JPH0610404B2 - Steam turbine controller - Google Patents

Steam turbine controller

Info

Publication number
JPH0610404B2
JPH0610404B2 JP60238322A JP23832285A JPH0610404B2 JP H0610404 B2 JPH0610404 B2 JP H0610404B2 JP 60238322 A JP60238322 A JP 60238322A JP 23832285 A JP23832285 A JP 23832285A JP H0610404 B2 JPH0610404 B2 JP H0610404B2
Authority
JP
Japan
Prior art keywords
valve
turbine
steam
bypass
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60238322A
Other languages
Japanese (ja)
Other versions
JPS6299602A (en
Inventor
正親 小田原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP60238322A priority Critical patent/JPH0610404B2/en
Publication of JPS6299602A publication Critical patent/JPS6299602A/en
Publication of JPH0610404B2 publication Critical patent/JPH0610404B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明はタービンの駆動力により制御油圧を供給する制
御油圧自己供給式蒸気タービンに係り、特に例えば原子
炉隔離時冷却系のタービンポンプシステム等におけるよ
うに急速起動を要する蒸気タービン制御装置に関する。
Description: TECHNICAL FIELD OF THE INVENTION The present invention relates to a control hydraulic pressure self-supplying steam turbine that supplies a control hydraulic pressure by a driving force of a turbine, and in particular, for example, in a turbine pump system of a reactor isolation cooling system. As described above, the present invention relates to a steam turbine control device that requires a quick start.

〔発明の技術的背景およびその問題点〕[Technical background of the invention and its problems]

一般に、蒸気タービンプラントにおいては、例えば駆動
信号などにわずかの期間だけ利用するに足る直流電源し
か持っていない地熱発電プラントや、非常時における所
内バックアップ電源供給用のタービンや、原子力発電プ
ラントにおける緊急時のバックアップの原子炉補助系の
一つである原子炉隔離時冷却系のタービンポンプシステ
ム等のように、蒸気タービンプラントの中に蒸気源は有
しているが、タービン制御や潤滑のための油圧源や補助
動力源を他にもたず、タービン自ら油ポンプを駆動する
ことにより油を供給する機能を果たすようにしたものが
ある。
Generally, in a steam turbine plant, for example, a geothermal power plant that has only a DC power supply that can be used for a short period of time for driving signals, a turbine for backup power supply in an emergency, or an emergency in a nuclear power plant. Although it has a steam source in the steam turbine plant, such as the turbine pump system of the reactor isolation cooling system, which is one of the reactor auxiliary systems for backup, the hydraulic pressure for turbine control and lubrication. There is a turbine that does not have any other source or auxiliary power source and has a function of supplying oil by driving an oil pump by itself.

例えば、第3図は、原子炉がタービン復水器から隔離さ
れたときに、復水貯蔵タンクから原子炉へ冷却水を補給
して原子炉の水位を維持し、炉心の冷却を行う原子炉隔
離時冷却系の系統図を示したもので、格納容器1内に配
設された原子炉2には、給水ライン3を経て冷却材が供
給され、そこで発生した蒸気は主蒸気ライン4を経て主
蒸気タービン(図示せず)に供給される。一方、上記主
蒸気ライン4には、原子炉隔離時冷却系蒸気ライン5が
分岐されており、主蒸気の一部が上記原子炉隔離時冷却
系蒸気ライン5に設けられた電動弁6、蒸気止め弁7、
および蒸気加減弁8を経て、原子炉隔離時冷却系タービ
ン(RCICタービン)9に導入され、その後蒸気ター
ビン廃棄ライン10を経て圧力抑制プール11に戻され
る。また、上記RCICタービン9には、タービン制御
装置に潤滑油を送る油ポンプ12および復水貯蔵タンク
内の冷却水を原子炉2に送給する原子炉隔離時冷却系給
水ポンプ13とが直結されている。
For example, FIG. 3 shows that when the reactor is isolated from the turbine condenser, cooling water is supplied from the condensate storage tank to the reactor to maintain the water level of the reactor and cool the core. The system diagram of the cooling system during isolation is shown. The reactor 2 arranged in the containment vessel 1 is supplied with the coolant through the water supply line 3, and the steam generated there is passed through the main steam line 4. It is supplied to a main steam turbine (not shown). On the other hand, a reactor isolation cooling system steam line 5 is branched to the main steam line 4, and a part of the main steam is electrically operated by a motor-operated valve 6 provided in the reactor isolation cooling system steam line 5 and steam. Stop valve 7,
Then, it is introduced into the reactor isolation cooling system turbine (RCIC turbine) 9 through the steam control valve 8 and then returned to the pressure suppression pool 11 through the steam turbine disposal line 10. Further, the RCIC turbine 9 is directly connected to an oil pump 12 that sends lubricating oil to the turbine control device and a reactor isolation cooling system feed water pump 13 that feeds the cooling water in the condensate storage tank to the reactor 2. ing.

しかして、原子炉発電システムにおいて、原子炉給水が
停止するなどの緊急時に原子炉2が隔離され、炉水位が
低下して原子炉隔離時冷却系起動信号が出力されると、
電動弁6が開き始め、すでに全開状態で待機している蒸
気止め弁7および蒸気加減弁8を介して主蒸気がRCI
Cタービン9に供給され、RCICタービン9が駆動さ
れ、原子炉隔離時冷却系給水ポンプ13によつて復水貯
蔵タンクから原子炉2に冷却水が送給されて炉心の冷却
が行なわれる。
Then, in the reactor power generation system, when the reactor 2 is isolated in an emergency such as when the reactor water supply is stopped, the reactor water level is lowered, and the reactor isolation cooling system activation signal is output,
The motor-operated valve 6 starts to open, and the main steam is passed through the steam stop valve 7 and the steam control valve 8 which are already waiting in the fully opened state to generate RCI.
It is supplied to the C turbine 9, the RCIC turbine 9 is driven, and cooling water is sent from the condensate storage tank to the reactor 2 by the reactor isolation cooling system feed water pump 13 to cool the core.

第4図は、この原子炉隔離時冷却系の蒸気タービン制御
装置を詳細の示したもので、原子炉隔離時冷却系起動信
号aが電動弁6に入力されると、上述のように電動弁6
が開弁し蒸気止め弁7、蒸気加減弁8を通りRCICタ
ービン9が起動する。このタービン9に直結された油ポ
ンプ12は、タービン9の起動に応じて蒸気加減弁8を
駆動する制御油を発生する。
FIG. 4 shows in detail the steam turbine control device for the reactor isolation cooling system. When the reactor isolation cooling system activation signal a is input to the motor-operated valve 6, the motor-operated valve is operated as described above. 6
Is opened and the RCIC turbine 9 is started through the steam stop valve 7 and the steam control valve 8. The oil pump 12 directly connected to the turbine 9 generates control oil for driving the steam control valve 8 in response to the activation of the turbine 9.

電動弁6が開弁動作すると、位置検出器14がこの電動
弁6の微開状態を検出して、タービン起動信号bを発生
する。このタービン起動信号bはランプ信号演算器1
5に印加され、そのランプ信号演算器15からランプ信
号cが出力されて、低値優先回路からなる速度要求信号
演算器16に加えられる。一方、原子炉隔離時冷却系給
水ポンプ13の吐出側には、流量検出器17が設けられ
ており、その流量信号dは流量演算器18に加えられ、
流量要求信号eとして速度要求信号演算器16に入力さ
れ、そこで前記ランプ信号cとの低値信号が速度要求信
号fとして速度制御演算器19に加えられる。
When the motor-operated valve 6 is opened, the position detector 14 detects the slightly opened state of the motor-operated valve 6 and generates the turbine starting signal b. The turbine start signal b 1 is the ramp signal calculator 1
5, the ramp signal calculator 15 outputs the ramp signal c, and the ramp signal c is applied to the speed request signal calculator 16 including a low value priority circuit. On the other hand, a flow rate detector 17 is provided on the discharge side of the reactor isolation cooling system feed water pump 13, and the flow rate signal d is added to the flow rate calculator 18.
The flow rate request signal e is input to the speed request signal calculator 16, where the low value signal of the ramp signal c is added to the speed control calculator 19 as the speed request signal f.

タービン軸に設けられた回転数検出歯車20と電磁ピッ
クアップ21とはRCICタービン9の実際の回転速度
を検出し、回転数演算器22は電磁ピックアップ21の
出力信号からタービン実測度信号gを発生し上記速度制
御演算器19に送出する。この速度制御演算器19は、
速度要求信号演算器16の速度要求信号fと、回転数演
算器22からの実速度信号gとの偏差信号を速度制御信
号hとして電油変換器23に送出する。この電油変換器
23は、上記速度制御信号hに基づき油ポンプ12から
の制御油を制御して油筒24へ供給し、蒸気加減弁8の
開度を制御する。具体的にはRCICタービン9の起動
初期においては、タービンの昇速率を一定に保つように
ランプ信号cが速度要求演算器16を経て速度要求信号
fとなり、速度制御演算器19を介して電油変換器23
に加えられ、それによつて蒸気加減弁8の開度が制御さ
れる。このようにしてRCICタービン9が起動し原子
炉隔離時冷却系給水ポンプ13からの給水量が増加し、
流量要求信号dが所定値に達すると、この流量要求信号
eが速度要求信号fとして速度要求信号演算器16から
出力し、その信号にもとずいて蒸気加減弁8の開度制御
が行なわれるようになる。
The rotation speed detecting gear 20 and the electromagnetic pickup 21 provided on the turbine shaft detect the actual rotation speed of the RCIC turbine 9, and the rotation speed calculator 22 generates a turbine actual measurement signal g from the output signal of the electromagnetic pickup 21. It is sent to the speed control calculator 19. This speed control calculator 19
The deviation signal between the speed request signal f of the speed request signal calculator 16 and the actual speed signal g from the rotation speed calculator 22 is sent to the electro-oil converter 23 as a speed control signal h. The electro-oil converter 23 controls the control oil from the oil pump 12 based on the speed control signal h and supplies the control oil to the oil cylinder 24 to control the opening degree of the steam control valve 8. Specifically, in the initial stage of starting the RCIC turbine 9, the ramp signal c becomes the speed request signal f through the speed request calculator 16 so as to keep the rate of increase of the turbine constant, and the speed control calculator 19 supplies the electric oil. Converter 23
The opening degree of the steam control valve 8 is controlled accordingly. In this way, the RCIC turbine 9 is activated, and the amount of water supplied from the reactor isolation cooling system water supply pump 13 is increased.
When the flow rate request signal d reaches a predetermined value, the flow rate request signal e is output from the speed request signal calculator 16 as a speed request signal f, and the opening degree of the steam control valve 8 is controlled based on the signal. Like

ところが、このような装置においては、常に急速起動す
る必要があるのにもかかわらず、油ポンプ12がタービ
ン軸に直結されているため、RCICタービン9の回転
数が或一定回転数に達して油筒24を作動せしめるに必
要な油圧が確立するまでには、或程度時間がかかり、こ
のためRCICタービン9の回転数が定格回転数を超え
るような異常な初期ピーク回転数となることがある等の
問題がある。
However, in such a device, although the oil pump 12 is directly connected to the turbine shaft in spite of the fact that the oil pump 12 is always required to be rapidly started, the number of revolutions of the RCIC turbine 9 reaches a certain constant number of revolutions and the oil is not oiled. It takes some time for the hydraulic pressure required to operate the cylinder 24 to be established, which may cause an abnormal initial peak rotation speed such that the rotation speed of the RCIC turbine 9 exceeds the rated rotation speed. I have a problem.

すなわち、第5図は上記原子炉隔離時冷却系の起動時の
各状態値を示す図であり、前述のようにRCICタービ
ンは大きな起動トルクを得ることができるように蒸気加
減弁開度が全開の状態で起動される。また、電動弁6、
蒸気止め弁7、蒸気加減弁8、はこの起動トルクを得る
ために定常運転時必要蒸気流量の2〜3倍の蒸気を通過
できるように定められている。したがって、電動弁6
が、開き始めると、ほぼ同時に多量の蒸気がタービンに
流入するので、タービン回転数が第5図に示すように急
激に上昇する。そして、このタービン回転数がランプ信
号を超えるとともに、タービン回転数の上昇に伴つて制
御油圧が確立された段階で始めて蒸気加減弁が全閉方向
に作動される。つまり蒸気加減弁が作動するまでには時
間遅れがあるため、この間にタービンの回転数が急上昇
し、タービン回転数が定格回転数を超える異常な初期ピ
ーク回転数nを発生し、これにより非常調速機等が作動
して緊急停止する恐れがあり、原子炉はさらに危険な状
態となる等の問題がある。
That is, FIG. 5 is a diagram showing each state value at the time of startup of the reactor isolation cooling system. As described above, in the RCIC turbine, the steam control valve opening is fully opened so that a large starting torque can be obtained. Is started in the state of. In addition, the electric valve 6,
The steam stop valve 7 and the steam control valve 8 are defined so that the steam of 2 to 3 times the steam flow rate required for steady operation can pass in order to obtain the starting torque. Therefore, the motor operated valve 6
However, when it begins to open, a large amount of steam flows into the turbine almost at the same time, so the turbine speed rapidly increases as shown in FIG. When the turbine speed exceeds the ramp signal and the control oil pressure is established as the turbine speed increases, the steam control valve is operated in the fully closing direction. In other words, since there is a time delay before the steam control valve operates, the turbine speed rapidly increases during this period, causing an abnormal initial peak speed n in which the turbine speed exceeds the rated speed. There is a risk that an emergency stop may occur due to the operation of a speed machine, etc., and there is a problem that the reactor becomes even more dangerous.

以上では従来の原子炉隔離時冷却系の制御油圧自己供給
式蒸気タービンを例にとつたがこのような蒸気タービン
起動時のタービンの突発的過速は他の制御油圧自己供給
式蒸気タービンにも同様に生ずる問題である。
In the above, the conventional control hydraulic self-supplying steam turbine of the cooling system during reactor isolation was taken as an example.However, such a sudden overspeed of the turbine at the time of steam turbine start-up also applies to other control hydraulic self-supplying steam turbines. It is a similar problem.

〔発明の目的〕[Object of the Invention]

そこで、本発明の目的は制御油圧自己供給式蒸気タービ
ンの起動時の突発的過速を防止した蒸気タービンの制御
装置を提供することにある。
Therefore, an object of the present invention is to provide a control device for a steam turbine that prevents sudden overspeed at the time of starting the control hydraulic pressure self-supplied steam turbine.

〔発明の概要〕[Outline of Invention]

この目的を達成するために、本発明は蒸気止め弁と蒸気
加減弁とこれらの上流に位置する電動弁とを有し、ター
ビン起動時には上記蒸気止め弁と蒸気加減弁とが予め全
開されており、上記電動弁を開弁することによりタービ
ンを起動し、このタービンの駆動力により制御油を供給
する制御油圧自己供給式蒸気タービンにおいて、上記電
動弁をバイパスするバイパス路と、このバイパス路に設
けられたバイパス弁と、起動信号に応じて上記電動弁に
先立って上記バイパス弁を開弁する制御手段とを具備す
ることを特徴とするものである。
In order to achieve this object, the present invention has a steam stop valve, a steam control valve, and an electric valve located upstream thereof, and the steam stop valve and the steam control valve are fully opened in advance when the turbine is started. In a control hydraulic self-supplying steam turbine that starts a turbine by opening the electrically operated valve and supplies control oil by the driving force of the turbine, a bypass passage that bypasses the electrically operated valve and a bypass passage provided in the bypass passage are provided. And a control means for opening the bypass valve prior to the electrically operated valve in response to a start signal.

〔発明の実施例〕Example of Invention

以下、本発明による蒸気タービン制御装置の一実施例
を、第3図乃至第5図と同部分には同一符号を付して示
した第1図と第2図を参照して説明する。
An embodiment of the steam turbine control device according to the present invention will be described below with reference to FIGS. 1 and 2 in which the same parts as those in FIGS. 3 to 5 are designated by the same reference numerals.

第1図は、本発明に係る蒸気タービン制御装置を原子炉
隔離時冷却系に適用した実施例を示したもので、原子炉
隔離時冷却系蒸気ライン5には、電動弁をバイパスする
バイパス路25が接続されている。このバイパス路25
には、電動弁バイパス弁26と、この下流にオリフィス
27とがそれぞれ設けられている。このバイパス弁26
の口径は電動弁6の口径の1/3〜1/4程度に選定されてい
る。またオリフィス27は、このバイパス弁26の全開
状態でもRCICタービン9の回転数が油ポンプ12か
らの制御油圧の確立に必要な最低値付近になるように、
バイパス弁26の流量を制限する。バイパス弁26には
バイパス弁タイマー28が設けられ、このバイパス弁タ
イマー28は原子炉隔離時冷却系起動信号aを受ける
と、この受領時から所定時間だけバイパス弁26を全開
し、その後、再び全閉させる。また、電動弁6には遅延
タイマー29が付設され、この遅延タイマー29は上記
冷却系信号aを受けると、この受領時から所定時間遅延
した後に電動弁6を開弁される。この遅延時間は、バイ
パス弁タイマー28の所定時間より短く定められてい
る。その他の構成は第3図および第4図のものと全く同
一である。
FIG. 1 shows an embodiment in which a steam turbine control device according to the present invention is applied to a reactor isolation cooling system. A reactor isolation cooling system steam line 5 includes a bypass passage bypassing an electrically operated valve. 25 are connected. This bypass 25
An electric valve bypass valve 26 and an orifice 27 are provided downstream thereof. This bypass valve 26
Is selected to be about 1/3 to 1/4 of the diameter of the motor-operated valve 6. Further, the orifice 27 is set so that the rotation speed of the RCIC turbine 9 is near the minimum value required to establish the control oil pressure from the oil pump 12 even when the bypass valve 26 is fully opened.
The flow rate of the bypass valve 26 is limited. The bypass valve 26 is provided with a bypass valve timer 28. When the bypass valve timer 28 receives the reactor isolation cooling system activation signal a, the bypass valve 26 is fully opened for a predetermined time from the receipt, and then the bypass valve 26 is fully opened again. Close it. Further, a delay timer 29 is attached to the motor-operated valve 6, and when the delay timer 29 receives the cooling system signal a, the motor-operated valve 6 is opened after a predetermined time delay from the reception. This delay time is set to be shorter than the predetermined time of the bypass valve timer 28. The other structure is exactly the same as that shown in FIGS.

次に本発明による装置の作用を説明する。The operation of the device according to the invention will now be described.

原子炉隔離時冷却系起動信号aが第2図に示された時点
で発生すると、バイパス弁タイマー28と遅延タイ
マー29とが作動を開始し、バイパス弁タイマー28は
この時点tから所定時間(t〜t)だけバイパス
弁26に開弁信号を送る。この開弁信号に応じて、バイ
パス弁26は、一定時間、例えば3〜7秒間だけ全開さ
れる。これにより蒸気がバイパス弁25を通ってRCI
Cタービン9に流入し、それを起動させる。このバイパ
ス路25の流量は、オリフィス27により制限されてい
るので、タービン回転数は過度に急上昇することなく、
第2図に示されたように油ポンプ12による油圧確立に
必要な低回転に抑えられている。
When the reactor isolation cooling system activation signal a is generated at the time point t 0 shown in FIG. 2, the bypass valve timer 28 and the delay timer 29 start operating, and the bypass valve timer 28 starts the predetermined time from the time point t 0. time (t 0 ~t 2) sends a valve open signal only to the bypass valve 26. In response to this valve opening signal, the bypass valve 26 is fully opened for a fixed time, for example, 3 to 7 seconds. This causes the steam to pass through the bypass valve 25 and become RCI.
It flows into the C turbine 9 and starts it. Since the flow rate of the bypass passage 25 is limited by the orifice 27, the turbine speed does not rise excessively rapidly,
As shown in FIG. 2, it is suppressed to the low rotation required for establishing the hydraulic pressure by the oil pump 12.

一方、冷却系起動信号aの発生時点tから、所定の遅
延時間、例えば2〜5秒が経過して時点tになると、
遅延タイマー29が電動弁6を開弁させる。電動弁9が
開き始めると多量の蒸気がタービン9に流入する。位置
検出器14は電動弁6を開度を検出してタービン起動信
号bを発生する。上記遅延時間(t〜t)は、バイ
パス弁26の開弁により油筒24への制御油圧が確立さ
れた後に電動弁6が開弁されるように選定されているの
で、この電動弁6の開弁によつて多量の蒸気がタービン
9に流入しても、既に蒸気加減弁8が制御可能になつて
いる。したがってタービン9は、速度制御演算器19か
らの速度制御信号hに追従して滑らかに回転数を上昇す
る。このように冷却系起動信号aに応じて電動弁6の開
弁に先立つてバイパス弁26を開弁して、流量制限され
た蒸気をタービン9に供給して制御油圧を確立した後
に、電動弁6を開弁し、速度制御信号hに基づきタービ
ン9への蒸気流量を調整する。
On the other hand, when a predetermined delay time, for example, 2 to 5 seconds elapses from time t 0 when the cooling system activation signal a is generated, and time t 1 is reached,
The delay timer 29 opens the motor-operated valve 6. When the motor-operated valve 9 starts to open, a large amount of steam flows into the turbine 9. The position detector 14 detects the opening of the motor-operated valve 6 and generates a turbine start signal b. The delay time (t 0 to t 1 ) is selected so that the electric valve 6 is opened after the control hydraulic pressure to the oil cylinder 24 is established by opening the bypass valve 26, and thus the electric valve 6 is opened. Even if a large amount of steam flows into the turbine 9 by opening the valve 6, the steam control valve 8 is already controllable. Therefore, the turbine 9 follows the speed control signal h from the speed control calculator 19 and smoothly increases the rotation speed. In this way, the bypass valve 26 is opened prior to the opening of the motor-operated valve 6 in response to the cooling system activation signal a, and the steam whose flow rate is restricted is supplied to the turbine 9 to establish the control oil pressure, and then the motor-operated valve is opened. 6 is opened, and the steam flow rate to the turbine 9 is adjusted based on the speed control signal h.

なお、バイパス弁タイマー28により定められるバイパ
ス弁26の全開時間、および遅延タイマー29による遅
延時間は、バイパス弁26の全開時間中にタービン回転
数が制御油圧の確立に必要な値にまで上昇し、かつ制御
油圧が確立したら直ちに電動弁6が開弁するように定め
ることが望ましい。これによりタービンを過速すること
なく、急速起動時間を短縮することができる。
In addition, the fully open time of the bypass valve 26 set by the bypass valve timer 28 and the delay time by the delay timer 29 increase the turbine speed to a value necessary for establishing the control hydraulic pressure during the fully open time of the bypass valve 26, Moreover, it is desirable to determine that the motor-operated valve 6 opens immediately after the control oil pressure is established. As a result, the rapid start-up time can be shortened without overspeeding the turbine.

また、バイパス弁26の駆動はモータ駆動方式や空気作
動方式など使用される条件に応じて適宜選定できる。
Further, the drive of the bypass valve 26 can be appropriately selected according to the conditions to be used such as a motor drive system and an air actuation system.

本実施例ではバイパス路25にはバイパス弁26とオリ
フィス27とを設置したが、バイパス弁26の口径を適
宜選定するだけでバイパス路25の流量を適正値に設定
できる場合にはオリフィス27は不要となる。
In the present embodiment, the bypass valve 26 and the orifice 27 are installed in the bypass passage 25. However, if the flow rate of the bypass passage 25 can be set to an appropriate value only by appropriately selecting the diameter of the bypass valve 26, the orifice 27 is unnecessary. Becomes

また、上記実施例においては、原子力プラントにおける
原子炉隔離時冷却系のRCICタービンの制御装置につ
いて説明したが、本発明は、例えば起動信号などにわず
かの期間だけ利用できるDC電源しかもっていない地熱
発電システムや、非常時における所内バックアップ電源
供給用タービン等、いわゆる蒸気源はもっているがター
ビン制御や潤滑のための油圧源或は補助動力源を他にも
たず、自ら駆動することにより油ポンプを回転させて油
を供給する機能を果たす蒸気タービンシステムにも適用
できる。
Further, in the above-described embodiment, the control device of the RCIC turbine of the reactor isolation cooling system in the nuclear power plant has been described. However, the present invention has, for example, a DC power source that can be used only for a short period for a start signal or the like. It has a so-called steam source such as a power generation system and a turbine for backup power supply in an emergency, but it has no other hydraulic source or auxiliary power source for turbine control or lubrication, and it is driven by itself and is an oil pump. It can also be applied to a steam turbine system that has a function of rotating and supplying oil.

〔発明の効果〕〔The invention's effect〕

以上の説明から明らかなように、本発明は電動弁をバイ
パスするバイパス路中にバイパス弁を設け、タービン起
動時に電動弁に先立ってバイパス弁を開弁して、タービ
ン起動初期の蒸気流量を制限したため、タービン起動時
の突発的な過速度やこれに伴う拡動発生を防止すること
ができる。また、バイパス弁を備えたバイパス路は既設
の蒸気タービン制御装置にも容易に追加的に付設するこ
とができる。
As is apparent from the above description, the present invention provides the bypass valve in the bypass path that bypasses the motor-operated valve, opens the bypass valve prior to the motor-operated valve at the time of turbine startup, and limits the steam flow rate at the initial stage of turbine startup. Therefore, it is possible to prevent a sudden overspeed at the time of starting the turbine and the occurrence of expansion due to this. Further, the bypass passage provided with the bypass valve can easily be additionally attached to the existing steam turbine control device.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明による蒸気タービン制御装置を具備した
原子炉隔離時冷却系の制御装置を示した系統図、第2図
は、タービン起動時における第1図の各部分の状態を示
したグラフ図、第3図は従来の原子炉隔離時冷却系を示
した系統図、第4図は第3図の制御装置を示した系統
図、第5図は第4図の各部分の状態を示したグラフ図で
ある。 6……電動弁、7……蒸気止め弁、8……蒸気加減弁、
9……タービン、25……バイパス路、26……バイパ
ス弁、28……バイパス弁タイマー、29……遅延タイ
マー。
FIG. 1 is a system diagram showing a control device for a nuclear reactor isolation cooling system equipped with a steam turbine control device according to the present invention, and FIG. 2 is a graph showing a state of each part of FIG. 1 at turbine startup. Fig. 3 is a system diagram showing a conventional reactor isolation cooling system, Fig. 4 is a system diagram showing the control device of Fig. 3, and Fig. 5 is a state of each part of Fig. 4. FIG. 6 ... motorized valve, 7 ... steam stop valve, 8 ... steam control valve,
9 ... Turbine, 25 ... Bypass passage, 26 ... Bypass valve, 28 ... Bypass valve timer, 29 ... Delay timer.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】蒸気止め弁と蒸気加減弁とこれらの上流に
位置する電動弁とを有し、タービン起動時には上記蒸気
止め弁と蒸気加減弁とが予め全開されており、上記電動
弁を開弁することによりタービンを起動し、このタービ
ンの駆動力により制御油圧を供給する制御油圧自己供給
式蒸気タービンにおいて、上記電動弁をバイパスするバ
イパス路と、このバイパス路に設けられたバイパス弁
と、起動信号に応じて上記電動弁に先立って上記バイパ
ス弁を開弁する制御手段とを具備することを特徴とする
蒸気タービン制御装置。
1. A steam stop valve, a steam control valve, and a motor-operated valve located upstream thereof. The steam stop valve and the steam control valve are fully opened in advance when the turbine is started, and the motor-operated valve is opened. In the control hydraulic self-supplying steam turbine that starts the turbine by valve and supplies the control hydraulic pressure by the driving force of the turbine, a bypass path that bypasses the electric valve, and a bypass valve provided in the bypass path, A steam turbine control device comprising: a control unit that opens the bypass valve prior to the electrically operated valve in response to a start signal.
【請求項2】上記制御手段は、上記起動信号に応じて第
1の所定時間だけ上記バイパス弁を開弁するバイパス弁
タイマーと、上記起動信号に応じて第2の所定時間だけ
遅延した後上記電動弁を開弁する遅延タイマーとを含む
ことを特徴とする特許請求の範囲第1項に記載の蒸気タ
ービン制御装置。
2. A bypass valve timer for opening the bypass valve for a first predetermined time in response to the activation signal, and a delay time for a second predetermined time in response to the activation signal. The steam turbine control device according to claim 1, further comprising a delay timer that opens the motor-operated valve.
【請求項3】上記第1と第2の所定時間は、上記バイパ
ス弁の開弁中に、上記電動弁が開弁されるように定めら
れていることを特徴とする特許請求の範囲第2項に記載
の蒸気タービン制御装置。
3. The first and second predetermined times are set so that the motor-operated valve is opened during opening of the bypass valve. A steam turbine control device according to item.
【請求項4】上記バイパス路を流れる蒸気量は、タービ
ン回転数が制御油圧を確立できる程度に選定されている
ことを特徴とする特許請求の範囲第1項に記載の蒸気タ
ービン制御装置。
4. The steam turbine control device according to claim 1, wherein the amount of steam flowing through the bypass passage is selected so that the turbine speed can establish a control hydraulic pressure.
【請求項5】上記バイパス路はそこを流れる流量を制限
するためのオリフィスを有することを特徴とする特許請
求の範囲第4項に記載の蒸気タービン制御装置。
5. The steam turbine controller according to claim 4, wherein the bypass passage has an orifice for limiting a flow rate of the bypass passage.
JP60238322A 1985-10-24 1985-10-24 Steam turbine controller Expired - Lifetime JPH0610404B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60238322A JPH0610404B2 (en) 1985-10-24 1985-10-24 Steam turbine controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60238322A JPH0610404B2 (en) 1985-10-24 1985-10-24 Steam turbine controller

Publications (2)

Publication Number Publication Date
JPS6299602A JPS6299602A (en) 1987-05-09
JPH0610404B2 true JPH0610404B2 (en) 1994-02-09

Family

ID=17028486

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60238322A Expired - Lifetime JPH0610404B2 (en) 1985-10-24 1985-10-24 Steam turbine controller

Country Status (1)

Country Link
JP (1) JPH0610404B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE470049T1 (en) 2007-10-04 2010-06-15 Siemens Ag GENERATOR STEAM TURBINE TURBO COMPRESSOR STRAIN AND METHOD FOR OPERATING THE SAME
JP2013104729A (en) * 2011-11-11 2013-05-30 Hitachi-Ge Nuclear Energy Ltd Nuclear reactor core cooling system and nuclear power plant facility equipped with the same
JP2016223316A (en) * 2015-05-28 2016-12-28 株式会社東芝 Cooling device for steam turbine and method of controlling the same
CN108104884B (en) * 2017-12-13 2020-05-05 中国船舶重工集团公司第七0四研究所 Pure-liquid OPC system for turbine regulation control system

Also Published As

Publication number Publication date
JPS6299602A (en) 1987-05-09

Similar Documents

Publication Publication Date Title
JPS6124601B2 (en)
JPH0610404B2 (en) Steam turbine controller
JP3302788B2 (en) Turbine control unit and reactor isolation cooling system control system
JPH04350327A (en) Supercharger for internal combustion engine
JP3048482B2 (en) Turbine control device
JP2009047104A (en) Steam governing valve opening control device and steam turbine activation control system
JPH01305A (en) Steam turbine control device
JPH059605B2 (en)
JPH0743092B2 (en) Steam turbine controller
JPS60108793A (en) Cooling device on isolation of nuclear reactor for nuclear power plant
JP2004108965A (en) Controller for steam regulating valve
JPH081123B2 (en) Steam turbine controller
JPS6355309A (en) Device for controlling steam turbine
JP2004116449A (en) Pumpturbine and operation control method for the same
JPS5951106A (en) Oil pressure generator for steam turbine
JPS63201302A (en) Steam turbine control device
JPS63162903A (en) Steam turbine controller
JP2768688B2 (en) How to start a variable speed hydropower plant
JPS6154923B2 (en)
JPH0410597B2 (en)
JPH081122B2 (en) Water supply control device
JPH09145894A (en) Reactor feed water control device for boiling water nuclear power plant
JPH1020083A (en) Turbine controller
JPS60138209A (en) Bearing feed oil temperature control device
JPH04319700A (en) Speed governor of coolant pump

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term