JPS63223605A - Optical filter element - Google Patents

Optical filter element

Info

Publication number
JPS63223605A
JPS63223605A JP62055169A JP5516987A JPS63223605A JP S63223605 A JPS63223605 A JP S63223605A JP 62055169 A JP62055169 A JP 62055169A JP 5516987 A JP5516987 A JP 5516987A JP S63223605 A JPS63223605 A JP S63223605A
Authority
JP
Japan
Prior art keywords
regions
wavelength
distributed feedback
optical
end faces
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62055169A
Other languages
Japanese (ja)
Other versions
JPH0671119B2 (en
Inventor
Takaaki Numai
沼居 貴陽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP5516987A priority Critical patent/JPH0671119B2/en
Publication of JPS63223605A publication Critical patent/JPS63223605A/en
Publication of JPH0671119B2 publication Critical patent/JPH0671119B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)
  • Photo Coupler, Interrupter, Optical-To-Optical Conversion Devices (AREA)

Abstract

PURPOSE:To obtain a variable tuning width of a large selection wavelength by forming both end faces of an element which is disposed with plural distributed feedback regions having phase shift structure and active regions in series and are coupled optically into non-reflection structure. CONSTITUTION:A lambda/4 shift diffraction grating is formed to the distributed feedback regions 201, 202 on an n-type InP substrate 110. After an InP clad layer 150 and active layer 140 of the regions 201, 202 are selectively removed, a p-type InP clad layer 160 is formed over the entire part. Grooves for electrical sepn. of amplifier regions 101, 102 and the regions 201, 202 are formed by executing mesa etching followed by embedment growth. An SiN film 170 is thereafter formed in order to decrease the reflectivity at both end faces of the element to <=1%. The oscillation of the element as a distributed feedback type laser is caused unless both end faces 170 have the nonreflection structure. Addition of the transmission prohibition wavelength region of the 2nd distributed feedback regions to the wavelength regions where the prohibition is heretofore not possible with the single distributed feedback region alone is thereby permitted and the wavelength selection width is increased.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、光フィルタ素子、特に分布帰還構造を有する
光フィルタ素子に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an optical filter element, and particularly to an optical filter element having a distributed feedback structure.

〔従来の技術〕[Conventional technology]

波長多重化光信号から任意の光信号を選択する機能を有
する光フィルタ素子は、光伝送、光交換。
Optical filter elements that have the function of selecting any optical signal from wavelength multiplexed optical signals are used in optical transmission and optical exchange.

光情報処理等において広範な用途に応用可能なキーデバ
イスの1つである。そして、いずれの用途においても光
フィルタ素子の特性として十分な波長選択度と選択波長
の広い可変同調幅が必要とされている。また、構造とし
て光集積回路化が不可欠なことから、任意の選択したい
波長のみを透過する透過型の波長選択フィルタであるこ
とも必要である。
It is one of the key devices that can be applied to a wide range of applications such as optical information processing. In any of the applications, the characteristics of the optical filter element are required to have sufficient wavelength selectivity and a wide variable tuning range of the selected wavelength. Furthermore, since optical integrated circuit structure is essential, it is also necessary to use a transmission type wavelength selection filter that transmits only a desired wavelength.

従来から、透過型の波長選択フィルタに関してはいくつ
かの検討がなされている。その中で、半導体活性層を用
いた光増幅素子内に波長選択性のある光帰還構造を設け
た構造の光フィルタ素子が、活性層への注入キャリア濃
度により選択波長の可変同調が可能で、かつ透過型の集
積化に適しているという点から期待を集めている。特に
光帰還構造としては、襞間によるファブリ・ベロー共振
器よりも回折格子から成る分布帰還構造の方が、波長選
択性および光集積化の点で有利であり、それらの構造を
用いた光フィルタ素子の提案および理論的検討もされて
いる〔オプティクス・コミュニケーションズ(Opti
cs Communications)第10巻。
Conventionally, several studies have been made regarding transmission type wavelength selection filters. Among these, an optical filter element has a structure in which an optical feedback structure with wavelength selectivity is provided within an optical amplification element using a semiconductor active layer, and the selected wavelength can be tunable by changing the concentration of carriers injected into the active layer. It is also attracting high expectations because it is suitable for transparent integration. In particular, as an optical feedback structure, a distributed feedback structure consisting of a diffraction grating is more advantageous than a Fabry-Bello resonator between folds in terms of wavelength selectivity and optical integration. Element proposals and theoretical studies have also been made [Optics Communications (Opti
cs Communications) Volume 10.

120ページ参照〕。See page 120].

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、これら従来から提案され、検討されてき
た光増幅素子内に分布帰還構造を有する光フィルタ素子
は、選択波長の同調のために活性層への注入キャリア濃
度を調整した場合、同時に選択波長に対する光利得およ
び自然放出光強度も変化するため、光フィルタ素子とし
て必要な波長選択度を得るため、および対雑音信号強度
比を得るためには、活性層への注入キャリア濃度が原理
上狭く限定され、その結果として選択波長の可変同調幅
が数人程度と小さいため、数チャンネルのフィルタとし
てしか使えないという欠点があった。
However, in the optical filter elements that have a distributed feedback structure in the optical amplification element that has been proposed and studied in the past, when the carrier concentration injected into the active layer is adjusted to tune the selected wavelength, at the same time Since the optical gain and the spontaneous emission intensity also change, the carrier concentration injected into the active layer must be narrowly limited in principle in order to obtain the wavelength selectivity necessary for an optical filter element and to obtain the signal strength to noise ratio. As a result, the variable tuning range of the selected wavelength is as small as a few people, so it has the disadvantage that it can only be used as a filter for a few channels.

本発明の目的は、増幅機能を有し、かつ上述の欠点を除
去した、大きな選択波長の可変同調幅を得ることのでき
る数十チャンネル以上の光フィルタ素子を提供すること
にある。
SUMMARY OF THE INVENTION An object of the present invention is to provide an optical filter element having several tens of channels or more, which has an amplification function, eliminates the above-mentioned drawbacks, and is capable of obtaining a large variable tuning width of selected wavelengths.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の光フィルタ素子は、位相シフト構造を有する複
数の分布帰還領域と複数の活性領域とが直列に配置され
、かつ光学的に結合されて成る素子の両端面が無反射構
造となっていることを特徴としている。
In the optical filter element of the present invention, a plurality of distributed feedback regions having a phase shift structure and a plurality of active regions are arranged in series and optically coupled, and both end faces of the element have a non-reflection structure. It is characterized by

〔作用〕[Effect]

分布帰還構造を有する光導波路の光透過特性は、透過波
長域において光利得をもたない場合、各分布帰還領域の
光学的位相がそろっているときには、その回折格子の光
学的周期から定まるブラッグ波長を中心に数十人程度の
1つの透過阻止波長域を形成する。一方、分布帰還領域
の中央を境にして両側で光学的位相がπずれた場合(こ
の場合、素子内を伝播する光の波長をλとすると、回折
格子のピッチがλ/4だけずれたことに対応するので、
λ/4シフト構造と呼ばれる)は、透過阻止波長域は分
裂し、上述の数十人程度の透過阻止波長域の中央に1〜
2人程度以下の狭い幅の透過波長域が生じる。このλ/
4シフト構造を有する分布帰還領域をもつ光導波路層を
透過波長より短波側の組成の半導体で構成すれば光利得
がないため、キャリア注入によりブラッグ波長を中心と
する1〜2人程度以下の狭い幅で大きな波長選択幅が得
られ、さらに自然放出光による対雑音強度比の劣化を生
じることもない。
The optical transmission characteristic of an optical waveguide having a distributed feedback structure is that when it has no optical gain in the transmission wavelength range, when the optical phase of each distributed feedback region is aligned, the optical transmission characteristic is the Bragg wavelength determined by the optical period of the diffraction grating. A transmission-blocking wavelength range of about several dozen people is formed around the . On the other hand, if the optical phase is shifted by π on both sides of the center of the distributed feedback region (in this case, if the wavelength of the light propagating in the element is λ, then the pitch of the diffraction grating is shifted by λ/4). Since it corresponds to
(called a λ/4 shift structure), the transmission blocking wavelength range is split, and there is a
A narrow transmission wavelength range of about two wavelengths or less is generated. This λ/
If an optical waveguide layer with a distributed feedback region with a 4-shift structure is constructed of a semiconductor with a composition on the shorter wavelength side than the transmission wavelength, there will be no optical gain. A wide wavelength selection width can be obtained, and furthermore, the deterioration of the noise intensity ratio due to spontaneous emission light does not occur.

また、外部から位相シフト領域に電流を注入すると、位
相シフト量を調節することができる0位相シフト量によ
って、透過特性は、第3図(位相シフト量を変えたとき
の光フィルタ素子の透過特性を示す)のように変化し、
ブラッグ波長を中心とする数人〜数10人程度の波長域
の任意の波長を選択できる可変同調可能な透過型光フィ
ルタ素子が得られる。すなわち、位相シフト量を可変に
することによって、位相シフト量がλ/4のみに固定さ
れた場合よりも、さらに可変波長幅を大きくすることが
できる。
In addition, when a current is injected from the outside into the phase shift region, the amount of phase shift can be adjusted.The amount of phase shift can be adjusted to zero. ),
A tunable transmission optical filter element that can select any wavelength in a wavelength range of several to several dozen wavelengths centered on the Bragg wavelength can be obtained. That is, by making the phase shift amount variable, the variable wavelength width can be made larger than when the phase shift amount is fixed only to λ/4.

前述の光導波路層は利得をもっていないので、増幅機能
を有する光フィルタ素子を構成するためには、活性領域
と分布帰還領域とを光学的に結合させてやればよい、す
なわち、光を活性領域に注入して増幅した後に分布帰還
領域に透過させる構造にすれば、増幅機能をもった光フ
ィルタ素子を得ることができる。
Since the optical waveguide layer described above has no gain, in order to construct an optical filter element with an amplification function, it is sufficient to optically couple the active region and the distributed feedback region. If the structure is such that the light is injected, amplified, and then transmitted through the distributed feedback region, an optical filter element with an amplification function can be obtained.

ここで、注意すべき点が1つ存在する。すなわち、光フ
ィルタ素子の両端面を無反射構造としなければならない
という点である。この理由は、もし無反射構造となって
いなければ、DBR(分布帰還型)レーザとして発振し
てしまうからである。
Here, there is one point that should be noted. That is, both end faces of the optical filter element must have a non-reflective structure. The reason for this is that if it does not have a non-reflection structure, it will oscillate as a DBR (distributed feedback) laser.

さて、ここで本発明の特徴であるが、本発明では、複数
の分布帰還(D B R)領域を直列に配置した構成に
なっている。もし、分布帰還領域が単数であれば、波長
選択幅は透過阻止波長域の半分に制限されてしまう。し
かしながら、本発明のように分布帰還領域を複数個設け
、かつ単数の分布帰還領域だけでは阻止できなかった波
長領域に第2の分布帰還領域の透過阻止波長域を合わせ
ることによって、波長選択幅を太き(することができる
Now, the feature of the present invention is that the present invention has a configuration in which a plurality of distributed feedback (DBR) regions are arranged in series. If there is a single distributed feedback region, the wavelength selection width will be limited to half of the transmission blocking wavelength region. However, as in the present invention, by providing a plurality of distributed feedback regions and matching the transmission blocking wavelength range of the second distributed feedback region to the wavelength range that could not be blocked by a single distributed feedback region, the wavelength selection width can be increased. thick (can be)

〔実施例〕〔Example〕

次に図面を参照して本発明の実施例を詳細に説明する。 Next, embodiments of the present invention will be described in detail with reference to the drawings.

第1図は、本発明の一実施例の光フィルタ素子の構造を
示す斜視図である。以下、製作手順に従いながら本実施
例の構造について説明する。まず、n形1nP基wil
lo上の分布帰還(DBR)jJI域201.202に
周期2400人のλ/4シフト回折格子を形成する。次
に1回目のLPE成長(液相成長)に、よってノンドー
プInGaAsP光ガイド層120(λ9 =1.3 
pta+厚さ0.3 μm)、 n形InPバッファ層
130(厚さ0.1 μ111)、ノンドープ活性層1
40(λ、 =1.537761.厚さ0.1 #Il
+)、 I)形1nPクラッド層150(厚さ0.2μ
m)を順次成長する。次に分布帰還領域201.202
のInPクラッド層150と活性層140とを選択的に
除去する。次に2回目のLPE成長によって全体にp形
1nPクラッド層160を形成する。
FIG. 1 is a perspective view showing the structure of an optical filter element according to an embodiment of the present invention. The structure of this embodiment will be explained below while following the manufacturing procedure. First, n-type 1nP group wil
A λ/4 shift diffraction grating with a period of 2400 is formed in the distributed feedback (DBR) jJI region 201 and 202 on lo. Next, in the first LPE growth (liquid phase growth), the non-doped InGaAsP optical guide layer 120 (λ9 = 1.3
pta+thickness 0.3 μm), n-type InP buffer layer 130 (thickness 0.1 μm), non-doped active layer 1
40(λ, =1.537761.Thickness 0.1 #Il
+), I) type 1nP cladding layer 150 (thickness 0.2μ
m) are grown sequentially. Next, the distributed feedback area 201.202
The InP cladding layer 150 and active layer 140 are selectively removed. Next, a p-type 1nP cladding layer 160 is formed over the entire structure by a second LPE growth.

次に埋め込み構造とするためにメサエッチングを行った
後、3回目のLPE成長によって埋め込み成長を行う。
Next, mesa etching is performed to form a buried structure, and then buried growth is performed by a third LPE growth.

ここでは、埋め込み構造として二重チャンネルプレーナ
埋め込み構造を用いた。最後に基板側と成長層側に電極
を形成した後、増幅領域100.101と分布帰還領域
201.202との間の電気的な分離を行うために中央
のメサ付近を除いて幅20μmの溝を形成する。その後
、プラズマCVD装置を用いて素子の両端面の反射率を
1%以下に低減するためにSiN膜170を形成する。
Here, a double channel planar embedding structure was used as the embedding structure. Finally, after forming electrodes on the substrate side and the growth layer side, a groove with a width of 20 μm is formed except for the vicinity of the central mesa in order to electrically isolate the amplification region 100.101 and the distributed feedback region 201.202. form. Thereafter, a SiN film 170 is formed using a plasma CVD apparatus in order to reduce the reflectance of both end faces of the element to 1% or less.

増幅領域101,102 、分布帰還領域201,20
2の長さは、それぞれ100μm 、 100μm、5
QQμm 、 500μmである。
Amplification regions 101, 102, distributed feedback regions 201, 20
The lengths of 2 are 100 μm, 100 μm, and 5
QQμm is 500μm.

以上のようにして製作した本実施例の光フィルタ素子の
透過特性の一例を第2図を参照しながら説明する。増幅
領域101,102に5抛Aの電流を注入した時、消光
比は20dB以上、透過波長の10dBl衰幅は0.5
人であった。また、第2図に示されるように、分布帰還
領域201 、202に電流を流さない時は、透過波長
は1.5563μ” % 80mAの電流を注入した時
は、透過波長は1.5505μmとなり、透過波長は連
続して58人変化した。
An example of the transmission characteristics of the optical filter element of this example manufactured as described above will be explained with reference to FIG. When a current of 5 A is injected into the amplification regions 101 and 102, the extinction ratio is 20 dB or more, and the 10 dBl attenuation width of the transmitted wavelength is 0.5.
It was a person. Furthermore, as shown in FIG. 2, when no current is applied to the distributed feedback regions 201 and 202, the transmission wavelength is 1.5563 μm. When a current of 80 mA is injected, the transmission wavelength is 1.5505 μm. The transmitted wavelength changed continuously for 58 people.

分布帰還領域が1つしかない時は選択波長の幅は透過特
性のために透過阻止波長域の半分に制限され、約30人
となってしまうが、分布帰還領域が2つあれば、それぞ
れのブラッグ波長を適切に調節することによって選択波
長の幅は可変波長上附の58人と約2倍にすることがで
きる。この様子を第4図、第5図に示す。第4図は分布
帰還領域が1つのみのときの入カスベクトルと出カスベ
クトルとの関係を示す図であり、第5図は分布帰還領域
が2つあるときの入カスベクトルと出カスベクトルとの
関係を示す図である。第4図に示すように、図示のAの
範囲の波長の光も透過するので、波長選択幅は透過阻止
波長域の半分に制限されてしまう。しかしながら、分布
帰還領域が2つの場合には、第5図に示すように波長選
択幅を大きくすることができる。この実測値は58人で
あり、従来の光フィルタ素子の波長選択幅数人に比べて
10倍程度大きくすることが可能となる。
When there is only one distributed feedback region, the width of the selected wavelength is limited to half of the transmission blocking wavelength region due to the transmission characteristics, resulting in approximately 30 wavelengths, but if there are two distributed feedback regions, each By appropriately adjusting the Bragg wavelength, the range of selected wavelengths can be approximately doubled to 58 wavelengths above the variable wavelength. This situation is shown in FIGS. 4 and 5. Fig. 4 is a diagram showing the relationship between the input waste vector and the output waste vector when there is only one distributed feedback region, and Fig. 5 is a diagram showing the relationship between the input waste vector and the output waste vector when there are two distributed feedback regions. FIG. As shown in FIG. 4, since light having a wavelength in the range A shown in the figure is also transmitted, the wavelength selection width is limited to half of the transmission-blocking wavelength range. However, when there are two distributed feedback regions, the wavelength selection width can be increased as shown in FIG. This actual measurement value is 58 people, which makes it possible to increase the wavelength selection width by about 10 times compared to the wavelength selection width of several people in the conventional optical filter element.

以上かられかるように、本発明の光フィルタ素子によっ
て58人の範囲内に0.5人程度の間隔で波長多重化さ
れた信号から任意の波長選択が可能となる。すなわち、
100チャンネル以上の波長可変フィルタとして使うこ
とができる。
As can be seen from the above, the optical filter element of the present invention makes it possible to select any wavelength from signals wavelength-multiplexed at intervals of about 0.5 people within a range of 58 people. That is,
It can be used as a wavelength tunable filter with over 100 channels.

以上の実施例では、分布帰還領域を2つ設けたが、これ
は何も2つに限定する必要はなく、分布帰還領域の数は
3つ以上でもよい。また、増幅領域の数も3つ以上であ
ってもよい。さらに、素子の材料および組成は、上述の
実施例に限定されるものではなく、他の半導体材料や誘
電体材料などであってもよい。また、位相シフト構造も
外部から位相シフト量を制御できるような構成にすれば
、さらに波長可変範囲を広げることができる。また、上
述の実施例では、位相シフト構造として、位相シフト回
折格子を用いたが、位相シフト回折格子に限定する必要
はなく、均一な回折格子を有し、かつ導波路の幅あるい
は厚みを変えた、いわゆる等価的な位相シフト構造であ
ってもよい。また、無反射構造もウィンドウ構造や多層
膜コートであってもよい。
In the above embodiment, two distributed feedback regions are provided, but this need not be limited to two, and the number of distributed feedback regions may be three or more. Moreover, the number of amplification regions may also be three or more. Furthermore, the material and composition of the element are not limited to the above-described embodiments, and may be other semiconductor materials, dielectric materials, or the like. Further, if the phase shift structure is configured so that the amount of phase shift can be controlled from the outside, the wavelength tuning range can be further expanded. In addition, in the above embodiment, a phase shift diffraction grating is used as the phase shift structure, but it is not necessary to be limited to a phase shift diffraction grating, and it is possible to have a uniform diffraction grating and change the width or thickness of the waveguide. Alternatively, a so-called equivalent phase shift structure may be used. Further, the non-reflective structure may also be a window structure or a multilayer coating.

〔発明の効果〕〔Effect of the invention〕

従来の光フィルタ素子では数チャンネルが限度であった
が、本発明の光フィルタ素子によって、100チャンネ
ル以上の波長多重化された光信号からの任意の波長選択
が可能となった。
Conventional optical filter elements were limited to a few channels, but the optical filter element of the present invention makes it possible to select any wavelength from wavelength-multiplexed optical signals of 100 channels or more.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の一実施例の光フィルタ素子の構造を
示す斜視図、 第2図は、第1図の実施例の光フィルタ素子の透過特性
を示す図である、 第3図は、位相シフト量を変えたときの光フィルタ素子
の透過特性を示す図、 第4図は、分布帰還領域が1つのみのときの入カスベク
トルと出カスベクトルとの関係を示す図、第5図は分布
帰還領域が2つあるときの入カスベクトルと出カスベク
トルとの関係を示す図である。 101.102 ・・・増幅領域 110 ・・・・・基板 120 ・・・・・光ガイド層 130 ・・・・・バッファ層 140 ・・・・・活性層 150、160 ・・・クラッド層 170・・・・・SiN膜 201.202 ・・・分布帰還領域 代理人 弁理士  岩 佐  義 幸 第2図 勲瘤暑 曽 1翳’ 1111111111111111111出プ
11)な−アト1し                
                         
1波長
FIG. 1 is a perspective view showing the structure of an optical filter element according to an embodiment of the present invention, FIG. 2 is a diagram showing the transmission characteristics of the optical filter element according to the embodiment of FIG. 1, and FIG. , FIG. 4 is a diagram showing the transmission characteristics of an optical filter element when the amount of phase shift is changed, FIG. 4 is a diagram showing the relationship between the input debris vector and the output debris vector when there is only one distributed feedback region, and FIG. The figure shows the relationship between the input waste vector and the output waste vector when there are two distributed feedback regions. 101.102...Amplification region 110...Substrate 120...Light guide layer 130...Buffer layer 140...Active layers 150, 160...Clad layer 170... ...SiN film 201.202 ...Distributed return area agent Patent attorney Yoshiyuki Iwasa

1 wavelength

Claims (1)

【特許請求の範囲】[Claims] (1)位相シフト構造を有する複数の分布帰還領域と複
数の活性領域とが直列に配置され、かつ光学的に結合さ
れて成る素子の両端面が無反射構造となっていることを
特徴とする光フィルタ素子。
(1) A plurality of distributed feedback regions having a phase shift structure and a plurality of active regions are arranged in series and optically coupled, and both end faces of the element have a non-reflection structure. Optical filter element.
JP5516987A 1987-03-12 1987-03-12 Optical filter element Expired - Lifetime JPH0671119B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5516987A JPH0671119B2 (en) 1987-03-12 1987-03-12 Optical filter element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5516987A JPH0671119B2 (en) 1987-03-12 1987-03-12 Optical filter element

Publications (2)

Publication Number Publication Date
JPS63223605A true JPS63223605A (en) 1988-09-19
JPH0671119B2 JPH0671119B2 (en) 1994-09-07

Family

ID=12991227

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5516987A Expired - Lifetime JPH0671119B2 (en) 1987-03-12 1987-03-12 Optical filter element

Country Status (1)

Country Link
JP (1) JPH0671119B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100429531B1 (en) * 2001-10-12 2004-05-03 삼성전자주식회사 Distributed feedback semiconductor laser

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100429531B1 (en) * 2001-10-12 2004-05-03 삼성전자주식회사 Distributed feedback semiconductor laser

Also Published As

Publication number Publication date
JPH0671119B2 (en) 1994-09-07

Similar Documents

Publication Publication Date Title
US6888973B2 (en) Tunable optical add/drop multiplexer with multi-function optical amplifiers
US5379318A (en) Alternating grating tunable DBR laser
US6198863B1 (en) Optical filters
JP2659187B2 (en) Optical filter element
JPH06194613A (en) Tuning optical filter device
US7027476B2 (en) Tunable semiconductor lasers
JP2002353556A (en) Integrated tunable laser
JP2659199B2 (en) Tunable wavelength filter
JPH0715092A (en) Semiconductor laser array and fabrication there
JP2655600B2 (en) Optical filter element
JPS63133105A (en) Optical filter element
JPS63223605A (en) Optical filter element
US7130112B2 (en) Optical amplifying device
JPS622213A (en) Optical filter element
JP3887738B2 (en) Semiconductor optical integrated circuit device and manufacturing method thereof
JPH0774426A (en) Variable wavelength laser, variable wavelength filter and selective wavelength detection element
JPH0671118B2 (en) Integrated optical filter device
JPH01244431A (en) Variable wavelength filter
JPH0566432A (en) Semiconductor integrated photodetector
JPH02238686A (en) Semiconductor laser
JPS63264708A (en) Optical integrated element
JPH03211781A (en) Outside resonator type variable wavelength semiconductor laser
JPH0667126A (en) Semiconductor wavelength filter and semiconductor laser
JPH07168216A (en) Wavelength selecting optical switch
JPH049824A (en) Semiconductor optical amplifier