JPS6230177B2 - - Google Patents

Info

Publication number
JPS6230177B2
JPS6230177B2 JP54029957A JP2995779A JPS6230177B2 JP S6230177 B2 JPS6230177 B2 JP S6230177B2 JP 54029957 A JP54029957 A JP 54029957A JP 2995779 A JP2995779 A JP 2995779A JP S6230177 B2 JPS6230177 B2 JP S6230177B2
Authority
JP
Japan
Prior art keywords
catalyst
value
acid
heteropolyacid
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54029957A
Other languages
Japanese (ja)
Other versions
JPS55122734A (en
Inventor
Hideki Sugi
Mutsumi Matsumoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Kayaku Co Ltd
Original Assignee
Nippon Kayaku Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kayaku Co Ltd filed Critical Nippon Kayaku Co Ltd
Priority to JP2995779A priority Critical patent/JPS55122734A/en
Publication of JPS55122734A publication Critical patent/JPS55122734A/en
Publication of JPS6230177B2 publication Critical patent/JPS6230177B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、メタクロレインを気相接触酸化し
て、メタクリル酸を製造するに際し、寿命が長く
かつ高活性、高選択性を有する新規な触媒を使用
する事を特徴とするメタクリル酸の製造法に関す
るものである。 メタクロレインの気相接触酸化用触化用触媒と
して、近年多数の触媒系が提案される様になつて
きたが、アクロレイン酸化によるアクリル酸製造
プロセスの様に工業的に実施されるまでに至つて
ない。この原因としては、目的物質の収率がアク
リル酸製造法の場合ほど高くないこと並びに、触
媒の寿命が短かく、長期に安定した活性を維持で
きないこと等によると考えられる。 現在までに提案されているメタクロレインの気
相接触酸化用触媒としては、モリブテン−リンを
主成分とするものが大部分であるが、これらは構
造的にみると、リンモリブデン酸のアンモニウム
塩、アルカリ金属塩を主体とするヘテロポリ酸塩
構造を取つていると考えられる。 しかし、これらの触媒の最大の欠点は触媒とし
ての寿命が短いことであり、長期に反応を連続さ
せると徐々に前記リンモリブデン酸塩構造の分解
が起こり、それとともに触媒活性は低下し、到底
工業的使用に耐え得る程度の触媒寿命を有してい
るものはなく、かかる系で触媒活性を長期に維持
しようとすれば、経済的要請からは程遠い極めて
穏和な反応条件を選択せざるを得なくなるのが現
状である。 本発明者らは、従来のメタクロレイン気相接触
酸化用触媒の低活性、低選択性の改良に加えて、
上述の短寿命の改良を試み、Mo−V−P−Cu−
As−O又はこれに種々の元素を添加したヘテロ
ポリ酸構造を有する組成物が高活性、高選択性で
特に寿命的に従来にない安定した触媒である事を
見出し、別途に特許出願(特願昭53−153158、特
開昭55−79341号)を行つている。 本発明者らは、更に上述の系について、改良検
討を加え、以下に示すごとく、リンバナドモリブ
デン酸を主体とし必要に応じて、これに種々の元
素を添加したヘテロポリ酸触媒は、これにヘテロ
ポリ酸の〔カリウム、ルビジウム、セシウム、タ
リウム〕塩を共存させることによつて、その長寿
命という特性を失うことなく、更に活性、選択性
が向上することを見出し、本発明を完成させるに
至つた。 即ち、本発明はメタクロレインを気相で分子状
酸素又は、分子状酸素を含む気体で酸化して、メ
クタクリル酸を製造するに際し、一般式 (Mo)a(V)b(P)c(Cu)d(As)e(X)f(Y)g(O)h (式中、Mo、V、P、Cu、As及びOはそれぞれ
モリブデン、バナジウム、リン、銅、砒素及び酸
素を示し、Xは錫、鉛、セリウム、コバルト、
鉄、ジルコニウム、トリウム、タングステン、ゲ
ルマニウム、ニツケル、レニウム、ビスマス、ア
ンチモン、クロム、ホウ素、マグネシウム、銀、
アルミニウム、亜鉛及びチタンンより成る群から
選ばれる少なくとも一種の元素を表わす。Yはカ
リウム、ルビジウム、セシウム、タリウムより成
る群から選ばれる少なくとも一種の元素を示す。
又添字a、b、c、d、e、f、g及びhは、各
元素の原子比を示し、aを10に固定した場合、b
は0を含まない3以下の値、好ましくは0.5〜2
の値、cは0.5〜6の値、好ましくは0.5〜3の
値、dは0を含まない3以下の値、好ましくは
0.01〜1.0の値、eは0を含まない3以下の値、
好ましくは0.01〜1.0の値、fは0〜3の値、好
ましくは0〜1.0の値、gは0を含まない1.5以下
の値、好ましくは0.01〜1.0の値、hは他の元素
の原子価ならびに原子比により、自然に定まる値
で、通常32〜75の値をとる。)で示される組成を
有し、かつ前記元素を構成成分とするヘテロポリ
酸とヘテロポリ酸の塩とが混在する触媒を使用す
ることを特徴とするメタクリル酸の製造法に関す
るものである。 本発明の触媒は、X成分を含まない場合はリン
バナドモリブデン酸とそのY金属塩が混在した触
媒の構造の一部を銅及びヒ素が占めている触媒で
ある。またX成分を含む場合はリンバナドモリブ
デン酸とそのY金属塩が混在した触媒の構造の一
部を銅、ヒ素及びX元素が占めている触媒であ
る。 本発明で用いる触媒は前述の通り、リンバナド
モリブデン酸又はこれを主体としたヘテロポリ酸
とこれらのヘテロポリ酸の塩が共存した触媒であ
る。 X線回折で見た場合、該ヘテロポリ酸の特徴的
な回折ピークである2θ=8.0゜、8.9゜、9.3゜等
のピーク群と、その塩の特徴的な回折ピークであ
る2θ=26.6゜、10.8゜等のピーク群の双方が観
測される。しかし、触媒中の共存塩量が少ない領
域で酸に基づくピーク群のみが観測される。 後述する実施例及び比較例にも示すが、Y成分
の添加量をあまり多くし、特にX線回折からみて
塩に基づくピークのみが観測される触媒は良い成
績を与えない。Y成分の添加量を本発明の範囲内
に制御することが肝要であり、このような範囲内
でのみ顕著な効果があることが本発明の大きな特
徴である。 本発明の触媒は前述のとおりヘテロポリ酸とヘ
テロポリ酸の酸性塩等の塩が混在した触媒である
が、その他に触媒構成元素の酸化物等を含んでい
てもよい。 本発明の触媒を用いてメタクロレインの酸化反
応も行なつた場合、触媒は反応の初期に反応ガス
によつて還元され、還元型に移行すると考えられ
る。 本発明の触媒は、高活性高選択性の触媒である
と同時に、寿命が長く従来にない優れた工業用触
媒であることは、後に示す実施例からも明らかで
ある。 例えば実施例1に示したように Mo10V1P1Cu0.2As0.2Cs0.1なる組成の触媒を用
いて、反応温度310℃、SV(空間速度)1600hr-1
にて連続反応を行つた。 初期にメタクロレイン転化率96.7%、メタクリ
ル酸収率80.5%であつたが、120日間経過したあ
とも、メタクロレイン転化率96.9%、メタクリル
酸収率80.7%と活性は全く安定しておりこの時点
で触媒を抜き出し、X線回折を測定したところ、
ヘテロポリ酸構造の分解による三酸化モリブテン
の結晶成長は認められず、触媒構造に変化はなか
つた。他の実施例については、時間の関係で30日
間の連続反応を行つたが、反応結果に実質的な変
化は認められず。当然実施例1と同様の触媒寿命
を有していると考えられる。 本発明の触媒は、通常のヘテロポリ酸及びヘテ
ロポリ酸の塩の一般的調製法によつて調製できる
が、得られた触媒がヘテロポリ酸のアンモニウム
塩となることは避けられなければならない。 (A) ヘテロポリ酸の調製法としては、例えば次の
ような方法がある。即ち、構成元素の適当な化
合物を水等に分散させ、必要に応じて過酸化水
素を添加しながら加温、反応溶解させ、蒸発乾
固する方法、又はリンモリブデン酸あるいはリ
ンバナドモリブデン酸と他の構成元素の化合物
とを反応させる方法。 (B) ヘテロポリ酸の塩の調製法としては、例えば
次のような方法がある。即ち、構成元素の適当
な化合物を水等に分散させ、必要に応じて過酸
化水素を添加しながら加温、反応させ蒸発乾固
する方法、又はリンバナドモリブデン酸とY
(カリウム等)等の化合物を反応させる方法。 同様に、本発明の触媒は例えば次のようにして
調製できる。即ち、構成元素の適当な化合物を水
等に分散させ、必要に応じて過酸化水素を添加し
ながら加温、反応させ蒸発乾固する方法、又は上
記(A)、(B)等の方法で調製したヘテロポリ酸とヘテ
ロポリ酸の塩を一定の割合で、水あるいは他の適
当な溶媒中で混合し蒸発乾固する方法、又は(A)等
の方法で調製したヘテロポリ酸に、Y(カリウム
等)等の化合物を添加混合し蒸発乾固する方法等
が挙げられるが、最終的に本発明の触媒が得られ
れば、どのような調製法を採用してもよく、上記
方法に限定されるものではない。 触媒を調製する際に出発原料として使用する構
成元素の化合物としては種々のものが使用出来
る。例えば、モリブデンの化合物としては三酸化
モリブデン、モリブデン酸又はその塩、ヘテロモ
リブン酸又はその塩等が、リンの化合物としては
正リン酸、亜リン酸、次亜リン酸又はそれらの
塩、無水リン酸等が、バナジウムの化合物として
は五酸化バナジウム、蓚酸バナジル、バナジン酸
又はそれらの塩等が使用できる。又、銅の出発原
料としては酸化銅、リン酸銅、硫酸銅、硝酸銅、
モモリブデン酸銅、銅金属等、砒素の出発原料と
しては、砒素酸化物、オルト砒酸、メタ砒酸、ピ
リ砒酸又はそれらの塩等、X及びYの化合物とし
ては硝酸塩、硫酸塩、炭酸塩、リン酸塩、有機酸
塩、ハロゲン化物、水酸化物、酸化物等が使用出
来る。 本発明の触媒は無担体でも高い触媒性能を示す
が、それを成型するか、又はシリコンカーバイ
ド、α−アルミナ、アルミニウム粉末、沸石、け
いそう土、酸化チタン等通常の担体に担持させて
も無担体の場合よりも、耐熱性、寿命の向上等更
に望ましい効果が期待できる。 本発明の接触気相酸化反応を行なう場合、メタ
クロレインに対して分子状酸素をモル比で0.5〜
20使用するのが好ましく、特に1〜10用いるのが
好ましい。又、水を水蒸気の形でメタクロレイン
に対しモル比で1〜20の範囲で加えるのが好まし
い。また、供給原料ガスは、他の不活性ガス例え
ば窒素、炭酸ガス、飽和炭化水素等を含んでいて
も差し支えない。また、イソブチレン或いは第3
級ブタノールを接触酸化して得たメタクロレイン
を含む反応生成ガスをそのまま原料ガスとして使
用することも可能である。 本発明方法を実施する際の反応温度は200〜400
℃が好ましい。原料混合ガスの供給量は空間速度
(SV)にしてNTP基準で100〜5000hr-1が好まし
く、より好ましくは500〜3000hr-1であるが、本
発明による触媒を用いた場合、SVを上げても反
応成績に大きな変化はなく、高SV反応を実施す
ることが可能である。また本発明の接触反応は加
圧下または減圧下でも可能であるが、一般には大
気圧付近の圧力が適している。 以下、実施例、比較例により本発明を更に具体
的に説明するが、本発明は主旨に反しない限り実
施例等に限定されるものではない。 なお実施例中、触媒組成中の酸素については他
の元素の原子価及び原子比から自然に決まる値で
あるので記載を省略した。 メタクロレインの転化率、メタクリル酸収率及
びメタクリル酸選択率の定義は下記の如くであ
る。 メタクロレイン転化率(%)=反応したメタクロレインのモル数/供給したメタクロレインのモル数
×100 メタクリル酸収率(%)=生成したメタクリル酸のモル数/供給したメタクロレインのモル数×100 メタクリル酸選択率(%)=メタクリル酸収率/メタクロレイン転化率×100 実施例 1 三酸化モリブデン100g、五酸化バナジウム6.3
g、酸化銅1.1g、正リン酸8.0g、ピロヒ酸1.8g
を1000mlの脱イオン水に分散あるいは溶解させ
る。これを約3時間加熱撹拌後、水酸化セシウム
1.0gをこの溶液に添加更に約3時間煮沸還流す
る。この水溶液を湯浴上で蒸留乾固する。 得られた乾固物(触媒)の組成は Mo10V1P1Cu0.2As0.2Cs0.1であり、X線回折か
ら2θ=8.0゜、8.9゜、9.3゜等にヘテロポリ酸に
よる回折ピークが認められ、また2θ=26.6゜、
10.8゜等にヘテロポリ酸塩によるピークがわずか
に認められた。従つて、リンバナドモリブデン酸
を主体に、更にそれらの塩が共存している事がわ
かる。 これを24〜48メツシユの大きさに砕いた後、内
径18mmのパイレツクスガラス製反応管に充填し、
流動浴に浸漬する。メタクロレイン:酸素:窒
素:水蒸気=1:2.5:14:7(モル比)なる組
成の原料ガスをSV=1600hr-1(NTP規準)とな
るように反応管に通し、反応温度310℃にて120日
間反応を行つた。 結果は第1表に示した。 実施例 2〜4 実施例1の方法に従い、水酸化セシウム1.0g
の代わりに水酸化カリウム0.45g、水酸化ルビジ
ウム0.7g、酸化タリウム1.6gを夫々添加し、第
1表に示すような組成の乾固物(触媒)を得、こ
れらを用いて実施例1と同一の反応条件で反応を
行つた。結果は第1表の通りである。 なお、これらの触媒には、リンバナドモリブデ
ン酸を主体に、更にそれらの塩が、混在している
ことが、X線回折により確認された。
The present invention relates to a method for producing methacrylic acid, which is characterized by using a novel catalyst having a long life, high activity, and high selectivity when producing methacrylic acid by gas-phase catalytic oxidation of methacrolein. It is something. In recent years, many catalyst systems have been proposed as catalytic catalysts for gas-phase catalytic oxidation of methacrolein. do not have. This is thought to be due to the fact that the yield of the target substance is not as high as in the acrylic acid production method, and the catalyst has a short lifespan and cannot maintain stable activity over a long period of time. Most of the catalysts for gas-phase catalytic oxidation of methacrolein that have been proposed to date are mainly composed of molybten-phosphorus; It is thought to have a heteropolyacid salt structure consisting mainly of alkali metal salts. However, the biggest drawback of these catalysts is that they have a short lifespan, and if the reaction is continued for a long time, the phosphomolybdate structure will gradually decompose, and the catalytic activity will decrease, making it impossible for industrial use. None of these systems have a catalyst life long enough to withstand commercial use, and in order to maintain catalytic activity over a long period of time in such systems, it is necessary to select extremely mild reaction conditions that are far from economic requirements. is the current situation. In addition to improving the low activity and low selectivity of the conventional catalyst for gas-phase catalytic oxidation of methacrolein, the present inventors
Attempting to improve the short life mentioned above, Mo-V-P-Cu-
We discovered that As-O or a composition with a heteropolyacid structure made by adding various elements to As-O is a highly active, highly selective, and especially stable catalyst with an unprecedented lifetime, and have filed a separate patent application (patent application). 153158 (1972), Japanese Patent Application Publication No. 79341 (1982)). The present inventors further investigated the improvement of the above-mentioned system, and as shown below, a heteropolyacid catalyst consisting mainly of phosphovanadomolybdic acid and various elements added thereto as needed was developed. The present inventors have discovered that by coexisting acid salts (potassium, rubidium, cesium, thallium), the activity and selectivity can be further improved without losing their long-life properties, leading to the completion of the present invention. . That is, the present invention oxidizes methacrolein in the gas phase with molecular oxygen or a gas containing molecular oxygen to produce methacrylic acid using the general formula (Mo) a (V) b (P) c (Cu ) d (As) e (X) f (Y) g (O) h (In the formula, Mo, V, P, Cu, As and O each represent molybdenum, vanadium, phosphorus, copper, arsenic and oxygen, are tin, lead, cerium, cobalt,
Iron, zirconium, thorium, tungsten, germanium, nickel, rhenium, bismuth, antimony, chromium, boron, magnesium, silver,
Represents at least one element selected from the group consisting of aluminum, zinc, and titanium. Y represents at least one element selected from the group consisting of potassium, rubidium, cesium, and thallium.
Also, the subscripts a, b, c, d, e, f, g and h indicate the atomic ratio of each element, and when a is fixed at 10, b
is a value of 3 or less, not including 0, preferably 0.5 to 2
, c is a value of 0.5 to 6, preferably a value of 0.5 to 3, and d is a value of 3 or less, not including 0, preferably
A value of 0.01 to 1.0, e is a value of 3 or less, not including 0,
Preferably a value of 0.01 to 1.0, f is a value of 0 to 3, preferably a value of 0 to 1.0, g is a value of 1.5 or less, not including 0, preferably a value of 0.01 to 1.0, h is an atom of another element It is a naturally determined value depending on the valence and atomic ratio, and usually takes a value of 32 to 75. The present invention relates to a method for producing methacrylic acid characterized by using a catalyst having a composition shown in () and containing a mixture of a heteropolyacid and a salt of the heteropolyacid containing the above-mentioned elements as constituent components. The catalyst of the present invention is a catalyst in which copper and arsenic occupy part of the structure of the catalyst in which phosphovanadomolybdic acid and its Y metal salt are mixed when the catalyst does not contain the X component. When the X component is included, the catalyst is a catalyst in which copper, arsenic, and the X element occupy part of the structure of the catalyst, which is a mixture of phosphovanadomolybdic acid and its Y metal salt. As mentioned above, the catalyst used in the present invention is a catalyst in which phosphorus vanadomolybdic acid or a heteropolyacid mainly composed of phosphovanadomolybdic acid and salts of these heteropolyacids coexist. When viewed by X-ray diffraction, the heteropolyacid has characteristic diffraction peaks of 2θ = 8.0°, 8.9°, 9.3°, etc., and its salt has a characteristic diffraction peak of 2θ = 26.6°. Both peak groups such as 10.8° are observed. However, only acid-based peaks are observed in regions where the amount of coexisting salts in the catalyst is small. As will be shown in Examples and Comparative Examples to be described later, catalysts in which the amount of the Y component added is too large and only salt-based peaks are observed, especially when viewed from X-ray diffraction, do not give good results. It is important to control the amount of the Y component added within the range of the present invention, and a significant feature of the present invention is that significant effects can only be achieved within this range. As described above, the catalyst of the present invention is a catalyst containing a mixture of a heteropolyacid and a salt such as an acid salt of the heteropolyacid, but may also contain oxides of catalyst constituent elements. When the oxidation reaction of methacrolein is also carried out using the catalyst of the present invention, it is thought that the catalyst is reduced by the reaction gas in the early stage of the reaction and shifts to a reduced form. It is clear from the examples shown later that the catalyst of the present invention is a highly active and highly selective catalyst, and at the same time has a long life and is an excellent industrial catalyst unlike any before. For example, as shown in Example 1 , using a catalyst with the composition Mo 10 V 1 P 1 Cu 0.2 As 0.2 Cs 0.1 , the reaction temperature was 310°C, and the SV (space velocity) was 1600 hr -1.
Continuous reactions were carried out at Initially, the methacrolein conversion rate was 96.7% and the methacrylic acid yield was 80.5%, but even after 120 days, the activity remained completely stable with a methacrolein conversion rate of 96.9% and a methacrylic acid yield of 80.7%. When the catalyst was extracted and X-ray diffraction was measured,
No crystal growth of molybdenum trioxide due to decomposition of the heteropolyacid structure was observed, and there was no change in the catalyst structure. Regarding other Examples, continuous reactions were carried out for 30 days due to time constraints, but no substantial change was observed in the reaction results. Naturally, it is considered that the catalyst has the same lifespan as Example 1. The catalyst of the present invention can be prepared by a conventional method for preparing heteropolyacids and salts of heteropolyacids, but it must be avoided that the resulting catalyst becomes an ammonium salt of a heteropolyacid. (A) Examples of methods for preparing heteropolyacids include the following methods. That is, a method of dispersing an appropriate compound of the constituent elements in water etc., heating it while adding hydrogen peroxide if necessary, reacting and dissolving it, and evaporating to dryness, or a method of dispersing a suitable compound of the constituent elements in water etc. A method of reacting with compounds of constituent elements. (B) Examples of methods for preparing heteropolyacid salts include the following methods. That is, a method of dispersing an appropriate compound of the constituent elements in water etc., heating and reacting while adding hydrogen peroxide as necessary, and evaporating to dryness, or a method of dispersing phosphovanadomolybdic acid and Y
A method of reacting compounds such as (potassium, etc.). Similarly, the catalyst of the invention can be prepared, for example, as follows. That is, by dispersing an appropriate compound of the constituent elements in water etc., heating and reacting while adding hydrogen peroxide as necessary, and evaporating to dryness, or by methods such as (A) and (B) above. A method of mixing the prepared heteropolyacid and a salt of the heteropolyacid in a certain ratio in water or other suitable solvent and evaporating to dryness, or adding Y (potassium etc.) to the heteropolyacid prepared by method (A) etc. ), etc., and evaporation to dryness. However, as long as the catalyst of the present invention is finally obtained, any preparation method may be used, and the method is not limited to the above method. isn't it. Various compounds of constituent elements can be used as starting materials in preparing the catalyst. For example, molybdenum compounds include molybdenum trioxide, molybdic acid or its salts, heteromolybic acid or its salts, etc., and phosphorus compounds include orthophosphoric acid, phosphorous acid, hypophosphorous acid or their salts, anhydrous phosphorus. Examples of vanadium compounds include vanadium pentoxide, vanadyl oxalate, vanadic acid, and salts thereof. In addition, starting raw materials for copper include copper oxide, copper phosphate, copper sulfate, copper nitrate,
Copper molybdate, copper metal, etc., starting materials for arsenic include arsenic oxide, orthoarsenic acid, metaarsenic acid, pyriarsenic acid, or their salts, and compounds of X and Y include nitrates, sulfates, carbonates, phosphorus, etc. Acid salts, organic acid salts, halides, hydroxides, oxides, etc. can be used. The catalyst of the present invention exhibits high catalytic performance even without a carrier, but it does not show any effect even if it is molded or supported on a common carrier such as silicon carbide, α-alumina, aluminum powder, zeolite, diatomaceous earth, or titanium oxide. More desirable effects such as improved heat resistance and longer life can be expected than in the case of a carrier. When carrying out the catalytic gas phase oxidation reaction of the present invention, the molar ratio of molecular oxygen to methacrolein is 0.5 to 0.
It is preferable to use 20, particularly preferably 1 to 10. It is also preferred to add water in the form of steam in a molar ratio of 1 to 20 to methacrolein. The feedstock gas may also contain other inert gases such as nitrogen, carbon dioxide, saturated hydrocarbons, and the like. Also, isobutylene or tertiary
It is also possible to use the reaction product gas containing methacrolein obtained by catalytically oxidizing butanol as the raw material gas. The reaction temperature when carrying out the method of the present invention is 200 to 400
°C is preferred. The feed rate of the raw material mixed gas is preferably 100 to 5000 hr -1 based on the NTP standard in terms of space velocity (SV), and more preferably 500 to 3000 hr -1 , but when the catalyst according to the present invention is used, the SV can be increased. However, there is no significant change in reaction results, and it is possible to perform high SV reactions. Although the catalytic reaction of the present invention can be carried out under increased pressure or reduced pressure, a pressure near atmospheric pressure is generally suitable. Hereinafter, the present invention will be explained in more detail with reference to Examples and Comparative Examples, but the present invention is not limited to the Examples unless it goes against the spirit of the invention. Note that in the examples, description of oxygen in the catalyst composition was omitted since it was a value naturally determined from the valences and atomic ratios of other elements. The definitions of the conversion rate of methacrolein, methacrylic acid yield, and methacrylic acid selectivity are as follows. Methacrolein conversion rate (%) = Number of moles of methacrolein reacted / Number of moles of methacrolein supplied × 100 Methacrylic acid yield (%) = Number of moles of methacrylic acid produced / Number of moles of methacrolein supplied × 100 Methacrylic acid selectivity (%) = methacrylic acid yield / methacrolein conversion rate x 100 Example 1 Molybdenum trioxide 100g, vanadium pentoxide 6.3
g, copper oxide 1.1g, orthophosphoric acid 8.0g, pyroarsenic acid 1.8g
Disperse or dissolve in 1000ml of deionized water. After heating and stirring this for about 3 hours, cesium hydroxide
Add 1.0 g to this solution and boil and reflux for about 3 hours. This aqueous solution is distilled to dryness on a hot water bath. The composition of the obtained dry solid ( catalyst) was Mo 10 V 1 P 1 Cu 0.2 As 0.2 Cs 0.1 , and X-ray diffraction showed that it had heteropolymerization at 2θ = 8.0°, 8.9 °, 9.3°, etc. A diffraction peak due to acid was observed, and 2θ = 26.6°,
A slight peak due to the heteropolyacid salt was observed at 10.8°. Therefore, it can be seen that phosphorus vanadomolybdic acid is the main ingredient, and salts thereof also coexist. After crushing this to a size of 24 to 48 meshes, it was filled into a Pyrex glass reaction tube with an inner diameter of 18 mm.
Immerse in a fluid bath. Methacrolein: Oxygen: Nitrogen: Water vapor = 1:2.5:14:7 (mole ratio) raw material gas was passed through the reaction tube so that SV = 1600hr -1 (NTP standard) at a reaction temperature of 310°C. The reaction was carried out for 120 days. The results are shown in Table 1. Examples 2-4 According to the method of Example 1, 1.0 g of cesium hydroxide
Instead, 0.45 g of potassium hydroxide, 0.7 g of rubidium hydroxide, and 1.6 g of thallium oxide were added to obtain a dried product (catalyst) having the composition shown in Table 1. The reaction was carried out under the same reaction conditions. The results are shown in Table 1. It was confirmed by X-ray diffraction that these catalysts mainly contained phosphorus vanadomolybdic acid and salts thereof.

【表】 実施例 5〜11 実施例1〜4と同様にして、第2表に示すよう
な組成の乾固物(触媒)を得、これらを用いて実
施例1と同様にして反応を行なつた。結果は第2
表のとおりである。
[Table] Examples 5 to 11 In the same manner as in Examples 1 to 4, dried products (catalysts) having the composition shown in Table 2 were obtained, and using these, a reaction was carried out in the same manner as in Example 1. Summer. The result is second
As shown in the table.

【表】 比較例 1 実施例1において、水酸化セシウム1.0gを添
加したが、これを添加せずに、約6時間煮沸還流
後、水溶液を湯浴上で乾固し、組成
Mo10V1P1Cu0.2As0.2の乾固物(触媒)を得た。 これを用いて、反応温度320℃とした以外は実
施例1と同一の反応条件で反応を行つたところ、
下記の値を得た。 メタクロレイン転化率 93.4% メタクリル酸選択率 83.6% メタクリル酸収率 78.1% 比較例 2 実施例1の方法に従い、水酸化セシウム1gの
代わりに水酸化カリウム9gを添加した以外は、
同様にして触媒を調製し、組成
Mo10V1P1Cu0.2As0.2K2の触媒を得た。実施例1
と同一の反応条件で反応を行つたところ、下記の
値を得た。 メタクロレイン転化率 76.9% メタクリル酸選択率 75.2% メタクリル酸収率 57.8% この触媒は、X線回折からヘテロポリ酸のカリ
ウム塩が主体であることが観測された。 実施例 12 比較例1で調製したMo10V1P1Cu0.2As0.2触媒
と、実施例7で調製したMo10V1P1Cu0.2As0.2Cs1
触媒を9:1の割合で混合し、その50gを200ml
の水に分散させ湯浴上で蒸発乾固し、乾固物(触
媒)を得た。これを用いて、実施例1と同一の反
応条件で反応を行つたところ、下記の値を得た。 メタクロレイン転化率 97.1% メタクリル酸選択率 82.7% メタクリル酸収率 80.3% 実施例 13 三酸化モリブデン100g、五酸化バナジウム6.3
g、酸化銅1.1g、正リン酸8.0g、ピロヒ酸1.8
g、水酸化カリウム0.45g、酸化スズ2.1gを原
料として実施例1と同様の操作で調製した
Mo10V1P1Cu0.2As0.2K0.1Sn0.2なる乾固物を用い
て実施例1と同一条件で反応を行つた。結果は第
3表の通りである。 なお、この乾固物(触媒)は、X線回折から2
θ=8.0゜、8.9゜、9.3゜等にリンバナドモリブデ
ン酸を主体としたヘテロポリ酸による回折ピーク
が認められる。また、2θ=26.6゜、10.8゜等に
ヘテロポリ酸塩によるピークがわずかに認められ
る。よつて、この触媒にはリンバナドモリブデン
酸を主体としたヘテロポリ酸とヘテロポリ酸の塩
が混在している事がわかる。 実施例 14〜32 実施例13において酸化スズの代わりに、四三酸
化鉛3.2g、酸化セリウム2.4g、四三酸化コバル
ト1.1g、酸化鉄1.1g、酸化ジルコニウム1.7g、
酸化トリウム3.7g、三酸化タングステン3.2g、
酸化ゲルマニウム1.5g、酸化ニツケル1.0g、七
酸化レニウム3.4g、酸化ビスマス3.2g、三酸化
アンチモン2.0g、三酸化クロム1.4g、ホウ酸0.9
g、酸化マグネシウム0.6g、酸化銀1.6g、酸化
アルミニウム0.7g、酸化亜鉛1.1g、酸化チタン
1.1gを夫々添加し、第3表に示す様な組成の乾
固物を得て、これらを用いて実施例1と同一の反
応条件で反応を行つた。結果は第3表の通りであ
る。 なお、これらの乾固物(触媒)はX線回折から
リンバナドモリブデン酸を主体としたヘテロポリ
酸とヘテロポリ酸の塩が混在していることがX線
回折により確認された。 実施例 33〜35 実施例13の方法に従い、水酸化カリウム0.45g
の代わりに、水酸化セシウム1.0g、水酸化ルビ
ジウム0.7g、酸化タリウム1.6gを夫々添加し、
第3表に示すような乾固物(触媒)を得、これら
を用いて実施例13と同一の反応条件で反応を行つ
た。結果は第3表の通りである。 実施例 36〜39 実施例1と同様にして第3表に示した組成の乾
固物を得て、これらを用いて実施例1と同一の反
応条件で反応を行つた。結果は第3表に示した。 なお、これらの乾固物(触媒)はX線回折から
リンバナドモリブデン酸を主体としたヘテロポリ
酸とヘテロポリ酸の塩が混在している事が確認さ
れた。
[Table] Comparative Example 1 In Example 1, 1.0 g of cesium hydroxide was added, but without adding this, the aqueous solution was boiled and refluxed for about 6 hours, then dried on a hot water bath, and the composition was determined.
A dried product (catalyst) of Mo 10 V 1 P 1 Cu 0.2 As 0.2 was obtained. Using this, a reaction was carried out under the same reaction conditions as in Example 1 except that the reaction temperature was 320°C.
The following values were obtained. Methacrolein conversion rate 93.4% Methacrylic acid selectivity 83.6% Methacrylic acid yield 78.1% Comparative example 2 The method of Example 1 was followed except that 9 g of potassium hydroxide was added instead of 1 g of cesium hydroxide.
A catalyst was prepared in the same way, and the composition
A catalyst of Mo 10 V 1 P 1 Cu 0.2 As 0.2 K 2 was obtained. Example 1
When the reaction was carried out under the same reaction conditions, the following values were obtained. Methacrolein conversion rate: 76.9% Methacrylic acid selectivity: 75.2% Methacrylic acid yield: 57.8% It was observed from X-ray diffraction that this catalyst was mainly composed of potassium salt of heteropolyacid. Example 12 Mo 10 V 1 P 1 Cu 0.2 As 0.2 catalyst prepared in Comparative Example 1 and Mo 10 V 1 P 1 Cu 0.2 As 0.2 Cs 1 prepared in Example 7
Mix the catalyst at a ratio of 9:1 and add 50g to 200ml.
The mixture was dispersed in water and evaporated to dryness on a hot water bath to obtain a dried product (catalyst). Using this, a reaction was carried out under the same reaction conditions as in Example 1, and the following values were obtained. Methacrolein conversion rate 97.1% Methacrylic acid selectivity 82.7% Methacrylic acid yield 80.3% Example 13 Molybdenum trioxide 100g, vanadium pentoxide 6.3
g, copper oxide 1.1g, orthophosphoric acid 8.0g, pyroarsenic acid 1.8g
It was prepared in the same manner as in Example 1 using 0.45 g of potassium hydroxide and 2.1 g of tin oxide as raw materials.
A reaction was carried out under the same conditions as in Example 1 using a dried product of Mo 10 V 1 P 1 Cu 0.2 As 0.2 K 0.1 Sn 0.2 . The results are shown in Table 3. In addition, this dried product (catalyst) was determined by X-ray diffraction as 2
Diffraction peaks due to heteropolyacid mainly composed of phosphovanadomolybdic acid are observed at θ=8.0°, 8.9°, 9.3°, etc. In addition, peaks due to heteropolyacid salts are slightly observed at 2θ=26.6°, 10.8°, etc. Therefore, it can be seen that this catalyst contains a mixture of a heteropolyacid mainly composed of phosphovanadomolybdic acid and a salt of the heteropolyacid. Examples 14-32 In Example 13, instead of tin oxide, 3.2 g of trilead tetroxide, 2.4 g of cerium oxide, 1.1 g of tricobalt tetroxide, 1.1 g of iron oxide, 1.7 g of zirconium oxide,
3.7g of thorium oxide, 3.2g of tungsten trioxide,
Germanium oxide 1.5g, nickel oxide 1.0g, rhenium heptoxide 3.4g, bismuth oxide 3.2g, antimony trioxide 2.0g, chromium trioxide 1.4g, boric acid 0.9
g, magnesium oxide 0.6g, silver oxide 1.6g, aluminum oxide 0.7g, zinc oxide 1.1g, titanium oxide
1.1 g of each was added to obtain dried solids having the composition shown in Table 3, and a reaction was conducted using these under the same reaction conditions as in Example 1. The results are shown in Table 3. It was confirmed by X-ray diffraction that these dried solids (catalysts) contained a mixture of heteropolyacids mainly composed of phosphovanadomolybdic acid and salts of heteropolyacids. Examples 33-35 According to the method of Example 13, 0.45 g of potassium hydroxide
Instead of, 1.0 g of cesium hydroxide, 0.7 g of rubidium hydroxide, and 1.6 g of thallium oxide were added,
The dried solids (catalysts) shown in Table 3 were obtained, and a reaction was carried out using them under the same reaction conditions as in Example 13. The results are shown in Table 3. Examples 36 to 39 Dried products having the composition shown in Table 3 were obtained in the same manner as in Example 1, and a reaction was carried out under the same reaction conditions as in Example 1 using these. The results are shown in Table 3. In addition, it was confirmed from X-ray diffraction that these dried products (catalysts) contained a mixture of heteropolyacids mainly composed of phosphovanadomolybdic acid and salts of heteropolyacids.

【表】【table】

【表】 実施例 40〜45 実施例1と同様にして第4表に示した組成の乾
固物を得て、これらを用いて実施例1と同一の反
応条件で反応を行つた。結果は第4表に示した。 なお、これらの乾固物(触媒)はX線回折から
リンバナドモリブデン酸を主体としたヘテロポリ
酸とヘテロポリ酸の塩が混在している事が確認さ
れた。
[Table] Examples 40 to 45 Dried products having the compositions shown in Table 4 were obtained in the same manner as in Example 1, and a reaction was conducted using these under the same reaction conditions as in Example 1. The results are shown in Table 4. In addition, it was confirmed from X-ray diffraction that these dried products (catalysts) contained a mixture of heteropolyacids mainly composed of phosphovanadomolybdic acid and salts of heteropolyacids.

【表】 実施例 46〜47 実施例21の触媒を用いて、第5表に示した空間
速度(S.V.)にて、他の反応条件は実施例1と同
様にして反応を行つた。結果は第5表の通りであ
り、S.V.を上げても反応成績に大差はない。
[Table] Examples 46 to 47 Using the catalyst of Example 21, a reaction was carried out at the space velocity (SV) shown in Table 5 under the same conditions as in Example 1 except for the reaction conditions. The results are shown in Table 5, and there is no significant difference in reaction performance even if the SV is increased.

【表】 実施例 48 実施例2〜4及び13〜39の反応を30日間連続し
て行つたが、反応結果に実質的な変化は、認めら
れなかつた。
[Table] Example 48 The reactions of Examples 2 to 4 and 13 to 39 were carried out continuously for 30 days, but no substantial change was observed in the reaction results.

Claims (1)

【特許請求の範囲】 1 メタクロレインを分子状酸素又は分子状酸素
を含む気体で酸化してメタクリル酸を製造する際
に、一般式 (Mo)a(V)b(P)c(Cu)d(As)e(X)f(Y)g(O)h (式中、Xは錫、鉛、セリウム、コバルト、鉄、
ジルコニウム、トリウム、タングステン、ゲルマ
ニウム、ニツケル、レニウム、ビスマス、アンチ
モン、クロム、ホウ素、マグネシウム、銀、アル
ミニウム、亜鉛、及びチタンよりなる群から選ば
れる少なくとも一種の元素を表わす。Yはカリウ
ム、ルビジウム、セシウム、タリウムより成る群
から選ばれる少なくとも一種の元素を示す。 又、添字a、b、c、d、e、f、g及びh
は、各元素の原子比を表わし、aを10に固定した
とき、bは0を含まない3以下の値、cは0.5〜
6、dは0を含まない3以下の値、eは0を含ま
ない3以下の値、fは0〜3の値、gは0を含ま
ない1.5以下の値、hは他の元素の原子価ならび
に原子比により定まる値を取る。)で示される組
成を有しかつ前記元素を構成成分とするヘテロポ
リ酸とヘテロポリ酸の塩とが混在する触媒を使用
する事を特徴とするメタクリル酸の製造法。
[Claims] 1. When producing methacrylic acid by oxidizing methacrolein with molecular oxygen or a gas containing molecular oxygen, the general formula (Mo) a (V) b (P) c (Cu) d (As) e (X) f (Y) g (O) h (wherein, X is tin, lead, cerium, cobalt, iron,
Represents at least one element selected from the group consisting of zirconium, thorium, tungsten, germanium, nickel, rhenium, bismuth, antimony, chromium, boron, magnesium, silver, aluminum, zinc, and titanium. Y represents at least one element selected from the group consisting of potassium, rubidium, cesium, and thallium. Also, subscripts a, b, c, d, e, f, g and h
represents the atomic ratio of each element, when a is fixed at 10, b is a value of 3 or less not including 0, and c is 0.5 to 0.
6, d is a value of 3 or less, not including 0, e is a value of 3 or less, not including 0, f is a value of 0 to 3, g is a value of 1.5 or less, not including 0, h is an atom of another element The value is determined by the valence and atomic ratio. 1. A method for producing methacrylic acid, which is characterized by using a catalyst having a composition shown in (a) and containing a mixture of a heteropolyacid and a salt of the heteropolyacid having the above-mentioned elements as constituent components.
JP2995779A 1979-03-16 1979-03-16 Preparation of methacrylic acid and its catalyst Granted JPS55122734A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2995779A JPS55122734A (en) 1979-03-16 1979-03-16 Preparation of methacrylic acid and its catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2995779A JPS55122734A (en) 1979-03-16 1979-03-16 Preparation of methacrylic acid and its catalyst

Publications (2)

Publication Number Publication Date
JPS55122734A JPS55122734A (en) 1980-09-20
JPS6230177B2 true JPS6230177B2 (en) 1987-07-01

Family

ID=12290453

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2995779A Granted JPS55122734A (en) 1979-03-16 1979-03-16 Preparation of methacrylic acid and its catalyst

Country Status (1)

Country Link
JP (1) JPS55122734A (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4596784A (en) * 1982-06-07 1986-06-24 Rohm And Haas Company Catalyst compositions and their use for the preparation of unsaturated carboxylic acids
CA1199905A (en) * 1982-06-07 1986-01-28 William J. Kennelly Catalyst compositions and their use for the preparation of unsaturated carboxylic acids
JPS60239439A (en) * 1984-05-14 1985-11-28 Nippon Shokubai Kagaku Kogyo Co Ltd Production of methacrylic acid
JPS615043A (en) * 1984-06-18 1986-01-10 Nippon Shokubai Kagaku Kogyo Co Ltd Production of methacrylic acid
JPS6176436A (en) * 1984-09-20 1986-04-18 Mitsubishi Rayon Co Ltd Production of unsaturated carboxylic acid
JPH0791212B2 (en) * 1988-07-11 1995-10-04 三菱レイヨン株式会社 Method for producing methacrylic acid
JP4671320B2 (en) * 2000-09-21 2011-04-13 日本化薬株式会社 Production of coated catalyst for methacrylic acid production
EP2298446A4 (en) 2008-06-02 2012-07-04 Nippon Kayaku Kk Catalyst and method of producing unsaturated aldehyde and unsaturated carboxylic acid
JP5560596B2 (en) * 2008-07-01 2014-07-30 三菱レイヨン株式会社 Method for producing a catalyst for methacrylic acid production
CN104646056B (en) * 2013-11-18 2017-01-11 上海华谊丙烯酸有限公司 Molybdenum-phosphor series polyoxometalates catalyst, preparation method and application thereof
KR102216827B1 (en) * 2016-09-14 2021-02-17 미쯔비시 케미컬 주식회사 Catalyst for producing methacrylic acid and method for producing the same, and method for producing methacrylic acid and methacrylic acid ester

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5236619A (en) * 1975-08-18 1977-03-22 Standard Oil Co Method of manufacturing unsaturated fatty acid from unsaturated aldehyde

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5236619A (en) * 1975-08-18 1977-03-22 Standard Oil Co Method of manufacturing unsaturated fatty acid from unsaturated aldehyde

Also Published As

Publication number Publication date
JPS55122734A (en) 1980-09-20

Similar Documents

Publication Publication Date Title
US4925980A (en) Process for producing methacrylic acid and a catalyst
US4652673A (en) Process for producing methacrylic acid
US4467113A (en) Process for producing methacrylic acid
US4320227A (en) Process for producing methacrolein and methacrylic acid
US4162234A (en) Oxidation catalysts
US4051179A (en) Catalytic process for the preparation of unsaturated carboxylic acids
US4118419A (en) Catalytic process for the preparation of an unsaturated carboxylic acid
US4745217A (en) Process for producing methacrylic acid
US5245083A (en) Method for preparing methacrolein and method for preparing a catalyst for use in the preparation of methacrolein
JP3767309B2 (en) Method for producing heteropolyacid catalyst and method for producing methacrylic acid
US4186152A (en) Oxidation of olefins
BG66322B1 (en) Improved catalyst for the manufacture of acrylonitrile
JP3819192B2 (en) Production method of acrylonitrile
US4272637A (en) Catalyst for oxidation of isobutylene
JP2841324B2 (en) Method for producing methacrolein
US4042625A (en) Process and catalyst for preparing unsaturated carboxylic acid
US4101448A (en) Catalyst compositions especially useful for preparation of unsaturated acids
US4258217A (en) Process for producing methacrolein
JPS5827255B2 (en) Method for producing unsaturated fatty acids
JPS6230177B2 (en)
EP0005769B1 (en) A process for producing methacrolein and methacrylic acid
US5102846A (en) Process for preparing catalysts for producing methacrylic acid
EP0146099A2 (en) A process for producing acrylic acid by oxidation of acrolein and a novel catalyst useful thereof
JPH029014B2 (en)
JP3540623B2 (en) Method for producing methacrylic acid