this catalyst, the same reaction as in Example 5 was carried out, and the results shown in Table 2 were obtained.

Claims (1)

【特許請求の範囲】[Claims] (1)一般式 ▲数式、化学式、表等があります▼または ▲数式、化学式、表等があります▼ (式中、R^1、R^2およびR^3は同一であるか、
または異なり各々、水素または炭素数1〜2のアルキル
基を示し、R^4は水素または炭素数1〜4のアルキル
基もしくはアルコキシル基を示し、nは0〜3の範囲の
整数を表わし、X^1およびX^2は▲数式、化学式、
表等があります▼および水素の群から選ばれるが、 同時に水素ではない。)で表わされる芳香族アルデヒド
または芳香族ケトンと、 一般式▲数式、化学式、表等があります▼(式中R^5
およびR^6 は各々、水素、アルキル基、ヒドロキシアルキル基、ア
ルケニル基、フェニル基およびベンジル基の群から選ば
れ、R^5とR^6の炭素数の和は0〜8である。)で
表わされる1級または2級アルコールとの分子間接触気
相水素移動反応において、一般式XaYbZcOd(こ
こで、Xはカルシウム、ストロンチウム、バリウム、ラ
ンタン、セリウム、イットリウムおよびジルコニウムか
らなる群から選ばれる一種またはそれ以上の元素を示し
、Yはケイ素、ホウ素、アルミニウム、ニオブ、チタン
およびリンからなる群から選ばれる一種またはそれ以上
の元素を示し、Zはアルカリ金属の群から選ばれる一種
またはそれ以上の元素を示し、a、b、cおよびdはそ
れぞれの元素の原子比を表わし、a=1のとき、b=0
〜0.5、c=0〜0.1、dは各元素の原子価および
原子比により定まる数値を表わす。)で表わされる触媒
を用いることを特徴とする芳香族アルコールの製造方法
(1) General formula ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼ or ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼ (In the formula, are R^1, R^2 and R^3 the same?
or different, each represents hydrogen or an alkyl group having 1 to 2 carbon atoms, R^4 represents hydrogen or an alkyl group or alkoxyl group having 1 to 4 carbon atoms, n represents an integer in the range of 0 to 3, and ^1 and X^2 are ▲ mathematical formula, chemical formula,
There are tables, etc. ▼ and is selected from the group of hydrogen, but it is not hydrogen at the same time. ) aromatic aldehyde or aromatic ketone, and the general formula ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼ (in the formula R^5
and R^6 are each selected from the group of hydrogen, an alkyl group, a hydroxyalkyl group, an alkenyl group, a phenyl group, and a benzyl group, and the sum of the carbon numbers of R^5 and R^6 is 0 to 8. ) In the intermolecular catalytic gas phase hydrogen transfer reaction with a primary or secondary alcohol, the general formula XaYbZcOd (wherein Y represents one or more elements selected from the group consisting of silicon, boron, aluminum, niobium, titanium, and phosphorus; Z represents one or more elements selected from the group of alkali metals; a, b, c and d represent the atomic ratio of each element, when a=1, b=0
~0.5, c=0~0.1, d represents a numerical value determined by the valence and atomic ratio of each element. ) A method for producing an aromatic alcohol, characterized by using a catalyst represented by:
JP63138559A 1987-12-22 1988-06-07 Production of aromatic alcohol Pending JPH02718A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63138559A JPH02718A (en) 1987-12-22 1988-06-07 Production of aromatic alcohol

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP32269187 1987-12-22
JP62-322691 1987-12-22
JP63138559A JPH02718A (en) 1987-12-22 1988-06-07 Production of aromatic alcohol

Publications (1)

Publication Number Publication Date
JPH02718A true JPH02718A (en) 1990-01-05

Family

ID=26471568

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63138559A Pending JPH02718A (en) 1987-12-22 1988-06-07 Production of aromatic alcohol

Country Status (1)

Country Link
JP (1) JPH02718A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997045391A1 (en) * 1996-05-31 1997-12-04 Kaneka Corporation Process for preparing optically active alcoholic compounds

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997045391A1 (en) * 1996-05-31 1997-12-04 Kaneka Corporation Process for preparing optically active alcoholic compounds

Similar Documents

Publication Publication Date Title
JPH04250854A (en) Catalytic composition for production of methacrylic acid by gas phase oxidation of methacrolein
JP3214975B2 (en) Ammoxidation catalyst composition and production method
US6545177B2 (en) Complex oxide catalyst and process for preparation of acrylic acid
US4180678A (en) Process for preparing methacrylic acid
JPS6214535B2 (en)
PL83243B1 (en)
US4731488A (en) Vapor-phase hydrogen transfer reaction of carbonyl compound with alcohol
KR20090082936A (en) Process for producing catalyst for methacrylic acid synthesis
US4225466A (en) Catalytic oxide composition for preparing methacrylic acid
JPH0533211B2 (en)
US4491637A (en) Cobalt-containing supported catalysts and their preparation
US3840595A (en) Process for the conversion of unsaturated aldehydes to acids
KR20050121216A (en) Method for the heterogeneously catalyzed partial gas phase oxidation of propene into acrolein
US4543427A (en) Preparation of cyclohexanol and cyclohexanone
JPS6230177B2 (en)
JPH11114418A (en) Catalyst for gas-phase catalytic oxidation reaction of isobutane and manufacturing of alkene and/or oxygen-containing compound using this catalyst
JPH02718A (en) Production of aromatic alcohol
JP2005305421A (en) Method of producing compound oxide catalyst
JP2015120133A (en) Catalyst for producing acrylic acid, and method for producing acrylic acid by using catalyst
JP3262324B2 (en) Method for producing lower alcohol partial oxide
JPH029014B2 (en)
CA1037054A (en) Catalyst with mo, v, ta and process for preparing unsaturated acids
JP2003164763A (en) Method for manufacturing composite oxide catalyst for oxidizing propylene
US4414411A (en) Process for preparing unsaturated acids with Mo, V, Ti-containing catalysts
JPH1133393A (en) Fixed bed reactor and production of unsaturated carboxylic acid