JPS6299602A - Steam turbine control device - Google Patents

Steam turbine control device

Info

Publication number
JPS6299602A
JPS6299602A JP60238322A JP23832285A JPS6299602A JP S6299602 A JPS6299602 A JP S6299602A JP 60238322 A JP60238322 A JP 60238322A JP 23832285 A JP23832285 A JP 23832285A JP S6299602 A JPS6299602 A JP S6299602A
Authority
JP
Japan
Prior art keywords
valve
turbine
steam
bypass
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60238322A
Other languages
Japanese (ja)
Other versions
JPH0610404B2 (en
Inventor
Masachika Odawara
小田原 正親
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP60238322A priority Critical patent/JPH0610404B2/en
Publication of JPS6299602A publication Critical patent/JPS6299602A/en
Publication of JPH0610404B2 publication Critical patent/JPH0610404B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Abstract

PURPOSE:To prevent a control hydraulic pressure self-supplying type steam turbine device from abruptly overspeeding during starting of the turbine device, by providing an electrically-operated valve and a bypass valve bypassing the electrically-operated valve upstream of a steam shut-off valve of the turbine device. CONSTITUTION:In a control hydraulic pressure self-supplying type steam turbine device in which hydraulic pressure from an oil pump 12 driven by a turbine 9 is fed as control hydraulic pressure, an electrically operated valve 6, a bypass passage 25 and a bypass valve 26 are provided upstream of an adjusting valve 8 and a steam shut-off valve 26. Further, during starting of the turbine device the adjusting valve 8 and the steam shut-off valve 7 are fully opened, but the electrically operated valve 6 is closed while the bypass valve 26 is gradually opened. Thereby, it is possible to prevent the turbine 9 from overspeeding abruptly.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明はタービンの駆動力にJ、り制御油圧を供給する
制御油圧自己供給式蒸気タービンに係り、特に例えば原
子炉隔阿(時冷却系のタービンポンプシステム等におり
るように忽速起動を要Jる蒸気タービン制御装置に関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a self-supply steam turbine that supplies control hydraulic pressure to the driving force of a turbine, and particularly relates to a steam turbine with a self-supplying control hydraulic pressure for supplying control hydraulic pressure to the driving force of a turbine. The present invention relates to a steam turbine control device that requires quick start-up, such as in a turbine pump system.

(発明の技術的背景およびその問題点〕一般に、蒸気タ
ービンプラントにJ3いては、例えば駆動信号などにわ
ずかの期間だけ利用するに足る直流電源しか持っていな
い地熱発電ブラントや、非常時にJ3ける所内バックア
ップ電源供給用のタービンや、原子力発電プラントにお
ける緊急時のバックアップの原子炉補助系の一つである
原子炉隔離時論741系のタービンポンプシステム等の
ように、蒸気タービンブランIへの中に蒸気源は有して
いるが、タービン制御やa+rJ泪のための油圧源や補
助動力源を他にもたず、タービン自ら油ポンプを駆動す
ることにより油を供給する機能を果たケようにしたもの
がある。
(Technical Background of the Invention and Problems thereof) In general, J3 steam turbine plants are geothermal power generation plants that have only enough DC power to be used for a short period of time, such as for drive signals, and Such as the turbine for backup power supply and the turbine pump system of the reactor isolation system 741, which is one of the reactor auxiliary systems for emergency backup in nuclear power plants, etc. Although it has a steam source, it does not have any other hydraulic power source or auxiliary power source for turbine control or a+rj, and the turbine itself functions to supply oil by driving an oil pump. There is something I did.

例えば、第3図は、原子炉がタービン復水器から隔離さ
れたときに、復水貯蔵タンクから原子炉へ冷L】水を補
給して原子炉の水位を維持し、炉心の冷却を行う原子炉
隔離時冷IJI系の系統図を示したしので、格納容器1
内に配設された原子炉2には、給水ライン3を経て冷却
材が供給され、そこで発生した蒸気は主蒸気ライン4を
経て主蒸気タービン(図示ぜず)に供給される。一方、
上記主蒸気ライン4には、原子炉隔離筒冷却系蒸気ライ
ン5が分岐されており、主蒸気の一部が上記原子炉隔離
筒冷却系蒸気ライン5に設()られた電動弁6、蒸気止
め弁7、および蒸気加減弁8を経て、原子炉隔離筒冷却
系タービン(RCIGタービン)9に導入され、その侵
蒸気タービン廃棄ライン10を経て圧力抑ft、1ブー
ル11に戻される。また、上記RCICタービン9には
、タービン制御装置にr8消油を送る油ポンプ12およ
び復水貯蔵タンク内の冷却水を原子炉2に送給する原子
炉隔離時冷却系給水ポンプ13とが直結されている。
For example, Figure 3 shows that when the reactor is isolated from the turbine condenser, cold water is supplied from the condensate storage tank to the reactor to maintain the reactor water level and cool the reactor core. I have shown the system diagram of the reactor isolation cooling IJI system.
A coolant is supplied to a nuclear reactor 2 disposed within the nuclear reactor 2 through a water supply line 3, and steam generated therein is supplied to a main steam turbine (not shown) through a main steam line 4. on the other hand,
A reactor isolation tube cooling system steam line 5 is branched from the main steam line 4, and a part of the main steam is transferred to the electric valve 6 installed in the reactor isolation tube cooling system steam line 5, and the steam It is introduced into a reactor isolation cooling system turbine (RCIG turbine) 9 via a stop valve 7 and a steam control valve 8, and is returned to a pressure suppression ft. 1 boule 11 via its steam turbine waste line 10. Further, the RCIC turbine 9 is directly connected to an oil pump 12 that sends r8 oil to the turbine control device and a reactor isolation cooling system water supply pump 13 that feeds cooling water in the condensate storage tank to the reactor 2. has been done.

しかして、原子炉発電システムにおいて、原子炉給水が
停止するなどの緊急時に原子炉2が隔離され、炉水位が
低下して原子炉隔離時冷却系起動信号が出力されると、
電動弁6が開き始め、寸でに全開状態で待機している蒸
気止め弁7および蒸気加減弁8を介して主蒸気がRCI
Cタービン9に供給され、RCIGタービン9が駆動さ
れ、原子炉隔離時冷却系給水ポンプ13によって復水貯
蔵タンクから原子炉2に冷却水が送給されて炉心の冷I
JIが行なわれる。
In the reactor power generation system, when the reactor 2 is isolated in an emergency such as when the reactor water supply is stopped, and the reactor water level drops and a reactor isolation cooling system activation signal is output,
The motor-operated valve 6 begins to open, and the main steam reaches the RCI via the steam stop valve 7 and the steam control valve 8, which are waiting in the fully open state.
The cooling water is supplied to the C turbine 9, the RCIG turbine 9 is driven, and the reactor isolation cooling system water supply pump 13 supplies cooling water from the condensate storage tank to the reactor 2 to cool the reactor core.
JI will be conducted.

第4図は、この原子炉隔離時冷却系の蒸気タービン制御
装置を訂細の示したしので、原子炉隔離時冷却系起動信
号a /J<電動弁6に入力されると、上述のように電
動弁6が聞弁じ蒸気止め弁7、蒸気加減弁8を通りRC
IGタービン9が起動する。
FIG. 4 shows the details of the steam turbine control device for the reactor isolation cooling system. When the reactor isolation cooling system start signal a /J When the electric valve 6 passes through the steam stop valve 7 and the steam control valve 8, the RC
IG turbine 9 starts up.

このタービン9に直結された油ポンプ12は、タービン
9の起動に応じて蒸気加減弁8を駆動する制御油を発生
する。
An oil pump 12 directly connected to the turbine 9 generates control oil that drives the steam control valve 8 in response to startup of the turbine 9.

電動弁6が1711弁動作すると、位置検出器14がこ
の電動弁6の微開状態を検出して、タービン起動信号す
を発生する。このタービン起動信号b1はランプ信号演
算器15に印加され、そのランプ信号演算器15からラ
ンプ信f″3Cが出力されて、低値優先回路からなる速
度制御信号演障器16に加えられる。−・方、原子炉隔
211時冷lJ系給水ポンプ13の吐出側に(よ、流M
検出器17が、、Q+)られており、その流量信号dは
流最演蓮器18に加えられ、流量要求信号eとして速度
要求信号演算器16に入力され、そこで前記ランプ信号
Cとの低値信号が速度要求信号fとして速度制御演算器
19に加えられる。
When the electric valve 6 operates 1711 times, the position detector 14 detects the slightly open state of the electric valve 6 and generates a turbine start signal. This turbine starting signal b1 is applied to the ramp signal calculator 15, and the ramp signal f''3C is output from the ramp signal calculator 15 and applied to the speed control signal disturber 16, which is a low value priority circuit.・On the discharge side of the cold lJ system water supply pump 13 at the reactor interval 211 (Y, flow M
The detector 17 is connected to the ramp signal C, and its flow rate signal d is applied to the flow rate generator 18 and inputted as the flow rate request signal e to the speed request signal calculator 16, where it is compared with the ramp signal C. The value signal is applied to the speed control calculator 19 as a speed request signal f.

タービン軸に設けられた回転数検出歯車20と電磁ピッ
クアップ21とはRCICタービン9の実際の回転速度
を検出し、回転数演算器22は電磁ピックアップ21の
出力信号からタービン実測度信号Qを発生し上記速度制
御演算器1つに送出する。この速度制御演算器1つは、
速度要求信号演算器16の速度要求信号fと、回転数演
算器22からの実速度信号qとの偏差信号を速度制御信
号りとして電油変換器23に送出する。この電油変換′
Jj23は、上記速度制御信号りに基づき油ポンプ12
からの制御油を制御して油筒24へ供給し、蒸気加減弁
8の開度を制御する。具体的にはRCIGタービン9の
起動初期においては、タービンの昇速率を一定に保つよ
うにランプ信号Cが速度要求信号器16を経て速度要求
信号fとなリ、速度制御演算器19を介して電油変換器
23に加えられ、それによって蒸気加減弁8の開度が制
御される。このようにしてRCICタービン9が起動し
原子炉隔離時冷却系給水ポンプ13からの給水量が増加
し、流m要求信号dが所定値に達すると、この流m要求
信号eが速度要求信号fとして速度要求信号演算器16
から出力し、その信号にもどずいて蒸気加減弁8の開度
制御が行なわれるようになる。
The rotation speed detection gear 20 and electromagnetic pickup 21 provided on the turbine shaft detect the actual rotation speed of the RCIC turbine 9, and the rotation speed calculator 22 generates a turbine actual measurement signal Q from the output signal of the electromagnetic pickup 21. It is sent to one of the speed control calculators mentioned above. One of these speed control calculators is
A deviation signal between the speed request signal f from the speed request signal calculator 16 and the actual speed signal q from the rotation speed calculator 22 is sent to the electro-hydraulic converter 23 as a speed control signal. This electro-hydraulic conversion′
Jj23 controls the oil pump 12 based on the speed control signal.
Control oil is controlled and supplied to the oil cylinder 24, and the opening degree of the steam control valve 8 is controlled. Specifically, in the initial stage of startup of the RCIG turbine 9, the ramp signal C is passed through the speed request signal device 16 to become the speed request signal f, and is then sent through the speed control calculator 19 to keep the speed increase rate of the turbine constant. It is added to the electro-hydraulic converter 23, thereby controlling the opening degree of the steam control valve 8. In this way, when the RCIC turbine 9 starts up and the amount of water supplied from the reactor isolation cooling system water supply pump 13 increases, and the flow m request signal d reaches a predetermined value, this flow m request signal e becomes the speed request signal f. As speed request signal calculator 16
The opening of the steam control valve 8 is controlled based on the signal.

ところが、このような5A置においては、常に急速起動
Jる必要があるのにもかかわらず、油ポンプ12がター
ビン軸に直結されているため、RCICタービン9の回
転数が或一定回転数に達して油筒24を作動せしめるに
必要な油圧が確立するまでには、成程度時間がかかり、
このためRCICタービン9の回転数が定格回転数を超
えるような異常な初期ピーク回転数となることがある等
の問題がある。
However, in such a 5A installation, although it is necessary to always start up quickly, because the oil pump 12 is directly connected to the turbine shaft, the number of revolutions of the RCIC turbine 9 reaches a certain number of revolutions. It takes time to establish the necessary oil pressure to operate the oil cylinder 24.
Therefore, there is a problem that the rotation speed of the RCIC turbine 9 may reach an abnormal initial peak rotation speed that exceeds the rated rotation speed.

すなわち、第5図は上記原子炉隔離時冷却系の起リノ時
の各状態1直を示1図であり、前述のようにRCICタ
ービンは大きな起動トルクを得ることができるように蒸
気加減弁開度が全開の状態で起動される。また、電動弁
6、蒸気止め弁7、蒸気加減弁8、はこの起動トルクを
得るために定常運転時必要蒸気流量の2〜3倍の蒸気を
通過できるにうに定められている。したがって、電動弁
6が、開き始めると、はぼ同時に多聞の蒸気がタービン
に流入するので、タービン回転数が第5図に示すように
急激に上管する。そして、このタービン回転数がランプ
信号を超えるとともに、タービン回転数の上昇に伴って
制御油圧が確立された段階で始めて蒸気加減弁が全開方
向に作動される。つまり蒸気加減弁が作動するまでには
時間遅れがあるため、この間にタービンの回転数が急上
昇し、タービン回転数が定格回転数を超える異常な初期
ピーク回転数nを発生し、これにより非常調速磯等が作
動して緊急停止する恐れがあり、原子炉はさらに危険な
状態どなる等の問題がある。
That is, FIG. 5 is a diagram showing each state of the reactor isolation cooling system in one shift at the time of starting and renovating.As mentioned above, the RCIC turbine is operated by opening the steam control valve in order to obtain a large starting torque. It is started with the power fully open. In addition, the electric valve 6, steam stop valve 7, and steam control valve 8 are designed to be able to pass steam two to three times the flow rate of steam required during steady operation in order to obtain this starting torque. Therefore, when the electric valve 6 starts to open, a large amount of steam flows into the turbine almost at the same time, so that the turbine rotational speed rapidly increases as shown in FIG. Then, the steam control valve is operated in the fully open direction only when the turbine rotation speed exceeds the ramp signal and the control oil pressure is established as the turbine rotation speed increases. In other words, since there is a time delay before the steam control valve operates, the turbine rotation speed rapidly increases during this time, generating an abnormal initial peak rotation speed n that exceeds the rated rotation speed. There is a risk that a rock formation would activate and cause an emergency shutdown, and the reactor would become even more dangerous.

以上では従来の原子炉隔離時冷却系の制御油圧自己供給
式蒸気タービンを例にとったがこのような蒸気タービン
起動時のタービンの突発的過速は伯の制御油圧自己供給
式蒸気タービンにも同様に生ずる問題である。
The above example uses a conventional controlled hydraulic pressure self-supplied steam turbine in the reactor isolation cooling system as an example, but sudden overspeed of the turbine at the time of steam turbine startup also occurs in Haku's controlled hydraulic self-supplied steam turbine. A similar problem arises.

〔発明の目的〕[Purpose of the invention]

そこで、本発明の目的は制御油圧自己供給式蒸気タービ
ンの起動時の突発的過速を防止した蒸気タービンの制御
装置を提供することにある。
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a steam turbine control device that prevents a sudden overspeed at the time of startup of a controlled oil pressure self-supply steam turbine.

〔発明の概要〕[Summary of the invention]

この目的を達成するために、本発明は蒸気止め弁と蒸気
加減弁とこれらの上流に位置する電動弁とを有し、ター
ごン起動時には上記蒸気止め弁と蒸気加減弁とが予め仝
間されており、上記電動弁を開弁することによりタービ
ンを起動し、このターごンの駆りJ力により制御油を供
給する制御油圧自己供給式蒸気タービンにおいて、上記
電動弁をバイパスするバイパス路と、このバイパス路に
設置ノられたバイパス弁と、起動信号に応じて上記型り
J弁に先立って上記バイパス弁を開弁する制御手段とを
具備することを特徴とするものである。
In order to achieve this object, the present invention includes a steam stop valve, a steam control valve, and an electrically operated valve located upstream of these, and the steam stop valve and the steam control valve are set in advance when the targon is started. In a control hydraulic self-supply type steam turbine that starts the turbine by opening the electric valve and supplies control oil by the driving force of this turbine, there is a bypass path that bypasses the electric valve. The present invention is characterized by comprising a bypass valve installed in the bypass passage, and a control means for opening the bypass valve prior to the molded J valve in response to an activation signal.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明による蒸気タービン制御装置の一実施例を
、第3図乃至第5図と同部分には同一符号を付して示し
た第1図と第2図を参照して説明する。
Hereinafter, an embodiment of a steam turbine control system according to the present invention will be described with reference to FIGS. 1 and 2, in which the same parts as in FIGS. 3 to 5 are denoted by the same reference numerals.

第1図は、本発明に係る蒸気タービン制iII装置を原
子炉隔離時冷却系に適用した実施例を示したもので、原
子炉隔離時冷却系蒸気ライン5には、電動弁をバスバス
するバイパス路25が接続されている。このバイパス路
25には、電動弁バイパス弁26と、この下流にオリフ
ィス27とがそれぞれ設けられている。このバイパス弁
26の口径は電動弁6の口径の173〜174程度に選
定されている。またオリフィス27は、このバイパス弁
26の全開状態でもRC■Cタービン9の回転数が油ポ
ンプ12からの制御油り玉の確立に必要な最低圃付近に
なるように、バイパス路26の流過を制限する。バイパ
ス弁26にはバイパス弁タイマー28が設けられ、この
バイパス弁タイマー28は原子炉隔離時冷却系起動信号
aを受()ると、この受領時から所定時間だけバイパス
弁26を全開し、その後、再び仝閉させる。また、電動
弁6には遅延タイマー29が付設され、このd延タイマ
ー29は上記冷却系信号aを受けると、この受領時から
所定時間遅延した後に′Fi動弁6を開弁される。この
遅延時間は、バイパス弁タイマー28の所定時間より短
く定められている。その他の構成は第3図および第4図
のものと全く同一である。
FIG. 1 shows an embodiment in which the steam turbine control III device according to the present invention is applied to a reactor isolation cooling system. 25 is connected. This bypass passage 25 is provided with an electric bypass valve 26 and an orifice 27 downstream thereof. The diameter of this bypass valve 26 is selected to be approximately 173 to 174 times the diameter of the electric valve 6. In addition, the orifice 27 is configured to allow the flow of the bypass passage 26 so that even when the bypass valve 26 is fully open, the rotational speed of the RC■C turbine 9 is around the minimum field required to establish a control oil stagnation from the oil pump 12. limit. The bypass valve 26 is provided with a bypass valve timer 28. When the bypass valve timer 28 receives the reactor isolation cooling system activation signal a, it fully opens the bypass valve 26 for a predetermined period of time from the time of reception, and then , close again. Further, a delay timer 29 is attached to the electric valve 6, and when the d-delay timer 29 receives the cooling system signal a, the 'Fi valve 6 is opened after a predetermined time delay from the time of reception. This delay time is set shorter than the predetermined time of the bypass valve timer 28. The other configurations are exactly the same as those in FIGS. 3 and 4.

次に本発明による装置の作用を説明する。Next, the operation of the device according to the present invention will be explained.

原子炉隔離時冷却系起動信J?iaが第2図に示された
時点toで発生すると、バイパス弁タイマー28どR延
タイマー29とが作動を開始し、バイパス弁タイマー2
8はこの時点10から所定時間(t 〜t、 2 ) 
/ごけバイパス弁26に開弁信号を送る。この開弁信号
に応じて、バイパス弁26は、一定時間、例えば3〜7
秒間だけ全開される。これにより蒸気がバイパス弁25
を通ってRCICタービン9に流入し、それを起動させ
る。このバイパス路25の流量は、オリフィス27によ
り制限されているので、タービン回転数は過度に急上昇
することなく、第2図に示されたように油ポンプ12に
よる油圧確立に必要な低回転に抑えられている。
Reactor isolation cooling system start signal J? When ia occurs at time to shown in FIG. 2, bypass valve timer 28 and R delay timer 29 start operating,
8 is a predetermined time from this point 10 (t to t, 2)
/Sends a valve opening signal to the moss bypass valve 26. In response to this valve opening signal, the bypass valve 26 is operated for a certain period of time, for example, from 3 to 7 days.
It is fully opened for only a second. This allows steam to pass through the bypass valve 25.
through which it flows into the RCIC turbine 9 and starts it. Since the flow rate of this bypass passage 25 is restricted by the orifice 27, the turbine rotational speed does not increase excessively and is kept to a low rotational speed necessary for establishing oil pressure by the oil pump 12, as shown in FIG. It is being

一方、冷却系起動信号aの発生時点t。から、所定の遅
延時間、例えば2〜5秒が経過して時点t1になると、
遅延タイマー29が電動弁6を開弁させる。電動弁9が
開き始めると多聞の蒸気がタービン9に流入する。位置
検出器14は電動弁6を17i1度を検出してタービン
起動信号すを発生する。上記遅延時間(1−1,)は、
バイパス弁26の開弁により油筒24への制御油圧が確
立された後に電動弁6が開弁されるように選定されてい
るので、この電動弁6の開“弁によって多量の蒸気がタ
ービン9に流入しても、既に蒸気加減弁8が制御可能に
なっている。したがってタービン9は、速[1! R,
lJ tit演算器19からの速度制御信号りに追従し
て滑らかに回転数を上昇する。このように冷却系起動信
号aに応じて電動弁6の開弁に先立ってバイパス弁26
を開弁じて、流量制限された蒸気をタービン9に供給し
て制御油圧を確立した後に、電動弁6を開弁し、速度制
御信号りに基づきタービン9への蒸気流mを調整する。
On the other hand, the time t when the cooling system activation signal a is generated. , when a predetermined delay time, for example 2 to 5 seconds, reaches time t1,
The delay timer 29 causes the electric valve 6 to open. When the electric valve 9 begins to open, a large amount of steam flows into the turbine 9. The position detector 14 detects the electric valve 6 at 17i1 degrees and generates a turbine start signal. The above delay time (1-1,) is
Since the electric valve 6 is selected to be opened after the control oil pressure to the oil cylinder 24 is established by opening the bypass valve 26, the opening of the electric valve 6 allows a large amount of steam to flow into the turbine 9. , the steam control valve 8 can already be controlled. Therefore, the turbine 9 has a speed of [1!R,
The rotational speed is increased smoothly following the speed control signal from the lJ tit calculator 19. In this way, the bypass valve 26 is
After opening the valve to supply steam with a limited flow rate to the turbine 9 and establishing a control oil pressure, the electric valve 6 is opened and the steam flow m to the turbine 9 is adjusted based on the speed control signal.

なお、バイパス弁タイマー28により定められるバイパ
ス弁26の全開時間、および遅延タイマー29による遅
延時間は、バイパス弁26の全問時間中にタービン回転
数が制御油圧の確立に必要4j値にまで上界し、かつ制
御油圧が確立したら直らに電動弁6が開弁するように定
めることが望ましい。これによりタービンを過速するこ
となく、急速起動時間を短縮することができる。
It should be noted that the full opening time of the bypass valve 26 determined by the bypass valve timer 28 and the delay time determined by the delay timer 29 are such that the turbine rotational speed exceeds the 4j value required to establish the control oil pressure during the entire opening time of the bypass valve 26. However, it is desirable to set the electric valve 6 to open immediately after the control oil pressure is established. This allows the rapid start-up time to be shortened without overspeeding the turbine.

また、バイパス弁26の駆動はモータ駆動方式や空気作
動方式など使用される条件に応じて適宜選定できる。
Further, the driving method of the bypass valve 26 can be appropriately selected depending on the conditions of use, such as a motor drive method or an air operation method.

本実施例ではバイパス路25にはバイパス弁26とオリ
フィス27とを設着したが、バイパス弁2Gの口径を適
宜選定するだけでバイパス路25の流量を適正値に設定
できる場合にはオリフィス27は不要どなる。
In this embodiment, the bypass passage 25 is provided with a bypass valve 26 and an orifice 27, but if the flow rate of the bypass passage 25 can be set to an appropriate value simply by appropriately selecting the diameter of the bypass valve 2G, the orifice 27 may be Unnecessary yelling.

また、上記実施例においては、原子カブラン1へにJハ
ノる原子炉隔離部冷却系のRCIGタービンの制御装置
について説明したが、本発明は、例えば起動信号などに
わずかの期間だけ利用できるDC電源しかもっていない
地熱発電システムや、非常時に43ける所内バックアッ
プ電源供給用タービン等、いわゆる蒸気源はもっている
がタービン&制御や潤滑のための油圧源或は補助動力源
を他にもたず、自ら駆動することにより油ポンプを回転
さけて油を供給する機能を果たす蒸気タービンシステム
にも適用できる。
In addition, in the above embodiment, a control device for an RCIG turbine in a cooling system for a nuclear reactor isolation section has been described. Moreover, although it has a so-called steam source, such as a geothermal power generation system that it does not have, and a turbine that can supply 43 on-site backup power supplies in case of an emergency, it does not have any other hydraulic power source or auxiliary power source for turbine control and lubrication. It can also be applied to a steam turbine system that functions to supply oil by self-driving, bypassing the rotation of an oil pump.

(発明の効果〕 以上の説明から明らかなように、本発明は電動弁をバイ
パスするバイパス路中にバイパス弁を設け、タービン起
動時に電動弁に先立ってバイパス弁を開弁じて、タービ
ン起動初期の蒸気流過を制限したため、タービン起動時
の突発的な過速度やこれに伴う拡動発生を防止すること
ができる。また、バイパス弁を備えたバイパス路は既設
の蒸気タービン制御装置にb容易に追加的に付設するこ
とができる。
(Effects of the Invention) As is clear from the above description, the present invention provides a bypass valve in a bypass path that bypasses an electric valve, and opens the bypass valve before the electric valve when starting the turbine. By restricting the flow of steam, it is possible to prevent sudden overspeed at the time of turbine startup and the occurrence of expansion.In addition, the bypass passage equipped with a bypass valve can be easily integrated into the existing steam turbine control system. It can be additionally attached.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による蒸気タービン制御装置を具備した
原子炉隔離時冷却系の制御装置を示した系統図、第2図
は、タービン起動時に、BG:Jる第1図の各部分の状
態を示したグラフ図、第3図は従来の原子炉隔1時冷却
系を示した系統図、第4図は第3図の制御装置を示した
系統図、第5図は第4図の各部分の状態を示したグラフ
図である。 6・・・電動弁、7・・・蒸気止め弁、8・・・蒸気加
減弁、9・・・タービン、25・・・バイパス路、26
・・・バイパス弁、28・・・バイパス弁タイマー、2
9・・・遅延タイマー。 出願人代理人  佐  藤  −雄 も 1 口 邑4 図 馬5 図
FIG. 1 is a system diagram showing a control device for a reactor isolation cooling system equipped with a steam turbine control device according to the present invention, and FIG. 2 shows the state of each part of FIG. Figure 3 is a system diagram showing the conventional reactor interval cooling system, Figure 4 is a system diagram showing the control device in Figure 3, and Figure 5 is a system diagram showing the control device in Figure 4. It is a graph diagram showing the state of the part. 6... Electric valve, 7... Steam stop valve, 8... Steam control valve, 9... Turbine, 25... Bypass path, 26
... Bypass valve, 28 ... Bypass valve timer, 2
9...Delay timer. Applicant's agent Sato-Omo 1 Kuchimura 4 Zuma 5 Figure

Claims (1)

【特許請求の範囲】 1、蒸気止め弁と蒸気加減弁とこれらの上流に位置する
電動弁とを有し、タービン起動時には上記蒸気止め弁と
蒸気加減弁とが予め全開されており、上記電動弁を開弁
することによりタービンを起動し、このタービンの駆動
力により制御油圧を供給する制御油圧自己供給式蒸気タ
ービンにおいて、上記電動弁をバイパスするバイパス路
と、このバイパス路に設けられたバイパス弁と、起動信
号に応じて上記電動弁に先立って上記バイパス弁を開弁
する制御手段とを具備することを特徴とする蒸気タービ
ン制御装置。 2、上記制御手段は、上記起動信号に応じて第1の所定
時間だけ上記バイパス弁を開弁するバイパス弁タイマー
と、上記起動信号に応じて第2の所定時間だけ遅延した
後上記電動弁を開弁する遅延タイマーとを含むことを特
徴とする特許請求の範囲第1項に記載の蒸気タービン制
御装置。 3、上記第1と第2の所定時間は、上記バイパス弁の開
弁中に、上記電動弁が開弁されるように定められている
ことを特徴とする特許請求の範囲第2項に記載の蒸気タ
ービン制御装置。 4、上記バイパス路を流れる蒸気量は、タービン回転数
が制御油圧を確立できる程度に選定されていることを特
徴とする特許請求の範囲第1項に記載の蒸気タービン制
御装置。 5、上記バイパス路はそこを流れる流量を制限するため
のオリフィスを有することを特徴とする特許請求の範囲
第4項に記載の蒸気タービン制御装置。
[Scope of Claims] 1. It has a steam stop valve, a steam control valve, and an electric valve located upstream of these, and when the turbine is started, the steam stop valve and the steam control valve are fully opened in advance, and the electric In a control oil pressure self-supply steam turbine that starts the turbine by opening a valve and supplies control oil pressure using the driving force of the turbine, a bypass path that bypasses the electric valve and a bypass provided in this bypass path are provided. A steam turbine control device comprising: a valve; and control means for opening the bypass valve prior to the electric valve in response to a start signal. 2. The control means includes a bypass valve timer that opens the bypass valve for a first predetermined time in response to the start signal, and a bypass valve timer that opens the bypass valve for a second predetermined time in response to the start signal. The steam turbine control device according to claim 1, further comprising a delay timer for opening the valve. 3. The first and second predetermined times are set such that the electric valve is opened while the bypass valve is open. steam turbine controller. 4. The steam turbine control device according to claim 1, wherein the amount of steam flowing through the bypass path is selected to such an extent that the turbine rotational speed can establish a control oil pressure. 5. The steam turbine control device according to claim 4, wherein the bypass passage has an orifice for restricting the flow rate flowing therethrough.
JP60238322A 1985-10-24 1985-10-24 Steam turbine controller Expired - Lifetime JPH0610404B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60238322A JPH0610404B2 (en) 1985-10-24 1985-10-24 Steam turbine controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60238322A JPH0610404B2 (en) 1985-10-24 1985-10-24 Steam turbine controller

Publications (2)

Publication Number Publication Date
JPS6299602A true JPS6299602A (en) 1987-05-09
JPH0610404B2 JPH0610404B2 (en) 1994-02-09

Family

ID=17028486

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60238322A Expired - Lifetime JPH0610404B2 (en) 1985-10-24 1985-10-24 Steam turbine controller

Country Status (1)

Country Link
JP (1) JPH0610404B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2045441A1 (en) 2007-10-04 2009-04-08 Siemens Aktiengesellschaft Generator-gas turbine-turbo compressor line and method for operating the same
JP2013104729A (en) * 2011-11-11 2013-05-30 Hitachi-Ge Nuclear Energy Ltd Nuclear reactor core cooling system and nuclear power plant facility equipped with the same
JP2016223316A (en) * 2015-05-28 2016-12-28 株式会社東芝 Cooling device for steam turbine and method of controlling the same
CN108104884A (en) * 2017-12-13 2018-06-01 中国船舶重工集团公司第七0四研究所 The pure mechanical liquid type OPC systems of turbine regulation and control system

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2045441A1 (en) 2007-10-04 2009-04-08 Siemens Aktiengesellschaft Generator-gas turbine-turbo compressor line and method for operating the same
WO2009043875A1 (en) * 2007-10-04 2009-04-09 Siemens Aktiengesellschaft Generator-steam turbine-turbocompressor-line and method for the operation thereof
US20100213709A1 (en) * 2007-10-04 2010-08-26 Oliver Berendt Generator-steam turbine-turbocompressor string and method for operating the same
JP2010540829A (en) * 2007-10-04 2010-12-24 シーメンス アクチエンゲゼルシヤフト Generator / steam turbine / turbo compressor line and method for operating generator / steam turbine / turbo compressor line
US8575774B2 (en) * 2007-10-04 2013-11-05 Siemens Aktiengesellschaft Generator-stream turbine-turbocompressor string regulated by variation of a mains power supplied and by a live steam feed and method for operating the same
KR101531831B1 (en) * 2007-10-04 2015-06-26 지멘스 악티엔게젤샤프트 Generator-steam turbine-turbocompressor-line and method for the operation thereof
JP2013104729A (en) * 2011-11-11 2013-05-30 Hitachi-Ge Nuclear Energy Ltd Nuclear reactor core cooling system and nuclear power plant facility equipped with the same
JP2016223316A (en) * 2015-05-28 2016-12-28 株式会社東芝 Cooling device for steam turbine and method of controlling the same
CN108104884A (en) * 2017-12-13 2018-06-01 中国船舶重工集团公司第七0四研究所 The pure mechanical liquid type OPC systems of turbine regulation and control system

Also Published As

Publication number Publication date
JPH0610404B2 (en) 1994-02-09

Similar Documents

Publication Publication Date Title
JPS6299602A (en) Steam turbine control device
JPH09113669A (en) Reactor water injection facility
JP2004108965A (en) Controller for steam regulating valve
JPS5965507A (en) Operation of complex cycle power generating plant
JPH01305A (en) Steam turbine control device
JP2001349975A (en) Nuclear reactor water injection facility using steam turbine drive pump
JPS6267203A (en) Turbine for driving boiler feed pump
JPS6017203A (en) Prevention against racing in steam turbine
JPH059605B2 (en)
JP2004116449A (en) Pumpturbine and operation control method for the same
JPS6355309A (en) Device for controlling steam turbine
JPH09250305A (en) Turbine control device
JPS60108793A (en) Cooling device on isolation of nuclear reactor for nuclear power plant
JPS58217705A (en) Control device of steam turbine
JPH0261601B2 (en)
JPH081123B2 (en) Steam turbine controller
JPS6024284B2 (en) Steam turbine back pressure control method
JPH08303712A (en) Make-up water supplier
JPS6248074B2 (en)
JPS63105204A (en) Control device for steam turbine
JPH01225801A (en) Seal water and spray water feed device
JPH06186391A (en) Nuclear power plant
JPH10231709A (en) Geothermal turbine power generating plant
JPS5987204A (en) Quick start characteristic relaxing device of turbine
JPH0267467A (en) Operating method for hydraulic machine

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term