JPS63223306A - Steam turbine controller - Google Patents

Steam turbine controller

Info

Publication number
JPS63223306A
JPS63223306A JP5392287A JP5392287A JPS63223306A JP S63223306 A JPS63223306 A JP S63223306A JP 5392287 A JP5392287 A JP 5392287A JP 5392287 A JP5392287 A JP 5392287A JP S63223306 A JPS63223306 A JP S63223306A
Authority
JP
Japan
Prior art keywords
steam
speed
turbine
pressure
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5392287A
Other languages
Japanese (ja)
Other versions
JPH081121B2 (en
Inventor
Yutaka Yokota
豊 横田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP5392287A priority Critical patent/JPH081121B2/en
Publication of JPS63223306A publication Critical patent/JPS63223306A/en
Publication of JPH081121B2 publication Critical patent/JPH081121B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Control Of Turbines (AREA)

Abstract

PURPOSE:To reduce a time required for entering into the stable operation of a steam turbine in the case that the pressure of a steam source is low by detecting the pressure of a steam source to which cooling water is supplied, and adding a bias signal to a desired speed of the steam turbine according to the detected pressure. CONSTITUTION:An RCIC (Reactor Core Isolation Cooling) water feeding pump 12 is connected to an RCIC turbine 8 driven by steam which is supplied through a steam regulation valve 6 from a rector 2 serving as a steam source. And a speed is controlled in such a way as to increase the desired speed of the turbine 8 in accordance with a predetermined ramp function. In this device, there is provided a pressure detector 28 for detecting the pressure of the reactor 2, and according to a furnace pressure signal 29 obtained thereby, a speed bias signal 31 which is generated in a speed bias generator 30 is added to a speed deviation arithmometer 25 as a bias signal with respect to a desired speed signal 24. Thereat, the speed bias generator 30 outputs a large speed bias signal 31 in the case that a pressure in the reactor 2 is, for example, low.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は迅速ガス安定した起動特性を得るための蒸気タ
ービン制御装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION OBJECTS OF THE INVENTION (Industrial Field of Application) The present invention relates to a steam turbine control device for obtaining rapid gas stable start-up characteristics.

(従来の技術) 本発明の対象とする蒸気タービンシステムを原子炉隔離
時冷却系(以下、RCICという)のタービンシステム
を代表例として説明する。
(Prior Art) A steam turbine system to which the present invention is applied will be described using a reactor isolation cooling system (hereinafter referred to as RCIC) turbine system as a representative example.

RCICというのは、原子炉がタービン復水器から隔離
された時に、復水貯蔵タンクから原子炉へ冷却水を補給
して原子炉の水位を維持し、炉心の冷却を行なうための
原子炉補助設備であり、第2図に示すような系統構成を
持っている。
RCIC is a reactor auxiliary system that supplies cooling water from the condensate storage tank to the reactor to maintain the reactor water level and cool the reactor core when the reactor is isolated from the turbine condenser. It is a facility with a system configuration as shown in Figure 2.

第2図においてRCICは格納容器1内に収納された原
子炉2の補助設備として設置されている。
In FIG. 2, the RCIC is installed as auxiliary equipment for a nuclear reactor 2 housed in a containment vessel 1.

原子炉2内で発生された蒸気は主蒸気ライン3から分岐
され、電動弁4、蒸気止め弁5及び蒸気加減弁6を有す
るRCIC蒸気ライン7を介してRCICタービン(以
下、単にタービンと略称する)8に導かれてこれを駆動
する。原子炉2への給水は給水ライン9を介して行なわ
れる。
The steam generated in the nuclear reactor 2 is branched from the main steam line 3 and sent to the RCIC turbine (hereinafter simply referred to as the turbine) via the RCIC steam line 7 having an electric valve 4, a steam stop valve 5, and a steam control valve 6. )8 to drive it. Water is supplied to the reactor 2 via a water supply line 9.

タービン8の軸、すなわちRCICタービン駆動軸(以
下、タービン軸という) 10には復水貯蔵タンク11
から原子炉2へ冷却水を供給するRCIC給水ポンプ(
以下、給水ポンプという)12が直結されている。
The shaft of the turbine 8, that is, the RCIC turbine drive shaft (hereinafter referred to as the turbine shaft) 10 has a condensate storage tank 11
RCIC water supply pump (
(hereinafter referred to as a water supply pump) 12 is directly connected.

このように構成されたRCICは、原子力発電システム
において原子炉給水が停止するなどの緊急時に原子炉2
が隔離され、炉水位が低下することによって電動弁4が
開き始め、既に開いた状態で待機している蒸気止め弁5
及び蒸気加減弁7を介して原子炉蒸気を通すことにより
タービン8が起動され、これにより給水ポンプ12を駆
動して復水貯蔵タンク11から原子炉2へ冷却水を供給
して炉心を冷却するという機能を持っている。給水ポン
プ12は所定給水量を確保して原子炉2に冷却水を供給
しなければならないため、タービン8はRCIC起動信
号を受けたらできるだけ急速に起動し、がつ安定運転に
入らなければならない。
The RCIC configured in this way can be used to operate the reactor 2 in the event of an emergency such as a shutdown of reactor water supply in a nuclear power generation system.
is isolated, and as the reactor water level drops, the electric valve 4 begins to open, and the steam stop valve 5, which is already open and waiting,
The turbine 8 is activated by passing reactor steam through the steam control valve 7, which drives the water supply pump 12 to supply cooling water from the condensate storage tank 11 to the reactor 2 to cool the reactor core. It has this function. Since the water pump 12 must supply cooling water to the reactor 2 by securing a predetermined water supply amount, the turbine 8 must start as quickly as possible upon receiving the RCIC start signal and enter stable operation.

第3図はタービン8の制御装置を示すものである。制御
装置は起動制御部と流量制御部とから構成される。起動
制御部はタービン8の起動時の昇速率を一定に保持する
ためのもので、タービン起動指令信号13によりランプ
回路14を始動し、時間と共に所定の傾斜で増加するラ
ンプ状の起動待目標速度信号15を作る部分である。
FIG. 3 shows a control device for the turbine 8. The control device includes a startup control section and a flow rate control section. The startup control section is for keeping the speed increase rate constant when the turbine 8 is started, and starts the ramp circuit 14 with the turbine startup command signal 13, and sets a ramp-shaped startup waiting target speed that increases at a predetermined slope with time. This is the part that generates the signal 15.

流量制御部は給水ポンプ12の吐出流量を一定に制御す
るためのもので、給水ポンプ流量信号16と給水ポンプ
流量設定器17からの給水ポンプ流量設定信号18を流
量偏差演算器19で比較して求めた流量偏差信号20を
流量制御器21に入力して流量制御用目標速度信号22
を作る部分である。
The flow rate control section is for controlling the discharge flow rate of the water supply pump 12 to be constant, and compares the water supply pump flow rate signal 16 and the water supply pump flow rate setting signal 18 from the water supply pump flow rate setting device 17 with a flow rate deviation calculator 19. The obtained flow rate deviation signal 20 is input to the flow rate controller 21 and the target speed signal 22 for flow rate control is inputted to the flow rate controller 21.
This is the part that makes it.

起動制御部からの起動待目標速度信号15と流量制御部
からの流量制御用目標速度信号22は低値優先回路23
により選択されて目標速度信号24となる。
The startup waiting target speed signal 15 from the startup control section and the flow rate control target speed signal 22 from the flow rate control section are sent to a low value priority circuit 23.
is selected and becomes the target speed signal 24.

目標速度信号24は速度偏差演算器25にてタービン速
度信号26と比較されてタービン速度制御信号27が作
られ、タービン速度制御信号27により蒸気加減弁6が
操作され、タービン速度が制御されることにより給水ポ
ンプ12の流量が制御される。
The target speed signal 24 is compared with a turbine speed signal 26 in a speed deviation calculator 25 to generate a turbine speed control signal 27, and the steam control valve 6 is operated by the turbine speed control signal 27 to control the turbine speed. The flow rate of the water supply pump 12 is controlled by.

タービン8の起動時には給水ポンプ流量信号16が零の
ため流量制御用目標速度信号22が起動待目標速度信号
15よりも大きく、目標速度信号24として起動待目標
速度信号15が低値優先回路23により選択され、目標
速度信号24は起動待目標速度信号15に従ってランプ
状に上昇する。目標速度信号24の上昇に伴ないタービ
ン回転数が上昇し給水ポンプ12より給水が開始される
ことにより流量制御用目標速度信号22が起動待目標速
度信号15より小さくなり、目標速度信号24として流
量制御用目標速度信号22が選択され、給水ポンプ流量
設定器17で設定した流量となるようにタービン8の速
度が制御される。
When the turbine 8 is started, the water pump flow rate signal 16 is zero, so the flow rate control target speed signal 22 is larger than the start-up target speed signal 15, and the start-up target speed signal 15 is set as the target speed signal 24 by the low value priority circuit 23. Once selected, the target speed signal 24 ramps up in accordance with the standby target speed signal 15. As the target speed signal 24 increases, the turbine rotational speed increases and the water supply pump 12 starts supplying water, so that the target speed signal 22 for flow rate control becomes smaller than the start-up target speed signal 15, and the flow rate is determined as the target speed signal 24. The control target speed signal 22 is selected, and the speed of the turbine 8 is controlled so as to reach the flow rate set by the feedwater pump flow rate setting device 17.

(発明が解決しようとする問題点) RCICは、その性質上、規定された広範囲な原子炉圧
力にて使用可能であり、かつ、急速起動により所定時間
内に所定流量を確保することが要求されている。
(Problems to be Solved by the Invention) Due to its nature, RCIC can be used in a wide range of specified reactor pressures, and is required to ensure a specified flow rate within a specified time by rapid startup. ing.

タービン8を駆動する蒸気は原子炉2の発生蒸気であり
、駆動蒸気圧力は原子炉圧力とほぼ等しくなる。タービ
ン8の駆動エネルギーは蒸気加減弁6の開度が同一の場
合には駆動蒸気圧力が低、すなわち原子炉圧力が低のほ
ど小さくなる。
The steam that drives the turbine 8 is the steam generated by the nuclear reactor 2, and the driving steam pressure is approximately equal to the reactor pressure. When the opening degree of the steam control valve 6 is the same, the driving energy of the turbine 8 becomes smaller as the driving steam pressure is lower, that is, as the reactor pressure is lower.

従って、原子炉圧力が低のほどタービン速度側御信号2
7の変化に対するタービン8の駆動エネルギーの変化は
小であり、タービン速度の変化は小となる。
Therefore, the lower the reactor pressure, the lower the turbine speed side control signal 2.
The change in the drive energy of the turbine 8 with respect to the change in 7 is small, and the change in turbine speed is also small.

すなわち、原子炉圧力が低のほどタービン速度制御信号
27の変化に対するタービン速度の応答は遅くなり、所
定流量を確保した安定運転状態に到達するまでの時間が
長くなる。この時間が長くなり、所定時間を越えること
は原子炉の安全性に影響を及ぼし望ましくない。
That is, the lower the reactor pressure is, the slower the response of the turbine speed to changes in the turbine speed control signal 27 becomes, and the longer it takes to reach a stable operating state in which a predetermined flow rate is ensured. This time becomes long, and if it exceeds a predetermined time, it will affect the safety of the nuclear reactor and is undesirable.

本発明は以上の事情を考慮してなされたもので、駆動蒸
気圧力が低の場合における自立駆動式タービンの急速起
動から安定運転状態に至るまでの時間を短縮することに
より、プラント全体の安定化を達成しうる蒸気タービン
制御装置を提供することを目的とする。
The present invention has been made in consideration of the above circumstances, and stabilizes the entire plant by shortening the time from rapid startup of the self-driven turbine to stable operation when the driving steam pressure is low. An object of the present invention is to provide a steam turbine control device that can achieve the following.

〔発明の構成〕[Structure of the invention]

(問題点を解決するための手段) 上記目的を達成するために本発明は、蒸気源から蒸気加
減弁を介して供給される蒸気によって駆動される蒸気タ
ービンに、少なくとも前記蒸気源に冷却水を供給するた
めの給水ポンプが連結されており、タービン起動指令に
より所定のランプ関数に従って前記蒸気タービンの目標
速度が上昇するように速度制御する蒸気タービン制御装
置において、前記冷却水が供給される蒸気源の圧力を検
出する圧力検出器と、この圧力検出器により検出された
圧力に従って前記目標速度にバイアス信号を加える手段
とを設けたことを特徴とするものである。
(Means for Solving the Problems) In order to achieve the above object, the present invention provides a steam turbine driven by steam supplied from a steam source via a steam control valve, by supplying cooling water to at least the steam source. A steam source to which the cooling water is supplied, in a steam turbine control device that is connected to a water supply pump and controls the speed of the steam turbine so that the target speed of the steam turbine increases according to a predetermined ramp function based on a turbine start command. The present invention is characterized in that it is provided with a pressure detector for detecting the pressure of the vehicle, and means for applying a bias signal to the target speed in accordance with the pressure detected by the pressure detector.

(作 用) 流量制御回路のリミッタには流量設定・炉圧に基づき目
標回転数を演算する回路が接続され、本回路により起動
時ランプ回路より給水制御回路への切替が最短時間にて
行なわれる。炉圧が定格以下の場合には、目標回転数は
定格時よりも低い設定のためPID制御開始時のLVG
入力は目標値よりも低くなり必要給水が確保できない。
(Function) A circuit that calculates the target rotation speed based on the flow rate setting and furnace pressure is connected to the limiter of the flow rate control circuit, and this circuit switches from the startup lamp circuit to the water supply control circuit in the shortest possible time. . If the furnace pressure is below the rated value, the target rotation speed is set lower than the rated value, so the LVG at the start of PID control is
The input is lower than the target value and the necessary water supply cannot be secured.

回転数偏差バイアス回路により炉圧が定格以下の場合に
回転数指令値が必要給水となるようにバイアスを加える
The rotation speed deviation bias circuit applies a bias so that the rotation speed command value corresponds to the required water supply when the furnace pressure is below the rated value.

その結果、炉圧の変動による給水流量の変動を抑えるこ
とができる。
As a result, fluctuations in the feed water flow rate due to fluctuations in furnace pressure can be suppressed.

(実施例) 次に本発明を既に述べたRCIC蒸気タービンポンプシ
ステムに適用した場合の実施例について詳細に説明する
(Example) Next, an example in which the present invention is applied to the RCIC steam turbine pump system described above will be described in detail.

第1図は本発明の一実施例を示すものである。FIG. 1 shows an embodiment of the present invention.

ここで、第3図のものと同一、もしくは対応する構成部
分には同一の符号が付けられており、それらの個々の説
明は省略する。
Components that are the same as or correspond to those in FIG. 3 are given the same reference numerals, and their individual explanations will be omitted.

第1図と第3図の装置の相違は、前者には蒸気源として
の原子炉2の圧力を検出する圧力検出器28が設けられ
、これによって得られた炉圧信号29に応じて速度バイ
アス発生器30によって発生される速度バイアス信号3
1が目標速度信号24に対するバイアス信号として速度
偏差演算器25に加えられていることである。
The difference between the devices shown in FIG. 1 and FIG. 3 is that the former is equipped with a pressure detector 28 that detects the pressure of the reactor 2 as a steam source, and a speed bias is applied according to the reactor pressure signal 29 obtained thereby. Speed bias signal 3 generated by generator 30
1 is added to the speed deviation calculator 25 as a bias signal for the target speed signal 24.

速度バイアス発生器30は原子炉2の圧力が低の場合に
は大きな速度バイアス信号31を出力し、原子炉2の圧
力が高の場合には小さな速度バイアス信号31を出力す
る。
The speed bias generator 30 outputs a large speed bias signal 31 when the pressure of the nuclear reactor 2 is low, and outputs a small speed bias signal 31 when the pressure of the nuclear reactor 2 is high.

目標速度信号24とタービン速度信号26が原子炉2の
圧力が低と高の両場合において同一と仮定してタービン
速度制御信号27を比較すると、原子炉2の圧力が低の
場合の方が速度バイアス値が大きいためにタービン速度
制御信号27も大きくなる。
Assuming that the target speed signal 24 and the turbine speed signal 26 are the same when the pressure in the reactor 2 is low and high, and comparing the turbine speed control signal 27, it is found that the speed is higher when the pressure in the reactor 2 is low. Due to the large bias value, the turbine speed control signal 27 will also be large.

原子炉2の圧力が低の場合には大きなタービン速度制御
信号27が蒸気加減弁6に出力されることとなり、これ
によりタービン速度の応答は速くなり、所定流量を確保
した安定運転状態に到達するまでの時間を短縮すること
ができる。このようにして原子炉2の安全を確保するこ
とができる。
When the pressure in the reactor 2 is low, a large turbine speed control signal 27 is output to the steam control valve 6, which speeds up the response of the turbine speed and reaches a stable operating state where a predetermined flow rate is secured. The time taken can be shortened. In this way, the safety of the nuclear reactor 2 can be ensured.

以上、本発明を原子炉設備におけるRCICタービンの
制御の場合について説明したが、既に述べた通り、本発
明はいわゆる自立駆動式蒸気タービンに一般的に適用す
ることができる。
Although the present invention has been described above in the case of controlling an RCIC turbine in nuclear reactor equipment, as already stated, the present invention can be generally applied to so-called self-driven steam turbines.

〔発明の効果〕〔Effect of the invention〕

以上述べたように本発明によれば駆動蒸気圧力が低い場
合におけるタービン起動から安定運転状態に到るまでの
時間を短縮することにより、プラント全体の安定化を達
成するのに有効な蒸気タービン制御装置を提供すること
ができる。
As described above, according to the present invention, steam turbine control is effective in achieving stabilization of the entire plant by shortening the time from turbine startup to stable operation when the driving steam pressure is low. equipment can be provided.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示すブロック図、第2図は
原子力発電システムにおける原子炉隔離時冷却系の系統
図、第3図は従来の原子炉隔離時冷却系におけるタービ
ン制御装置のブロック図である。 2・・・原子炉、     6・・・蒸気加減弁8・・
・RCICタービン、 12・・・RCIC給水ポンプ
19・・・流量偏差演算器、25・・・速度偏差演算器
27・・・タービン速度制御信号 28・・・圧力検出器、  30・・・速度バイアス発
生器代理人 弁理士  則 近 憲 佑 同  三俣弘文 第2図 第3図
Fig. 1 is a block diagram showing an embodiment of the present invention, Fig. 2 is a system diagram of a reactor isolation cooling system in a nuclear power generation system, and Fig. 3 is a diagram of a turbine control device in a conventional reactor isolation cooling system. It is a block diagram. 2... Nuclear reactor, 6... Steam control valve 8...
- RCIC turbine, 12... RCIC water pump 19... flow deviation calculator, 25... speed deviation calculator 27... turbine speed control signal 28... pressure detector, 30... speed bias Generator agent Patent attorney Nori Chika Ken Yudo Hirofumi Mitsumata Figure 2 Figure 3

Claims (1)

【特許請求の範囲】[Claims] 蒸気源から蒸気加減弁を介して供給される蒸気によって
駆動される蒸気タービンに、少なくとも前記蒸気源に冷
却水を供給するための給水ポンプが連結されており、タ
ービン起動指令により所定のランプ関数に従って前記蒸
気タービンの目標速度が上昇するように速度制御する蒸
気タービン制御装置において、前記冷却水が供給される
蒸気源の圧力を検出する圧力検出器と、この圧力検出器
により検出された圧力に従って前記目標速度にバイアス
信号を加える手段とを設けたことを特徴とする蒸気ター
ビン制御装置。
A water supply pump for supplying cooling water to at least the steam source is connected to a steam turbine driven by steam supplied from a steam source via a steam control valve, and the water supply pump is connected to a steam turbine driven by steam supplied from a steam source via a steam control valve, and the water pump is connected to a steam turbine driven by steam supplied from a steam source via a steam control valve. The steam turbine control device that controls the speed of the steam turbine so that the target speed of the steam turbine increases includes a pressure detector that detects the pressure of the steam source to which the cooling water is supplied, and a pressure detector that detects the pressure of the steam source to which the cooling water is supplied, and A steam turbine control device comprising means for applying a bias signal to a target speed.
JP5392287A 1987-03-11 1987-03-11 Steam turbine controller Expired - Lifetime JPH081121B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5392287A JPH081121B2 (en) 1987-03-11 1987-03-11 Steam turbine controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5392287A JPH081121B2 (en) 1987-03-11 1987-03-11 Steam turbine controller

Publications (2)

Publication Number Publication Date
JPS63223306A true JPS63223306A (en) 1988-09-16
JPH081121B2 JPH081121B2 (en) 1996-01-10

Family

ID=12956210

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5392287A Expired - Lifetime JPH081121B2 (en) 1987-03-11 1987-03-11 Steam turbine controller

Country Status (1)

Country Link
JP (1) JPH081121B2 (en)

Also Published As

Publication number Publication date
JPH081121B2 (en) 1996-01-10

Similar Documents

Publication Publication Date Title
KR890001172B1 (en) Hrsg damper control
JPS63223306A (en) Steam turbine controller
JP2003302490A (en) Cooling equipment for nuclear reactor isolation time
JP2519282B2 (en) Deaerator water level control system
JPH0122521B2 (en)
JPH0610404B2 (en) Steam turbine controller
JP4556883B2 (en) Reactor power controller
JPS63201302A (en) Steam turbine control device
JPH0743092B2 (en) Steam turbine controller
JPS6148879B2 (en)
JPH0539901A (en) Method and device for automatically controlling boiler
JPH059605B2 (en)
JPH0241720B2 (en)
JPS63223489A (en) Condensate control system
JPS62237394A (en) Cooling system in case of isolation of nuclear reactor
JPH10103020A (en) Controller and control method for turbine bypass valve in combined plant
JPS63162903A (en) Steam turbine controller
JPH0328599B2 (en)
JPH081122B2 (en) Water supply control device
JPS62112099A (en) Nuclear reactor isolation cooling system controller
JPH01269093A (en) Feed water controller for nuclear reactor
JPH0979508A (en) Feed water controller for steam generating plant
JPS59231104A (en) Controlling system of feed water pump in power plant
JPS5828484B2 (en) Boiler feed pump control device
JPH0417323B2 (en)

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term