JPS615043A - Production of methacrylic acid - Google Patents

Production of methacrylic acid

Info

Publication number
JPS615043A
JPS615043A JP59123746A JP12374684A JPS615043A JP S615043 A JPS615043 A JP S615043A JP 59123746 A JP59123746 A JP 59123746A JP 12374684 A JP12374684 A JP 12374684A JP S615043 A JPS615043 A JP S615043A
Authority
JP
Japan
Prior art keywords
catalyst
methacrolein
methacrylic acid
cerium
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59123746A
Other languages
Japanese (ja)
Other versions
JPH0133217B2 (en
Inventor
Masahiro Wada
正大 和田
Toru Ishii
徹 石井
Yoshiharu Shimazaki
由治 嶋崎
Tetsutsugu Ono
哲嗣 小野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Shokubai Co Ltd
Original Assignee
Nippon Shokubai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Shokubai Co Ltd filed Critical Nippon Shokubai Co Ltd
Priority to JP59123746A priority Critical patent/JPS615043A/en
Publication of JPS615043A publication Critical patent/JPS615043A/en
Publication of JPH0133217B2 publication Critical patent/JPH0133217B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

PURPOSE:To produce methacrylic acid in high yield, stably for a long period, by the vapor-phase catalytic oxidation of methacrolein with molecular O2 in the presence of a specific heteropolyacid catalyst obtained by adding a Ce source such as cerium oxide, etc. and other component to an Mo-V-P catalyst. CONSTITUTION:Methacrylic acid is produced by the vapor-phase catalytic oxidation of methacrolein with molecular O2 or a gas containing molecular O2 at 200-350 deg.C under atmospheric pressure at a space velocity of the raw material gas of 100-5,000hr<-1> (STP) in the presence of a catalyst composition containing the molybdovanadophosphoric acid of formula (Mo, V, P, Ce and O are molybdenum, vanadium, phosphorus, cerium and oxygen, respectively; X is K, Rb, Cs or Tl; Y is Cu, As Sb, Co, Zr, Bi, Ni, Cr or Mn; a-g are atomic ratios of the elements; b, c, d, e and f are <=3 and >0 when a=12, and g is a value determined by the atomic valences and atomic ratios of other elements).

Description

【発明の詳細な説明】 本発明はメタクリル酸の製法に関する。詳しく述べると
本発明は、モリブテン、バナジウム、リンなどを含有し
てなるヘテロポリ酸系触媒を使用して、メタクロレイン
を分子状酸素または分子状酸素含有ガスにより接触気相
酸化し高収率かつ長期安定した性能でメタクリル酸を製
造する方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing methacrylic acid. Specifically, the present invention uses a heteropolyacid catalyst containing molybdenum, vanadium, phosphorus, etc. to catalytically oxidize methacrolein with molecular oxygen or a molecular oxygen-containing gas in a high yield and over a long period of time. The present invention relates to a method for producing methacrylic acid with stable performance.

さらに詳しく述べると本発明はモリブデン、バナジウム
、リンを主体とするヘテロポリ酸を含有し、これにカリ
ウム、ルビジウム、セシウムおよびタリウムよシなる群
からの少なくとも1種、銅、ヒ素、アンチモン、コバル
ト、ジルコニウム、ビスマス、ニッケル、クロム、マン
ガンおよび亜鉛よりなる群からの少なくとも1種ならび
にセリウムを共存せしめた酸化物触媒を使用してメタク
ロレインからメタクリル酸を製造するだめの方法を提供
することを目的とする。
More specifically, the present invention contains a heteropolyacid mainly composed of molybdenum, vanadium, and phosphorus, which contains at least one member from the group consisting of potassium, rubidium, cesium, and thallium, copper, arsenic, antimony, cobalt, and zirconium. An object of the present invention is to provide a method for producing methacrylic acid from methacrolein using an oxide catalyst coexisting with at least one member from the group consisting of bismuth, nickel, chromium, manganese, and zinc and cerium. .

メタクロレインの接触気相酸化用触媒は数多く提案され
ておシ、そのうちのいくつかは工業的規模でのメタクリ
ル酸製造に用いられはじめた。提案されている触媒は、
大部分がモリブデンおよびリンを主成分とするものであ
シ、それらの調製法を見る限シ構造的にリンモリブデン
酸またはその塩たとえばアンモニウム塩、アルカリ金属
塩であシ、ヘテロポリ酸およびヘテロポリ酸塩構造を有
する混合組成物よシなると考えられるものである。
Many catalysts for the catalytic gas phase oxidation of methacrolein have been proposed, and some of them have begun to be used in the production of methacrylic acid on an industrial scale. The proposed catalyst is
Most of them are mainly composed of molybdenum and phosphorus, and as far as their preparation methods are concerned, their structure consists of phosphomolybdic acid or its salts, such as ammonium salts, alkali metal salts, heteropolyacids, and heteropolyacid salts. It is believed that a mixed composition having this structure is more effective.

しかしながら、かかる触媒系の問題点は、メタクリル酸
の収率の面だけではなく工業触媒として具有すべき寿命
の点で依然として欠陥を持つことが指摘されている。す
なわち長期にわたって反応を継続させると、この触媒系
においてはへテロポリ酸塩構造よシもヘテロポリ酸構造
の方が分解が著るしく使用に耐ええない状態となること
である。
However, it has been pointed out that such a catalyst system still has defects not only in terms of the yield of methacrylic acid but also in terms of the life span that it should have as an industrial catalyst. That is, if the reaction is continued for a long period of time, in this catalyst system, the heteropolyacid structure is more markedly decomposed than the heteropolyacid structure, and becomes unusable.

もとよシヘテロポリ酸のはうがその塩よシも触媒活性の
面で有効に作用するからである。
This is because both the salts of heteropolyacids and their salts act effectively in terms of catalytic activity.

したがってヘテロポリ酸を耐久性よく安定化させ、その
触媒活性を長期にわたって維持させることが要求され、
種々検討がなされてきた。たとえば、モリブデン、バナ
ジウム、リン、アルカリ金属またはタリウムとセリウム
を含む触媒系として特開昭51−76217号、同52
−36619号、同52−12231号、同54−14
4311号、同55−2619号、同55−10564
1号、同55−122734号、同55−124734
号、同56−91846号、同57−56043号、同
57−171934号、同57−204230号などの
発明がある。しかしかかる触媒系の技術内容を見る限シ
、これらは工業用触媒として具備しなければならない高
い収率および長寿命の点ではまた満足しうる域に至って
いない。とくにヘテロポリ酸の安定化効果を狙った発明
においても反応温度が300℃以上において添加効果が
見出せるという開示はあるものの収率の面では全く満足
のいくものとはならず、しかも反応温度を300℃を越
えて設定すること自体この種のへテロポリ酸触媒の耐久
性維持に無理があるからである。
Therefore, it is required to stabilize heteropolyacids with good durability and maintain their catalytic activity over a long period of time.
Various studies have been made. For example, as catalyst systems containing molybdenum, vanadium, phosphorus, alkali metals or thallium and cerium,
-36619, 52-12231, 54-14
No. 4311, No. 55-2619, No. 55-10564
No. 1, No. 55-122734, No. 55-124734
There are inventions such as No. 56-91846, No. 57-56043, No. 57-171934, and No. 57-204230. However, looking at the technical details of such catalyst systems, they are still not satisfactory in terms of the high yield and long life that industrial catalysts must have. In particular, even in inventions aimed at the stabilizing effect of heteropolyacids, although there is a disclosure that the addition effect can be found at reaction temperatures of 300°C or higher, the yield is not completely satisfactory, and furthermore, the reaction temperature is 300°C or higher. This is because it is impossible to maintain the durability of this type of heteropolyacid catalyst by setting it beyond this range.

ところでヘテロポリ酸系触媒の熱安定性に関する記述お
よびその対策は今まで多くの例が開示されている。−例
をあげれば特公昭40−27526号公報明細書におい
てリンモリブデン酸の物理的劣化はその結晶構造の変化
によるとし、水蒸気の存在する高温度においてリンモリ
ブデン酸のはなればなれの粒子が再結晶化し、集塊化し
て固体塊となる傾向を有することを記述している。その
対策としては炭化ケイ素に担持させる方法を開示してい
る。別に特開昭55−79341号公報明細書において
はアルカリ金^のへテロポリ酸塩は塩構造の分解が起り
易いとし、その防止対策としては他成分の添加によりそ
の構造安定化をはかつている。
By the way, many examples of descriptions and countermeasures regarding the thermal stability of heteropolyacid catalysts have been disclosed. - For example, in the specification of Japanese Patent Publication No. 40-27526, it is stated that the physical deterioration of phosphomolybdic acid is due to a change in its crystal structure, and separate particles of phosphomolybdic acid recrystallize at high temperatures in the presence of water vapor. It is described that it has a tendency to clump and agglomerate into solid lumps. As a countermeasure against this, a method is disclosed in which it is supported on silicon carbide. Separately, in the specification of JP-A-55-79341, it is stated that the salt structure of alkali gold heteropolyacid salts tends to decompose, and as a preventive measure, the structure is stabilized by adding other components.

また特開昭55−122734号公報明細書の例では活
性向上成分並びに少量のアルカリ金属塩の共存により触
媒の安定化をはかつている。しかしいずれも反応温度が
300℃以上と高く、工業用触媒としては問題が残され
ている。
Furthermore, in the example of JP-A-55-122734, the catalyst is stabilized by the coexistence of an activity-enhancing component and a small amount of alkali metal salt. However, both have high reaction temperatures of 300° C. or higher, and problems remain as industrial catalysts.

本発明者らは、モリブデン、リンを含むヘテロポリ酸の
塩、たとえばカリウム、ルビジウム、セシウム、タリウ
ム塩が熱的に4、酸化還元雰囲気にも比較的安定である
が、モリブデン、リンを含んだフリーのへテロポリ酸〔
たとえば、X線回折(対陰極Cu−Ka)における2θ
=8.0°、8.9’、9.3′などのピーク群を持つ
〕は長時間の反応においてきわめて不安定となることの
原因を探究するなかで、電子顕微鏡、蛍光X線、X線回
折などの機器分析から、以下の如き知見をえてその原因
を推定した。
The present inventors found that salts of heteropolyacids containing molybdenum and phosphorus, such as potassium, rubidium, cesium, and thallium salts, are relatively stable thermally and in redox atmospheres, but free salts containing molybdenum and phosphorus are heteropolyacid [
For example, 2θ in X-ray diffraction (Anticathode Cu-Ka)
= 8.0°, 8.9', 9.3', etc.] was extremely unstable during long-term reactions. From instrumental analysis such as line diffraction, we obtained the following findings and estimated the cause.

すなわち本発明者らは劣化加速テストとして、高空間速
度、高濃度のメタクロレインかつ低濃度の酸素含有原料
ガスそして可能な限シ高い反応温度の採用という過酷な
反応条件下でモリブデン、リン、アルカリ金属塩を含む
(但しヘテロポリ酸を完全にそのアルカリ金属塩におき
かえていない状態)へテロポリ酸系触媒を用い、接触気
相酸化反応を触媒に対して遂行し、きわめて短時間で触
媒活性を低下せしめた。かかるテスト後の触媒を抜き出
し分析したところ、三酸化モリブデンの形成が認められ
ヘテロポリ酸やその塩が分解していることが明認された
のである。とくにフリーのへテロポリ酸祉反応中第3次
、第4次の凝集を起すため分解も起り易く触媒性能劣化
が著るしいことが認められた。
In other words, the present inventors carried out an accelerated deterioration test under severe reaction conditions of high space velocity, high concentration of methacrolein and low concentration of oxygen-containing raw material gas, and the highest possible reaction temperature. Using a heteropolyacid catalyst containing a metal salt (however, the heteropolyacid is not completely replaced with its alkali metal salt), a catalytic gas phase oxidation reaction is performed on the catalyst to reduce the catalytic activity in an extremely short period of time. I forced it. When the catalyst was extracted and analyzed after such a test, the formation of molybdenum trioxide was observed, clearly indicating that the heteropolyacid or its salt had decomposed. In particular, it was found that tertiary and quaternary aggregation occurs during the free heteropolyacid fertilization reaction, which tends to cause decomposition, resulting in a significant deterioration of catalyst performance.

そして、この現象を抑制するため、フリーのへテロポリ
酸に対し、X成分としてのカリウム、ルビジウム、セシ
ウムおよびタリウム、Y成分としテ銅、ヒ素、アンチモ
ン、コバルト、ジルコニウム、ビスマス、ニッケル、ク
ロム、マンガンオヨび亜鉛ならびにセリウムをそれぞれ
配合し、フリー酸の安定化をはかることによりフリー酸
の第3次、第4次の凝集をきわめて低く抑えうる触媒組
成物を見出し本発明を完成するに到ったものである。
In order to suppress this phenomenon, we added potassium, rubidium, cesium, and thallium as the X component to the free heteropolyacid, and copper, arsenic, antimony, cobalt, zirconium, bismuth, nickel, chromium, and manganese as the Y component. The inventors discovered a catalyst composition that can suppress the tertiary and quaternary agglomeration of free acids to an extremely low level by blending zinc and cerium to stabilize the free acids, thereby completing the present invention. It is.

すなわち、本発明は以下の如く特定される。That is, the present invention is specified as follows.

il+  メタクロレインを分子状酸素または分子状酸
素含有ガスにより気相接触酸化してメタクリル酸を製造
する際に、一般式 %式% 〔式中MO,v、 p、 Ce、 oはそれぞれモリブ
デン、バナジウム、リン、セリウムおよび酸素を示し、
Xはカリウム、ルビジウム、セシウムおよびタリウムよ
シなる群から選けれた少なくとも1種の元素を示し、Y
社銅、ヒ素、アンチモン、コバルト、ジルコニウム、ビ
スマス、ニッケル、クロム、マンガンおよび亜鉛よシな
る群から選けれた少なくとも1種の元素を示す。また添
字JL、 b、 es dz esfおよびgは各元素
の原子比を表わし、a=12としたとき、bNc%d%
e、fはそれぞれ0(ゼロ)を含まない3以下の値をと
シ、かつgti他の元素の原子価および原子比の僅によ
って定まる値をとる。〕 で表わされかつモリブドバナドリン酸を含有してなる触
媒組成物を使用することを%徴とするメタクリル酸の製
造方法。
il+ When producing methacrylic acid by vapor phase catalytic oxidation of methacrolein with molecular oxygen or molecular oxygen-containing gas, the general formula % formula % [In the formula, MO, v, p, Ce, and o are molybdenum and vanadium, respectively. , phosphorus, cerium and oxygen;
X represents at least one element selected from the group consisting of potassium, rubidium, cesium, and thallium, and Y
Indicates at least one element selected from the group consisting of copper, arsenic, antimony, cobalt, zirconium, bismuth, nickel, chromium, manganese, and zinc. Also, the subscripts JL, b, es dz esf and g represent the atomic ratio of each element, and when a = 12, bNc%d%
e and f each have a value of 3 or less and do not include 0 (zero), and take values determined by the valence and atomic ratio of gti and other elements. ] A method for producing methacrylic acid, which comprises using a catalyst composition represented by the following formula and containing molybdovanadric acid.

121  セリウム源として酸化セリウムを用いること
を特徴とする上記(1)記載の方法。
121 The method described in (1) above, characterized in that cerium oxide is used as the cerium source.

(3)Y成分の出発原料としてそれぞれの酸化物を用い
ることを特徴とする上記11)または121記載の方法
(3) The method described in 11) or 121 above, characterized in that each oxide is used as a starting material for the Y component.

本発明は上記のとおシであるが、その骨子は触媒中にお
いて遊離のへテロポリ酸をいかに安定化させ、性能を向
上させるかにある。そして、本発明においてはセリウム
酸化物およびタリウム、カリウム、ルビジウム、セシウ
ム成分が添加され存在する遊離のへテロポリ酸が安定化
される。そしてさらに触媒性能劣化には、銅、コバルト
などのY成分が添加され、これらY成分もヘテロポリ酸
と塩を形成しないように触媒中に存在させることが好結
果を与えることが知見されたものである。
The present invention is based on the above, but the gist of the invention lies in how to stabilize free heteropolyacid in a catalyst and improve its performance. In the present invention, cerium oxide and thallium, potassium, rubidium, and cesium components are added to stabilize the existing free heteropolyacid. Furthermore, it has been discovered that Y components such as copper and cobalt are added to reduce catalyst performance deterioration, and that good results can be obtained by including these Y components in the catalyst to prevent them from forming salts with heteropolyacids. be.

かくして本発明の特徴は、セリウム成分の添加効果であ
シその触媒中での形態およびY成分の添加時期の特定に
ある。
Thus, the feature of the present invention lies in the effect of adding the cerium component, the form of the cerium component in the catalyst, and the specification of the timing of addition of the Y component.

セリウム成分について述べると触媒中における形態は酸
化セリウムであることである。酸化セリウムはアルカリ
土類はど塩基性が強くないが塩基性を示す酸化物である
と一般には云われている。
Regarding the cerium component, the form in the catalyst is cerium oxide. Cerium oxide is generally said to be an oxide that exhibits basicity, although it is not as strongly basic as alkaline earths.

塩基性が強すぎるとメタクリル酸の分解等副反応が起シ
好ましくない。一方、塩基性か弱すぎるとヘテロポリ酸
とのたとえば酸塩基反応性が悪くなシ、遊離酸の安定性
の寄与があまシ期待できない。
If the basicity is too strong, side reactions such as decomposition of methacrylic acid occur, which is undesirable. On the other hand, if the basicity is too weak, the acid-base reactivity with heteropolyacids, for example, will be poor, and the stability of the free acid cannot be expected to contribute much.

この期待通シの結果は実施例および比較例で示すが、劣
化促進テスト中の触媒の変化をみると遊離酸の凝集は抑
制されてその結果三酸化モリブデンの生成紘かなシ抑制
された。また酸化セリウムの塩基性の効果として触媒全
体の酸塩基のコントロールに寄与して収率の向上が認め
られるものと考えられる。
This promising result will be shown in Examples and Comparative Examples, and when looking at the changes in the catalyst during the accelerated deterioration test, the aggregation of free acid was suppressed, and as a result, the formation of molybdenum trioxide was suppressed. It is also believed that the basicity of cerium oxide contributes to controlling the acid-base content of the entire catalyst, resulting in an improvement in yield.

酸化セリウムによるその他の効果について述べると、気
相酸素に対する親和性が高く、触媒上でのメタクロレイ
ン接触気相酸化反応中の触媒の酸化還元サイクルをきわ
めてスムーズに行なわしめる効果を有する。仁のことは
反応速度論的に気相酸素への依存性が零次により近くな
ることから確かめられた。さらにまた別の長所として、
モリブデン、リンを含むヘテロポリ酸系触媒(塩を含め
て)は一般に酸化力が強いとされているが、それにも拘
わらずメタクロレインに対する酸素比は、たとえば長年
工業化されてきているアクロレイン酸化によるアクリル
酸合成での反応条件に比べて通常は高い比率が要求され
るといわれる。しかしかかる欠点も酸化セリウムの存在
により酸素とメタクロレイン比の低い条件でも長期に反
応が可能となることが認められた。
Regarding other effects of cerium oxide, it has a high affinity for gas-phase oxygen, and has the effect of extremely smoothing the redox cycle of the catalyst during the methacrolein-catalyzed gas-phase oxidation reaction on the catalyst. This was confirmed from the fact that the dependence on gas phase oxygen was closer to zero order in terms of reaction kinetics. Yet another advantage is that
Heteropolyacid catalysts (including salts) containing molybdenum and phosphorus are generally said to have strong oxidizing power, but despite this, the oxygen to methacrolein ratio is low, for example, in the case of acrylic acid produced by acrolein oxidation, which has been industrialized for many years. It is said that a higher ratio is usually required compared to the reaction conditions in synthesis. However, despite this drawback, it was found that the presence of cerium oxide made it possible to carry out the reaction for a long period of time even under conditions where the ratio of oxygen to methacrolein was low.

さらに本発明にかかる触媒は、高い空間速度での反応で
も十分にその性能を発揮しうろことも長所としてあげら
れる。また、さらに酸化セリウムの添加により反応温度
が300℃以下でも反応活性が十分高いことがあげられ
る。
Another advantage of the catalyst of the present invention is that it can sufficiently exhibit its performance even in reactions at high space velocities. Furthermore, addition of cerium oxide can provide sufficiently high reaction activity even at a reaction temperature of 300° C. or lower.

以上の様にセリウム成分の添加効果についてのべたが、
かかるセリウム酸化物は遊離へテロポリ酸と出来るだけ
選択的に反応させられるようにY成分の添加前に添加せ
しめておくことが好ましい。
As mentioned above, we have talked about the effect of adding cerium component,
It is preferable to add such cerium oxide before adding the Y component so that it can react with the free heteropolyacid as selectively as possible.

次に本発明の特徴であるY成分について述べる。Next, the Y component, which is a feature of the present invention, will be described.

Y成分の添加効果は活性向上への寄与である。ここでY
成分の酸化物の大半は単独では弱い酸性を示すかせいぜ
い両性を示す酸化物である。本発明ではとのY成分の添
加に際してそれをY成分の少なくとも1種からなる酸化
物の形で触媒中に存在させることにより遊離のへテロポ
リ酸の安定化に寄与し、かつ性能の向上に寄与している
ことが認められた。Y成分の多くはたとえば水溶性の塩
を出発原料として使用した場合優先的にヘテロポリ酸の
塩を形成しやすい傾向にあるが、かかる塩はアルカリ金
属塩よシまた遊離へテロポリ酸よシ熱的に不安定となシ
やすい。従って本発明の特徴とするところであるが、セ
リウムは酸化物を使用してあらかじめ遊離へテロポリ酸
を酸塩基反応で安定化させておき、さらにY成分の添加
にあたっても遊離のへテロポリ酸と塩を形成させないよ
うに調製することにより遊離へテロポリ酸のよ多安定化
をはかり、触媒の性能の向上をはかシうる。したがって
、Y成分の添加にあたってその出発原料は必ずしも酸化
物である必要はなく触媒中に最終的に酸化物(ヘテロポ
リ酸の塩の形では彦くて)で存在できる原、料およびそ
の調製さえできればいいわけである。たとえば触媒調製
の一例を示すとモリブデン、リン、バナジウム、アルカ
リ金属成分を水溶液中にて反応させてそこへ酸化セリウ
ムを添加する。こうしてできたスラリーないし水溶液を
100℃近辺で乾燥後、Y成分を添加し打錠成形あるい
は水分を加えて押し出し成形するな夛通常の成形法で成
形後、焼成して触媒をえればよい。
The effect of adding the Y component is its contribution to improving the activity. Here Y
Most of the component oxides are weakly acidic or at most amphoteric oxides when used alone. In the present invention, when adding the Y component, it is present in the catalyst in the form of an oxide consisting of at least one Y component, thereby contributing to the stabilization of the free heteropolyacid and improving the performance. was recognized as doing so. Many of the Y components, for example, tend to preferentially form heteropolyacid salts when a water-soluble salt is used as a starting material; It is easily unstable. Therefore, a feature of the present invention is that the free heteropolyacid is stabilized in advance by an acid-base reaction using an oxide of cerium, and the free heteropolyacid and salt are also stabilized when adding the Y component. By preparing to prevent the formation of free heteropolyacids, it is possible to further stabilize the free heteropolyacid and improve the performance of the catalyst. Therefore, when adding the Y component, the starting material does not necessarily have to be an oxide, but as long as it can be prepared as a raw material that can ultimately exist in the catalyst as an oxide (not in the form of a heteropolyacid salt). That's good. For example, in one example of catalyst preparation, molybdenum, phosphorus, vanadium, and alkali metal components are reacted in an aqueous solution, and cerium oxide is added thereto. After drying the slurry or aqueous solution prepared in this manner at around 100° C., the Y component is added and the mixture is formed into tablets or extruded with the addition of water. After molding using a conventional molding method, the catalyst is calcined.

このようにセリウムの酸化物と遊離へテロポリ酸との結
合、さらにはヘテロポリ酸のカリウム、セシウム塩等の
共存或はバナジウム、銅、コバルト等の成分との相乗効
果により触媒の寿命が大巾に改善され、かつメタクリル
酸の高収率がもたらされるものである。本発明により調
製した触媒で加速テスト中の触媒の分析を行うと遊離へ
テロポリ酸の凝集が極力抑えられている事実、また触媒
表面積や細孔分布、細孔容量の変化がわずかである事実
、かつ三酸化モリブデンの生成が極力抑制されている事
実が確認された。
In this way, the life of the catalyst is greatly extended due to the combination of cerium oxide and free heteropolyacid, as well as the coexistence of potassium and cesium salts of heteropolyacid, or the synergistic effect with components such as vanadium, copper, and cobalt. improved yield of methacrylic acid. Analysis of the catalyst prepared according to the present invention during an accelerated test shows that aggregation of free heteropolyacids is suppressed to a minimum, and that changes in catalyst surface area, pore distribution, and pore volume are slight; It was also confirmed that the production of molybdenum trioxide was suppressed to the utmost.

本発明による触媒を使用するにあたってはその触媒組成
物を単味でベレット状、球状、円柱状、リング状等に押
し出しまたはタブレット成形したものを用いてもよく、
α−アルミナ、シリカアルミナ、シリコンカーバイド、
酸化チタン、酸化マグネシウム、アルミニウムスポンジ
などのアラかじめ成形された担体に含浸または付着させ
たものを用いてもよく、一方、シリコンカーバイド、珪
藻土、アルミナなどの粉末を加えて成形したものを用い
てもよい。また触媒原料物質としては種々のものが使用
可能である。たとえばモリブデン化合物としてパラモリ
ブデン酸アンモニウム、モリブデン酸、三酸化モリブデ
ン、リンモリブデン酸、リンパナトモリブデン酸等が、
バナジウム化合物としてメタバナジン酸アンモニウム、
五酸化バナジウム、イ6酸バナジル、*酸バナジル等が
、リン化合物としてリン酸、リン酸第1アンモニウム、
リン酸第2アンモニウム等が、X、Y成分としては、そ
れらの成分元素の水酸化物、硫酸塩、炭酸塩、酸化物等
が、゛またセリウム化合物はセリウム酸化物が使用され
る。
When using the catalyst according to the present invention, the catalyst composition may be extruded or tablet-molded into a pellet, spherical, cylindrical, ring, etc. shape.
α-alumina, silica alumina, silicon carbide,
It may be impregnated or adhered to a pre-formed carrier such as titanium oxide, magnesium oxide, or aluminum sponge, or it may be formed by adding powder of silicon carbide, diatomaceous earth, alumina, etc. Good too. Moreover, various materials can be used as catalyst raw materials. For example, molybdenum compounds include ammonium paramolybdate, molybdic acid, molybdenum trioxide, phosphomolybdic acid, lymphanatomolybdic acid, etc.
Ammonium metavanadate as a vanadium compound,
Vanadium pentoxide, vanadyl 6ate, vanadyl *acid, etc. are used as phosphorus compounds such as phosphoric acid, primary ammonium phosphate,
Secondary ammonium phosphate and the like are used as the X and Y components, hydroxides, sulfates, carbonates, oxides, etc. of these component elements are used, and cerium oxide is used as the cerium compound.

本発明による触媒をメタクロレインの気相接触酸化反応
(lこ用いる際の原料メタクロレインは純粋なガス状メ
タクロレインでも、一般にイソブチレンやターシャリ−
ブタノールを原料とする気相接触酸化反応でえもれたメ
タクロレイン含有ガスでも、または液相法で合成された
メタクロレインからえられるガス状メタクロレインでも
よく、とくに限定はされない。原料ガス社これらいずれ
かに分子状酸素を混合して用いられる。酸素源は工業的
には空気が有利である。その低希釈剤として不活性ガス
たとえば窒素ガス、炭酸ガス、ヘリウム、アルゴン、−
酸化炭素、水蒸気等を用いることができる。
The catalyst according to the present invention is used for the gas phase catalytic oxidation reaction of methacrolein (methacrolein as a raw material).
It may be a methacrolein-containing gas leaked from a gas phase catalytic oxidation reaction using butanol as a raw material, or a gaseous methacrolein obtained from methacrolein synthesized by a liquid phase method, and is not particularly limited. Raw Materials Gas Co., Ltd. Molecular oxygen is mixed with any of these and used. Air is industrially advantageous as the oxygen source. Inert gases such as nitrogen gas, carbon dioxide, helium, argon, -
Carbon oxide, water vapor, etc. can be used.

酸化反応におけるメタクロレイン濃度は0.5〜15容
量係、好ましくは1〜10容量係である。
The methacrolein concentration in the oxidation reaction is 0.5 to 15 volumes, preferably 1 to 10 volumes.

メタクロレインに対する酸素は容量比で0.5〜lOの
範囲、好ましくul〜5の範囲である。原料ガスの空間
速度は100〜5ooohr−1(STP)、好ましく
1d300〜3000hr−”(STP)の範囲が適当
である。反応温度#′1200〜350℃の範囲、好ま
しくれ240〜300℃である。反応圧は通常常圧近く
で操作されるが、加圧下でも減圧下でも可能である。
The volume ratio of oxygen to methacrolein is in the range of 0.5 to 10, preferably in the range of ul to 5. The space velocity of the raw material gas is suitably in the range of 100 to 5ooohr-1 (STP), preferably 1d300 to 3000hr-1 (STP).Reaction temperature #' is in the range of 1200 to 350°C, preferably 240 to 300°C. The reaction pressure is usually operated near normal pressure, but it is also possible to operate under increased pressure or reduced pressure.

本発明による触媒を用いる際に反応装置は一般に固定床
形式で用いるが、流動床、移動床のいずれの形式におい
ても用いることができる。
When using the catalyst according to the invention, the reactor is generally of a fixed bed type, but either a fluidized bed or a moving bed type can be used.

以下実施例、比較例をあけてさらに具体的に説明するが
本発明はこれに限定されるものではない。
The present invention will be described in more detail below with reference to Examples and Comparative Examples, but the present invention is not limited thereto.

なおこの実施例および比較例における転化率、選択率、
単流収率れつぎの定義による。
In addition, the conversion rate, selectivity,
Depends on the definition of single flow yield.

生成メタクリル酸のモル数 選択率(イ)= 消費メタン・レインのモル数 8”0
0実施例 l 三酸化モリブデン288.Of、五酸化バナジウム15
.29および85%オルトリン酸29.3 fを水1t
に加え、24時間加熱還流した。そこへ粉末状の酸化セ
リウム14.3 fおよび硝酸カリウム25.3 Fを
上記加熱溶液に添加し攪拌しながら、加熱濃縮した。え
られた粘土状物質を約100℃で4時間乾燥後粉砕しそ
こへ粉末状酸化銅2.72を加えよく混合したのち水を
2〇−加えてよく練ったのちさらに200℃で4時間乾
燥後5瓢程度の粒径に粉砕し、これを窒素気流中430
℃で3時間、つづいて空気気流中400℃で4時間焼成
した。こうしてえられた触媒の組成はMo1.V。
Selectivity of the number of moles of methacrylic acid produced (a) = Number of moles of consumed methane rhein 8”0
0 Example l Molybdenum trioxide 288. Of, vanadium pentoxide 15
.. 29.3 f of 29 and 85% orthophosphoric acid in 1 t of water
and heated under reflux for 24 hours. Thereto, 14.3 F of powdered cerium oxide and 25.3 F of potassium nitrate were added to the heated solution, and the solution was heated and concentrated while stirring. The obtained clay-like substance was dried at about 100℃ for 4 hours, then crushed, 2.72 kg of powdered copper oxide was added thereto, mixed well, 20% of water was added, kneaded well, and further dried at 200℃ for 4 hours. The powder was then crushed to a particle size of about 5 gourds, and then heated at 430 °C in a nitrogen stream.
C. for 3 hours, followed by firing at 400.degree. C. for 4 hours in a stream of air. The composition of the catalyst thus obtained was Mo1. V.

P 1.s K +、s Cu 6.2 Ce 6.6
 (酸素を除く原子比)であった。
P1. s K +, s Cu 6.2 Ce 6.6
(atomic ratio excluding oxygen).

この触媒20 mlを内径13mmのステンレスU字管
に充填し、270℃の溶融塩浴に浸漬した。この反応管
にメタクロレイン5モル%、酸素10モル幅、水蒸気3
0モル幅および窒素55モル% カらなる組成の混合ガ
スを導入し、その空間速度を1500hr−1(STP
)に保ちメタクロレインの酸化反応を行い触媒性能試験
を行ったところ、メタクロレイン転化率91.6%、メ
タクリル酸への選択率81.2係の結果をえた。
20 ml of this catalyst was filled into a stainless steel U-shaped tube with an inner diameter of 13 mm, and the tube was immersed in a molten salt bath at 270°C. In this reaction tube, 5 mol% of methacrolein, 10 mol of oxygen, and 3 mol% of water vapor were added.
A mixed gas with a composition of 0 molar width and 55 mol% nitrogen is introduced, and its space velocity is set to 1500 hr-1 (STP
), the oxidation reaction of methacrolein was carried out and a catalyst performance test was conducted, resulting in a methacrolein conversion rate of 91.6% and a selectivity to methacrylic acid of 81.2%.

次にこの触媒を用いて長期反応テストを行い性能の経時
変化をみた。反応条件はメタクロレインの製造用反応器
をメタクロレイン酸化長期反応テスト用装置の前段階に
設置し、その反応器にモリブテン−コバルト含有多元系
触媒を充填し、この反応器の出口ガス中にほぼメタクロ
レイン5モル係、酸素10モル幅、水蒸気30モル%が
含有されるようにイソブチレン、酸素、水蒸気、窒素を
導入し、えられた生成ガスを上記触媒に供給する方法で
長期反応テストを行った。長期反応テストの空間速度は
1500hr−1(STP)とし、反応温度は270℃
に設定した。その結果3000時間後の収率はメタクロ
レイン転化率92.0%、メタクリル酸への選択率は8
1.51であった。6000時間後にはメタクロレイン
転化率は91.3%、メタクリル酸への選択率線81.
4%、12000時間後には6000時間から反応温度
を4℃上昇させるだけでメタクロレイン転化率は#lぼ
一定の水準にあシタ1係台を示しメタクリル酸への選択
率は81憾台を維持した。
Next, we conducted long-term reaction tests using this catalyst to observe changes in performance over time. The reaction conditions were as follows: A reactor for producing methacrolein was installed before the methacrolein oxidation long-term reaction test equipment, and the reactor was filled with a molybten-cobalt-containing multi-component catalyst. A long-term reaction test was conducted by introducing isobutylene, oxygen, water vapor, and nitrogen to contain 5 mol of methacrolein, 10 mol of oxygen, and 30 mol % of water vapor, and supplying the resulting gas to the catalyst. Ta. The space velocity for the long-term reaction test was 1500 hr-1 (STP), and the reaction temperature was 270°C.
It was set to As a result, the yield after 3000 hours was 92.0% methacrolein conversion, and the selectivity to methacrylic acid was 8.
It was 1.51. After 6000 hours, the methacrolein conversion rate was 91.3%, and the selectivity line for methacrylic acid was 81.
4%, after 12,000 hours, by simply increasing the reaction temperature by 4°C from 6,000 hours, the methacrolein conversion rate remained at a constant level of #1, and the selectivity to methacrylic acid remained at a level of 81. did.

この12000時間反応後の触媒を抜き出し発熱ピーク
位の触媒のX線回折による三酸化モリブデンの生成状態
を調べたところごくわずかであるが認められる程度であ
った。
After 12,000 hours of reaction, the catalyst was taken out and the state of molybdenum trioxide formed was examined by X-ray diffraction of the catalyst at the exothermic peak position, and it was found that the amount of molybdenum trioxide was very small, but could be observed.

実施例 2 実施例1で得た触媒を用いて実施例1と同様の反応装置
を用いて以下の触媒劣化加速テスト方法を採用し寿命テ
ストとの対応を行った。すなわち、触媒性能試験を行っ
た後、溶融塩浴温度を380℃にあけ、更に供給ガス組
成を容量比でメタクロレイン:酸素:窒素:水蒸気=2
:6:32:10となるように変更し、かつ空間速度を
2000hr−1(STP)で連続して通過させ、各時
間経過後に塩浴温度、供給ガス組成、空間速度を触媒性
能試験条件に戻して性能テストを行い、次に反応条件を
劣化加速テスト条件に戻すことを繰り返すことにより長
期反応テストの対応を行った。その結果反応当初の触媒
性能試験条件社メタクロレインの転化率91.2%、メ
タクリル酸への選択率81.4%の結果であった。その
後劣化加速テスト時間300時間抜メタクロレインの転
化率は88.6%、メタクリル酸への選択率は81.7
%、500時間後メタクロレイン転化率86.0憾、メ
タクリル酸への選択率81.0%、1000時間後のメ
タクロレイン転化率80.1%、メタクリル酸選択率7
8.2 %であった。1000時間反応テスト後の触媒
を抜き出しX線回折により三酸化モリブデンの生成状態
を調べたところピークの存在がわずかであるが認められ
る程度であった。
Example 2 Using the catalyst obtained in Example 1 and using the same reaction apparatus as in Example 1, the following accelerated catalyst deterioration test method was adopted to perform a life test. That is, after conducting a catalyst performance test, the molten salt bath temperature was raised to 380°C, and the supply gas composition was changed to methacrolein:oxygen:nitrogen:steam=2 in a volume ratio.
:6:32:10, and the space velocity was changed to 2000 hr-1 (STP), and after each time period, the salt bath temperature, feed gas composition, and space velocity were adjusted to the catalyst performance test conditions. A long-term reaction test was carried out by repeating the process of returning the sample to the performance test and then returning the reaction condition to the accelerated deterioration test condition. As a result, under the catalyst performance test conditions at the beginning of the reaction, the conversion rate of methacrolein was 91.2% and the selectivity to methacrylic acid was 81.4%. The conversion rate of methacrolein after 300 hours of accelerated deterioration test was 88.6%, and the selectivity to methacrylic acid was 81.7.
%, methacrolein conversion after 500 hours 86.0%, selectivity to methacrylic acid 81.0%, methacrolein conversion after 1000 hours 80.1%, methacrylic acid selectivity 7
It was 8.2%. After the 1000 hour reaction test, the catalyst was taken out and the state of molybdenum trioxide formation was examined by X-ray diffraction, and the presence of a peak was slight but noticeable.

比較例 1〜6 実施例1の触媒調製法においてオルトリン酸、硝酸カリ
ウム、酸化セリウムおよび酸化鋼を添加しない触媒(比
較例1)、硝酸カリウム、酸化セリウムおよび酸化鋼を
添加しない触媒(比較例2)、五酸化バナジウムおよび
酸化銅を添加しない触媒(比較例3)、オルトリン酸お
よび酸化銅を添加しない触媒(比較例4)、硝酸カリウ
ムおよび酸化銅を添加しない触媒(比較例5)をそれぞ
れ調製し実施例1と同じ反応条件で触媒性能試験を行っ
た。さらに酸化セリウムを添加しないで実施例1の方法
に従って調製した触媒(比較例6)を用いて触媒劣化加
速テストおよび触媒性能試験を実施例2と同じ反応条件
で行った。その結果を表−1に示す。
Comparative Examples 1 to 6 A catalyst in which orthophosphoric acid, potassium nitrate, cerium oxide, and oxidized steel are not added in the catalyst preparation method of Example 1 (Comparative Example 1), a catalyst in which potassium nitrate, cerium oxide, and oxidized steel are not added (Comparative Example 2), A catalyst to which vanadium pentoxide and copper oxide were not added (Comparative Example 3), a catalyst to which orthophosphoric acid and copper oxide were not added (Comparative Example 4), and a catalyst to which potassium nitrate and copper oxide were not added (Comparative Example 5) were prepared and used in Examples. A catalyst performance test was conducted under the same reaction conditions as in Example 1. Further, a catalyst deterioration acceleration test and a catalyst performance test were conducted under the same reaction conditions as in Example 2 using a catalyst prepared according to the method of Example 1 without adding cerium oxide (Comparative Example 6). The results are shown in Table-1.

比較例 7 三酸化モリブデン288.Of、五酸化バナジウムl 
5.2 tおよび85チオルトリン酸29.3 fを水
Xtに加え24時間加熱還流した。そこへ硝酸銅8.1
f、硝酸カリウム25.39および酸化セリウム14.
39を加え攪拌しながら加熱濃縮した。
Comparative Example 7 Molybdenum trioxide 288. Of, vanadium pentoxide l
5.2 t and 29.3 f of 85 thiorthophosphoric acid were added to water Xt and heated under reflux for 24 hours. Copper nitrate 8.1 there
f, potassium nitrate 25.39 and cerium oxide 14.
39 was added, and the mixture was heated and concentrated while stirring.

えられた粘土状物質を約100℃で4時間乾燥後粉砕し
、そこへ20−の水を加えてよく練ったのちさらに20
0℃で4時間乾燥後、5m程度に粉砕し、これを窒素気
流中430℃で3時間、つづいて空気流通下400℃で
4時間焼成した。こうして得られた触媒の組成/d M
o l* Vt P t、s Ki、s Cuo、xC
eo、5(酸素を除く原子比)であった。
The resulting clay-like material was dried at about 100°C for 4 hours, crushed, added with 20% water, kneaded well, and further crushed with 20% water.
After drying at 0° C. for 4 hours, it was pulverized to a size of about 5 m, and this was calcined at 430° C. in a nitrogen stream for 3 hours, and then at 400° C. in an air stream for 4 hours. Composition of the catalyst thus obtained/d M
o l* Vt P t, s Ki, s Cuo, xC
eo, 5 (atomic ratio excluding oxygen).

この触媒の触媒性能試験及び劣化加速テストを実施例1
および2の方法に従って実施した。その結果を表2に示
した。
Example 1: Catalytic performance test and accelerated deterioration test of this catalyst
It was carried out according to method 2. The results are shown in Table 2.

表−2から明らかなようにY成分の添加時期をかえてか
つ硝酸銅の形で添加して触媒焼成後へテロポリ酸の銅塩
を形成させ得るように触媒を調製した場合活性の低下が
大きいことがわかる。
As is clear from Table 2, when the catalyst is prepared by changing the timing of addition of the Y component and adding it in the form of copper nitrate to form a copper salt of heteropolyacid after catalyst calcination, the activity decreases significantly. I understand that.

実施例 3〜21 表−3に示す各触媒の調製は実施例1の方法に従って行
なったが、その際オルトリン酸量、五酸化バナジウム量
、硝酸カリウム量、酸化鋼および酸化セリウムの添加量
をかえた。その他はすべてメタクロレインの酸化反応に
よる触媒性能試験をもふくめて実施例1に従って行った
。見られた結果を表−3に示す。
Examples 3 to 21 Each catalyst shown in Table 3 was prepared according to the method of Example 1, but the amount of orthophosphoric acid, vanadium pentoxide, potassium nitrate, steel oxide, and cerium oxide were changed. . All other procedures were carried out in accordance with Example 1, including the catalytic performance test using the oxidation reaction of methacrolein. The results obtained are shown in Table 3.

実施例 22〜24 表−4に示す各触媒の調製は硝酸カリウムの代りにそれ
ぞれ硝酸ルビジウム、硝酸セシウム、硝酸タリウムを使
用する以外は実施例1の方法に従って行い、またメタク
ロレイン酸化反応の性能試験も実施例1に従って行った
。えられた結果を表−4に示す。
Examples 22 to 24 Each catalyst shown in Table 4 was prepared according to the method of Example 1 except that rubidium nitrate, cesium nitrate, and thallium nitrate were used instead of potassium nitrate, and the performance test for methacrolein oxidation reaction was also carried out. It was carried out according to Example 1. The results obtained are shown in Table 4.

実施例 25 加熱した水1.2tにモリブデン酸アンモニウム353
.29とメタバナジン酸アンモニウム19.52および
85%オルトリン酸29.3 tを溶解し攪拌した。そ
こ閣50ゴの水に溶解した硝酸カリウム25.3 Fを
添加し、さらに硝酸水溶液を加えてPHを1近辺に調整
してから粉末状酸化セリウム14.39を加えて攪拌し
ながら加熱濃縮した。えられた粘土状物質を約100℃
で乾燥後、粉砕しその粉末イ・20m7!の水に硝酸コ
バル) 14.62を溶解した水溶液でよく練ったのち
200℃で4時間乾燥後5閣程度の粒径に粉砕し、これ
を窒素気流中430℃で3時間、つづいて空気気流中4
00℃で4時間焼成した。こうしてえられた触媒の組成
はMo 12 VIP +、s Kl、5 Co o、
s Ce o、s (酸素を除く原子比)であった。
Example 25 353 ammonium molybdate in 1.2 t of heated water
.. 29, 19.52 t of ammonium metavanadate, and 29.3 t of 85% orthophosphoric acid were dissolved and stirred. 25.3 F of potassium nitrate dissolved in 50 g of water was added thereto, an aqueous nitric acid solution was added to adjust the pH to around 1, and then 14.39 g of powdered cerium oxide was added, followed by heating and concentration with stirring. The resulting clay-like substance is heated to approximately 100℃.
After drying, crush the powder and 20m7! After kneading well with an aqueous solution of cobal nitrate (14.62) dissolved in water, the mixture was dried at 200°C for 4 hours and then ground to a particle size of about 500ml. 4th year middle school
It was baked at 00°C for 4 hours. The composition of the catalyst thus obtained was Mo 12 VIP +, s Kl, 5 Co o,
s Ce o,s (atomic ratio excluding oxygen).

この触媒を用いて実施例1におけると同様に反応を実施
した。その結果を表−5に示す。
The reaction was carried out in the same manner as in Example 1 using this catalyst. The results are shown in Table-5.

実施例 26〜33 実施例25における硝酸コバルトの代シ硝酸ニッケル、
酸化クロム、酸化マンガン、硝酸ビスマス、酸化亜鉛、
亜ヒ酸、酸化アンチモン、酸化ジルコニウムを用いて実
施例25の方法に従って触媒の調製を行った。触媒性能
試験は実施例1の方法に従った。結果を表−5に示す。
Examples 26 to 33 Nickel nitrate substituted for cobalt nitrate in Example 25,
Chromium oxide, manganese oxide, bismuth nitrate, zinc oxide,
A catalyst was prepared according to the method of Example 25 using arsenite, antimony oxide, and zirconium oxide. The catalyst performance test followed the method of Example 1. The results are shown in Table-5.

Claims (3)

【特許請求の範囲】[Claims] (1)メタクロレインを分子状酸素または分子状酸素含
有ガスにより気相接触酸化してメタクリル酸を製造する
際に、一般式 Mo_aV_bP_cX_dY_eCe_fO_g〔式
中Mo、V、P、Ce、Oはそれぞれモリブデン、バナ
ジウム、リン、セリウムお よび酸素を示し、Xはカリウム、ルビジウ ム、セシウムおよびタリウムよりなる群か ら選ばれた少なくとも1種の元素を示し、 Yは銅、ヒ素、アンチモン、コバルト、ジ ルコニウム、ビスマス、ニッケル、クロム、マンガンお
よび亜鉛よりなる群から選ばれ た少なくとも1種の元素を示す。また添字 a、b、c、d、e、fおよびgは各元素の原子比を表
わし、a=12としたとき、b、c、d、e、fはそれ
ぞれ0(ゼロ)を含まない3以下の値をとりかつgは他
の元素の原子 価および原子比の値によって定まる値をと る。〕 で表わされかつモリブドバナドリン酸を含有してなる触
媒組成物を使用することを特徴とするメタクリル酸の製
造方法。
(1) When producing methacrylic acid by vapor phase catalytic oxidation of methacrolein with molecular oxygen or molecular oxygen-containing gas, the general formula Mo_aV_bP_cX_dY_eCe_fO_g [wherein Mo, V, P, Ce, and O are molybdenum and vanadium, respectively] , phosphorus, cerium, and oxygen; , represents at least one element selected from the group consisting of manganese and zinc. Also, the subscripts a, b, c, d, e, f and g represent the atomic ratio of each element, and when a=12, b, c, d, e, f are respectively 3 excluding 0 (zero). The following values are taken, and g takes a value determined by the valence and atomic ratio values of other elements. ] A method for producing methacrylic acid, which comprises using a catalyst composition represented by the following formula and containing molybdovanadric acid.
(2)セリウム源として酸化セリウムを用いることを特
徴とする特許請求の範囲(1)記載の方法。
(2) The method according to claim (1), characterized in that cerium oxide is used as the cerium source.
(3)Y成分の出発原料としてそれぞれの酸化物を用い
ることを特徴とする特許請求の範囲(1)または(2)
記載の方法。
(3) Claim (1) or (2) characterized in that each oxide is used as the starting material for the Y component.
Method described.
JP59123746A 1984-06-18 1984-06-18 Production of methacrylic acid Granted JPS615043A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59123746A JPS615043A (en) 1984-06-18 1984-06-18 Production of methacrylic acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59123746A JPS615043A (en) 1984-06-18 1984-06-18 Production of methacrylic acid

Publications (2)

Publication Number Publication Date
JPS615043A true JPS615043A (en) 1986-01-10
JPH0133217B2 JPH0133217B2 (en) 1989-07-12

Family

ID=14868296

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59123746A Granted JPS615043A (en) 1984-06-18 1984-06-18 Production of methacrylic acid

Country Status (1)

Country Link
JP (1) JPS615043A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1052016A2 (en) * 1999-04-27 2000-11-15 Nippon Shokubai Co., Ltd P- and Mo-based multimetallic catalyst, its preparation and its use for producing methacrylic acid
WO2001047857A1 (en) * 1999-12-24 2001-07-05 Samsung General Chemicals Co., Ltd. Preparation method of methacrylic acid
US6583316B1 (en) 1999-05-13 2003-06-24 Nippon Shokubai Co., Ltd. Catalysts for production of unsaturated aldehyde and unsaturated carboxylic acid and a process for producing unsaturated aldehyde and unsaturated carboxylic acid using the catalysts
JP2011224505A (en) * 2010-04-22 2011-11-10 Mitsubishi Rayon Co Ltd Catalyst for producing methacrylic acid and method for producing the same, and method for producing methacrylic acid

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS552619A (en) * 1978-06-21 1980-01-10 Nippon Kayaku Co Ltd Preparation of methacrylic acid and catalyst
JPS55100324A (en) * 1979-01-23 1980-07-31 Nippon Kayaku Co Ltd Preparation of methacrolein and methacrylic acid
JPS55122734A (en) * 1979-03-16 1980-09-20 Nippon Kayaku Co Ltd Preparation of methacrylic acid and its catalyst
JPS60239439A (en) * 1984-05-14 1985-11-28 Nippon Shokubai Kagaku Kogyo Co Ltd Production of methacrylic acid

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS552619A (en) * 1978-06-21 1980-01-10 Nippon Kayaku Co Ltd Preparation of methacrylic acid and catalyst
JPS55100324A (en) * 1979-01-23 1980-07-31 Nippon Kayaku Co Ltd Preparation of methacrolein and methacrylic acid
JPS55122734A (en) * 1979-03-16 1980-09-20 Nippon Kayaku Co Ltd Preparation of methacrylic acid and its catalyst
JPS60239439A (en) * 1984-05-14 1985-11-28 Nippon Shokubai Kagaku Kogyo Co Ltd Production of methacrylic acid

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1052016A2 (en) * 1999-04-27 2000-11-15 Nippon Shokubai Co., Ltd P- and Mo-based multimetallic catalyst, its preparation and its use for producing methacrylic acid
US6339037B1 (en) 1999-04-27 2002-01-15 Nippon Shokubai Co. Ltd Catalysts for methacrylic acid production and process for producing methacrylic acid
EP1052016A3 (en) * 1999-04-27 2002-03-06 Nippon Shokubai Co., Ltd P- and Mo-based multimetallic catalyst, its preparation and its use for producing methacrylic acid
US6583316B1 (en) 1999-05-13 2003-06-24 Nippon Shokubai Co., Ltd. Catalysts for production of unsaturated aldehyde and unsaturated carboxylic acid and a process for producing unsaturated aldehyde and unsaturated carboxylic acid using the catalysts
WO2001047857A1 (en) * 1999-12-24 2001-07-05 Samsung General Chemicals Co., Ltd. Preparation method of methacrylic acid
KR100414806B1 (en) * 1999-12-24 2004-01-13 삼성아토피나주식회사 Preparation method of methacrylic acid
JP2011224505A (en) * 2010-04-22 2011-11-10 Mitsubishi Rayon Co Ltd Catalyst for producing methacrylic acid and method for producing the same, and method for producing methacrylic acid

Also Published As

Publication number Publication date
JPH0133217B2 (en) 1989-07-12

Similar Documents

Publication Publication Date Title
US4419270A (en) Oxidation catalyst
JP4642337B2 (en) Process for producing catalysts for the oxidation and ammoxidation of olefins
US8252714B2 (en) Method for producing catalyst for use in production of unsaturated aldehyde and/or unsaturated carboxylic acid, and method for producing unsaturated aldehyde and/or unsaturated carboxylic acid
US6946422B2 (en) Preparation of mixed metal oxide catalysts for catalytic oxidation of olefins to unsaturated aldehydes
JP2014185164A (en) Method for catalytic gas-phase oxidation of propene to acrylic acid
EP1986986B1 (en) Process of making mixed metal oxide catalysts for the production of unsaturated aldehydes from olefins
US6458740B2 (en) Method for preparing heteropolyacid catalyst and method for producing methacrylic acid
US8586499B2 (en) Method for producing catalyst for preparation of methacrylic acid and method for preparing methacrylic acid
US5166119A (en) Preparation of catalysts for producing methacrolein and methacrylic acid
US3928462A (en) Catalytic process for the preparation of methacrolein
WO2004089959A2 (en) Mixed metal oxide catalysts for the production of unsaturated aldehydes from olefins
JP4503444B2 (en) Catalyst for producing acrylonitrile and method for producing acrylonitrile
JPS6123020B2 (en)
US7232788B2 (en) Mixed metal oxide catalysts for the production of unsaturated aldehydes from olefins
JPH0210695B2 (en)
JPH0232017B2 (en)
JPS615043A (en) Production of methacrylic acid
JPH0133097B2 (en)
JPS6033539B2 (en) Oxidation catalyst and its preparation method
JPS6035179B2 (en) Oxidation catalyst and its preparation method
JP2003164763A (en) Method for manufacturing composite oxide catalyst for oxidizing propylene
JPH0622679B2 (en) Method for preparing catalyst for methacrylic acid production
EP0141797B1 (en) Catalysts for the oxidation and ammoxidation of olefins and their use making acrylonitrile
JPS6035180B2 (en) Oxidation catalyst and its preparation method
WO2000072964A1 (en) Catalyst for methacrylic acid production and process for producing methacrylic acid