JPS6024284B2 - Steam turbine back pressure control method - Google Patents

Steam turbine back pressure control method

Info

Publication number
JPS6024284B2
JPS6024284B2 JP11018676A JP11018676A JPS6024284B2 JP S6024284 B2 JPS6024284 B2 JP S6024284B2 JP 11018676 A JP11018676 A JP 11018676A JP 11018676 A JP11018676 A JP 11018676A JP S6024284 B2 JPS6024284 B2 JP S6024284B2
Authority
JP
Japan
Prior art keywords
steam
steam turbine
back pressure
induction motor
control valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP11018676A
Other languages
Japanese (ja)
Other versions
JPS5335803A (en
Inventor
俊三郎 永島
嘉美 堤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP11018676A priority Critical patent/JPS6024284B2/en
Publication of JPS5335803A publication Critical patent/JPS5335803A/en
Publication of JPS6024284B2 publication Critical patent/JPS6024284B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Control Of Turbines (AREA)

Description

【発明の詳細な説明】 本発明は、化学プラントのプロセスラインに電力消費量
の低減を目的として蒸気タービンと足格出力時のスリッ
プを有する譲導電動機とにより同時に駆動される圧縮機
等の被動機を設置した場合に、1つのガバナを利用して
行う蒸気夕−ビンの背圧制御方法に関するもので、蒸気
タービン制御系として調速系をアィソクロナスとし又調
圧系を安定運転のためドループガバナとしたものである
DETAILED DESCRIPTION OF THE INVENTION The present invention aims to reduce power consumption in a process line of a chemical plant by installing a compressor or the like that is simultaneously driven by a steam turbine and a transfer motor having slip at sufficient output. This relates to a method for controlling the back pressure of a steam turbine using one governor when a turbine is installed.The steam turbine control system uses an isochronous speed governing system and a droop governor for stable operation of the pressure regulating system. This is what I did.

従来、イb学プラントのプロセスラインにおける蒸気タ
ービンの背圧制御機構としては、第1図に示す如く調速
と背圧制御とを別々に行うものが採用されている。
BACKGROUND ART Conventionally, as a back pressure control mechanism for a steam turbine in a process line of an industrial plant, a system that separately performs speed regulation and back pressure control, as shown in FIG. 1, has been adopted.

即ち調速用ガバナ11に連結した蒸気加減弁12により
調速のみを行い、又蒸気入口ラインに設けた流量制御弁
13の開度を、圧力検出器14で蒸気タービン15の背
圧を検出しこの検出値に基づきェアによりコントロール
して背圧制御を行うものである。図中16はスピードセ
ンサーである。しかしながら 機るめのにあっては、 (i’流量制御弁のサイズを最大流量に対し選定するの
で、常用の流量に対し絞り損失が大となって著しく蒸気
の熱効率が低下する。
That is, the steam control valve 12 connected to the speed regulating governor 11 only controls the speed, and the opening degree of the flow control valve 13 provided in the steam inlet line is detected, and the back pressure of the steam turbine 15 is detected by the pressure detector 14. Back pressure control is performed by air control based on this detected value. In the figure, 16 is a speed sensor. However, in the case of a machine, (i') the size of the flow rate control valve is selected for the maximum flow rate, so the throttling loss becomes large compared to the normal flow rate, and the thermal efficiency of steam decreases significantly.

肌 流量制御弁をェアで操作するのでこの操作に時間遅
れが生じ易い。
Since the flow rate control valve is operated in a fair manner, there is likely to be a time delay in this operation.

(iiil 調速系と譲圧系との間で干渉が生ずる虜れ
が大である。
(iii) There is a great tendency for interference to occur between the speed governing system and the pressure concession system.

等の不具合な点を有していた。It had some disadvantages such as:

本発明は、上記せる諸不具合な点を解消し得る蒸気ター
ビンの背圧制御方法に係るもで、被動機の負荷変動並び
にプロセス蒸気需要の変動に対応して蒸気タービンと誘
導電動機に円滑な負荷分担を行わせるようにしたもので
あり、その要旨とするところは、蒸気タービンと被動機
と誘導電動機とを連結した系において、蒸気源からの蒸
気を分岐して、一方は蒸気タービンへ供給した後蒸気需
要個所へ導き、他方は蒸気制御弁により蒸気供見合量を
制御して前記蒸気需要個所へ合流させ、蒸気タービンの
蒸気入口ラインに組込み且つガバナに連結した蒸気加減
弁を、蒸気タービンの背圧を検出してその検出信号をフ
ィードバック背圧信号として前記ガバナに送ることによ
り調整すると共に、誘導電動機の出力により前記ガバナ
を介し蒸気加減弁を調整して蒸気タービンの背圧を制御
することにある。
The present invention relates to a back pressure control method for a steam turbine that can eliminate the above-mentioned problems, and provides a smooth load control method for the steam turbine and induction motor in response to load fluctuations of the driven machine and fluctuations in process steam demand. The idea is that in a system that connects a steam turbine, a driven motor, and an induction motor, steam from the steam source is branched and one side is supplied to the steam turbine. The other side controls the amount of steam supplied by a steam control valve and makes it merge into the steam demand point, and the steam control valve, which is built into the steam inlet line of the steam turbine and connected to the governor, is connected to the steam turbine. Controlling the back pressure of the steam turbine by detecting the back pressure and sending the detection signal as a feedback back pressure signal to the governor, and adjusting the steam control valve via the governor using the output of the induction motor. It is in.

本発明の実施例について図面を参照しつつ説明する。Embodiments of the present invention will be described with reference to the drawings.

第2図中1は蒸気夕−ビンであり、この蒸気タービンー
の蒸気入口ラインに蒸気加減弁2が組込まれており、こ
の蒸気加減弁2はガバナ3に連結されこのガバナ3によ
り調整されるようになっている。
Reference numeral 1 in FIG. 2 is a steam turbine, and a steam control valve 2 is built into the steam inlet line of the steam turbine. This steam control valve 2 is connected to a governor 3 so that it is regulated by the governor 3. It has become.

又4はスピードセンサにして蒸気タービン1の回転速度
を検出しこの検出信号をガバナ3に送るようになってお
り、5は圧力検出器にして蒸気夕−ビンーの背圧を検出
しこの検出信号をガバナ3に送るようになっており、6
は圧縮機等の被動機にして蒸気タービン1の回転軸とカ
ップリングを介し連結され又誘導電動機7の歯車機構8
及びカップリングを介し連結されており、この被動機6
は蒸気タービン1誘導電動機7とにより同時に駆動され
るようになっている。更に9は譲導電動機7の出力を検
出する出力検出器にしてこの検出信号をガバナ3に送る
ものであり、1川ま蒸気制御弁にして蒸気需要個所に蒸
気源(例えばボィラ)から直接蒸気を供給するラインに
組込まれ適宜蒸気供給をコントロールし得るものである
。更に又低負荷状態で誘導電動機7によるバックアップ
が不要な場合にこの譲導電動機7の電源を遮断して調速
運転を行ない得るようになっていると共に、蒸気量の変
化に対し蒸気タービン1の背圧を予め設定された範囲内
で変化させる機構(例えばボィラの蒸気吐出ラインに蒸
気検出器を設けこの検出器の検出信号により蒸気加減弁
2をコントロールする機構)を備えている。蒸気が圧力
P,、量G,でボィラから生蒸気の状態で、又は発電用
タービン等の柚気量G2が、蒸気加減弁2を通り蒸気夕
−ビンーに供給され、当該蒸気タービンーで仕事を行い
この背圧P2がプロセスに供給される。
Further, 4 is a speed sensor which detects the rotational speed of the steam turbine 1 and sends this detection signal to the governor 3, and 5 is a pressure sensor which detects the back pressure of the steam turbine and sends this detection signal. is sent to governor 3, and 6
is a driven motor such as a compressor, and is connected to the rotating shaft of the steam turbine 1 via a coupling, and is connected to the gear mechanism 8 of the induction motor 7.
and are connected via a coupling, and this driven machine 6
are driven simultaneously by the steam turbine 1 and the induction motor 7. Furthermore, 9 is an output detector that detects the output of the transfer motor 7 and sends this detection signal to the governor 3. 9 is a steam control valve that supplies steam directly from the steam source (for example, a boiler) to the steam demand point. It is installed in the line that supplies steam and can control the steam supply as appropriate. Furthermore, when backup by the induction motor 7 is not required in a low load state, the power to the transfer motor 7 can be cut off to perform speed control operation. A mechanism for changing the back pressure within a preset range (for example, a mechanism for providing a steam detector in the steam discharge line of the boiler and controlling the steam control valve 2 based on a detection signal from the detector) is provided. Steam is supplied as live steam from a boiler at a pressure P, and an amount G2, or an amount of steam G2 from a power generation turbine, etc., is supplied to a steam generator through a steam control valve 2, and work is performed in the steam turbine. This back pressure P2 is supplied to the process.

被動機負荷一定の場合プロセスの需要量G4が量C2よ
りも多くなった際に蒸気制御弁10を経て蒸気が童C3
補給これ、逆に叢要個所量C4が供給蒸気量G,よりも
減少すると背圧P2が設定値よりも上昇し、この変化を
圧力検出器5により検出しこの検出信号をガバナ3に送
り当該ガバナ3を作動して蒸気加減弁2の関度を制限し
蒸気タービン1の出力が減少し、このために誘導電動機
7の負荷が増加することになる。上記蒸気タービン1の
速度は、第3図に示すようにガバナ3によりアィソクロ
ナス(垣速)で誘導電動機7の同期速度の(100十Q
)%(系が誘導電動機7の速度で運転され、背圧コント
ロールの状態にある間、ガバナ3の調整作用を殺すため
蒸気タービン1の設定速度は100十Q%とする。)に
設定され(設定速度ns)、通常運転中は蒸気タービン
1の回転数(運転速度)nrが誘導電動機7の速度と等
しくなって調速系は不作動状態で調圧系のみが作動状態
にあり、蒸気タービン1の背圧を設定された圧力範囲に
保つように蒸気加減弁2の関度を保持しており、被動機
6の所要動力のうち蒸気タービンーの出力LTによる不
足分LN(=通常運転時の総合負荷L−LT)を誘導電
動機7が分担することになって省エネルギー化を図り得
る。第3図中6。は誘導電動機7の出力0〔KW)時の
スリップを、6rは誘導電動機7の定格出力時のスリッ
プを夫々示す。上記したように調圧運転をするため蒸気
タービンーの使用蒸気量とこの背圧の関係は第4図に示
すように調整され(ドループ)、調圧運転中にプロセス
の蒸気需要が減少した場合に背圧がA→Bに変化し、蒸
気タービン1及び誘導電動機7の負荷分担が夫々(LT
+LM)→(LT″十LM″)→(LT′+L,のよう
に変化する。
When the driven machine load is constant, when the process demand quantity G4 becomes greater than the quantity C2, the steam passes through the steam control valve 10 and the steam reaches the output terminal C3.
Conversely, when the required amount of steam C4 decreases below the supplied steam amount G, the back pressure P2 rises above the set value, and this change is detected by the pressure detector 5 and this detection signal is sent to the governor 3. The governor 3 is actuated to limit the function of the steam control valve 2, and the output of the steam turbine 1 is reduced, thereby increasing the load on the induction motor 7. As shown in FIG. 3, the speed of the steam turbine 1 is controlled isochronously by the governor 3 (100
)% (while the system is running at the speed of the induction motor 7 and is in a state of backpressure control, the set speed of the steam turbine 1 is set to 100 Q% to kill the regulating action of the governor 3). During normal operation, the number of revolutions (operating speed) nr of the steam turbine 1 becomes equal to the speed of the induction motor 7, the speed regulating system is inactive, and only the pressure regulating system is in the operating state. The relationship of the steam control valve 2 is maintained so that the back pressure of the engine 1 is maintained within a set pressure range, and the required power of the driven machine 6 is the shortfall LN due to the output LT of the steam turbine (= during normal operation Since the total load (L-LT) is shared by the induction motor 7, it is possible to save energy. 6 in Figure 3. 6r indicates the slip when the induction motor 7 has an output of 0 [KW], and 6r indicates the slip when the induction motor 7 has the rated output. As mentioned above, in order to perform pressure regulating operation, the relationship between the amount of steam used by the steam turbine and this back pressure is adjusted as shown in Figure 4 (droop), and if the steam demand of the process decreases during pressure regulating operation, The back pressure changes from A to B, and the load sharing of the steam turbine 1 and induction motor 7 respectively (LT
+LM)→(LT″10LM″)→(LT′+L,).

又被動機6の負荷が減少し、しかもプロセスの蒸気需要
個所量G4が増加した場合、誘導電動機7の発電を防止
するためにこの誘導電動機7の最小負荷に達した時に蒸
気タービンーの出力を自動的に減少せて04−(G.−
Gloss)の蒸気量が蒸気制御弁10から補給される
。この状態で被動機6の負荷が増加した場合には誘導電
動機7の出力を出力検出器9により検出しこの検出信号
に基づき蒸気加減弁2が作動し蒸気タービン1の出力制
限を自動的に解除し得られる。第4図中Goはプロセス
の蒸気需要が低下して誘導電動機7が単独で負荷を分担
した場合に蒸気タービン1の冷却に要する最小蒸気塁で
あり、GLT,はプロセスの常用蒸気需要の最少値であ
り、GLT2は被動機6の最小負荷に対応する蒸気ター
ビン1の蒸気消費量であり、GLT3はプロセスの常用
蒸気需要の最大値である。又LT,,LT2及びL,3
は蒸気量GH,,GLT2及びGLT3を与える場合の
蒸気タービン1の出力であり、L一(mln)は議導電
動機7にこの発電防止のために分担させる最4・負荷で
ある。今、総合負荷L=LT+LMで運転中に背圧が上
昇すると(LT′+LM′→(LT^+LMr)のよう
に蒸気タービン1の出力が減少し誘導電動機7の負荷が
増加する。
In addition, when the load on the driven machine 6 decreases and the steam demand amount G4 of the process increases, the output of the steam turbine is automatically reduced when the minimum load of the induction motor 7 is reached to prevent the induction motor 7 from generating electricity. 04-(G.-
The amount of steam (Gloss) is replenished from the steam control valve 10. If the load on the driven motor 6 increases in this state, the output of the induction motor 7 is detected by the output detector 9, and the steam control valve 2 is operated based on this detection signal to automatically release the output restriction of the steam turbine 1. can be obtained. In Fig. 4, Go is the minimum steam base required to cool the steam turbine 1 when the steam demand of the process decreases and the induction motor 7 alone shares the load, and GLT, is the minimum value of the regular steam demand of the process. , GLT2 is the steam consumption of the steam turbine 1 corresponding to the minimum load of the driven machine 6, and GLT3 is the maximum value of the regular steam demand of the process. Also LT,,LT2 and L,3
is the output of the steam turbine 1 when the steam amounts GH, , GLT2 and GLT3 are given, and L1 (mln) is the maximum load to be shared by the electric motor 7 to prevent this power generation. Now, when the back pressure increases during operation with the total load L=LT+LM, the output of the steam turbine 1 decreases and the load on the induction motor 7 increases as shown in (LT'+LM'→(LT^+LMr)).

逆に(LTr十LM″)のような点で運転中に背圧が低
下すれば蒸気加減弁2を開き蒸気タービン1の出力が増
し(LT′+LN′)に戻る。これらは全て調圧運転で
ある。又(L,十LM)ないしは(LT′+LM′のよ
うな運転中に急に総合負荷が減少して謙導電動機7の負
荷がL一(min)になると蒸気タービンーの負荷LT
或いはLT′から自動的にLT2まで減らされC点に至
りそれ以降は(LT川十LM川)のような負荷配分とな
る。次に蒸気タービン1を起動後に誘導電動機7を駆動
して行う蒸気タービン1の調圧運転について述べる。蒸
気夕−ビンーのみにより約20%の回転数まで起動後に
蒸気タービン1及び被動機6の危険回転数より充分低い
回転数において、被動機6を暖機運転した後にガバナ3
の速度設定を手動により操作して速度nSまで上げ、誘
導電動機7の電源を没入して駆動する。
Conversely, if the back pressure decreases during operation at a point such as (LTr + LM''), the steam regulating valve 2 is opened and the output of the steam turbine 1 increases and returns to (LT' + LN'). All of these are pressure regulating operations. Also, if the total load suddenly decreases during operation such as (L, 10LM) or (LT'+LM' and the load on the electric motor 7 becomes L1 (min), the load on the steam turbine LT
Alternatively, the load is automatically reduced from LT' to LT2 and reaches point C, after which the load distribution becomes (LT river + LM river). Next, a pressure regulating operation of the steam turbine 1 performed by driving the induction motor 7 after starting the steam turbine 1 will be described. After the steam turbine 1 and the driven machine 6 are started up to about 20% rotation speed using only the steam generator, the driven machine 6 is warmed up at a rotation speed sufficiently lower than the critical rotation speed of the steam turbine 1 and the driven machine 6, and then the governor 3 is started.
The speed setting of the induction motor 7 is manually operated to increase the speed to nS, and the induction motor 7 is powered on to be driven.

この際に蒸気量が充分であり且つ被動機6の増速に要す
る動力が小なる場合は蒸気タービン1のみで定格速度の
(100十Q)%まで増速して誘導電動機7を駆動し、
又逆に蒸気量が不足で被動機6の増速に要する動量が大
なる場合は低回転から急激に誘導電動機7の定格回転数
まで定格回転数まで被動機6の増速を行う。上記のよう
にして誘導電動機7を駆動後(第5図イに該当)に当該
誘導電動機7の発電防止するために蒸気タービン1の出
力を最小蒸気量に相当する出力LT^(第5図口に該当
)に制限し、誘導電動機7が負荷LN^(第5図ハに該
当)だけ連続して分担したら外部接点で蒸気タービン1
の出力LT^のロードリミットを自動的に外し競圧運転
(第5図二に該当)に入る。この鯛圧運転時に議導電動
機7の負荷がLNB(誘導電動機7の発電防止のために
分担する最小出力)以下(第5図ホに該当)になれば、
これを出力検出器9により検出しガバナ3を適宜駆動し
て蒸気タービン1の最大出力を被動機6の最4・負荷以
下の出力LTcに制限し(第5図へに該当)、誘導電動
機7の負荷がLNc以上で時間Tc継続すれば(第5図
卜に該当)自動的にリミットを解除すると同時に背圧が
瞬間的に上昇するのを防止するために蒸気制御弁10を
瞬時全開して蒸気タービン1の負荷を増し(第5図チに
該当)、誘導電動機7の負荷を減少させる。このように
して蒸気タービン1の起動後に誘導電動機7を駆動して
蒸気タービン1の調圧運転を行うことができる。第5図
中Lmjnは被動機6の最小所要動力を示す。尚本発明
は、図示し説明した実施例にのみ限定されることなく、
本発明の要旨を逸脱しない限り種々の変更を加え得るこ
とは勿論である。
At this time, if the amount of steam is sufficient and the power required to increase the speed of the driven motor 6 is small, the speed of the steam turbine 1 alone is increased to (100 Q)% of the rated speed to drive the induction motor 7,
Conversely, if the amount of steam is insufficient and the amount of movement required to increase the speed of the driven motor 6 is large, the speed of the driven motor 6 is rapidly increased from low rotation to the rated rotation speed of the induction motor 7. After driving the induction motor 7 as described above (corresponding to Figure 5 A), in order to prevent the induction motor 7 from generating electricity, the output of the steam turbine 1 is changed to the output LT^ (corresponding to Figure 5) corresponding to the minimum amount of steam. ), and when the induction motor 7 continuously shares the load LN^ (corresponds to C in Figure 5), the steam turbine 1 is
automatically removes the load limit of the output LT^ and enters competitive pressure operation (corresponding to Figure 5 2). During this pressure operation, if the load on the induction motor 7 becomes less than LNB (minimum output shared to prevent the induction motor 7 from generating power) (corresponds to E in Figure 5),
This is detected by the output detector 9, and the governor 3 is appropriately driven to limit the maximum output of the steam turbine 1 to an output LTc that is less than the maximum load of the driven machine 6 (corresponding to Fig. 5), and the induction motor 7 If the load exceeds LNc and continues for a time Tc (corresponding to Figure 5), the limit is automatically released and at the same time, the steam control valve 10 is instantaneously fully opened to prevent the back pressure from rising momentarily. The load on the steam turbine 1 is increased (corresponding to Fig. 5, h), and the load on the induction motor 7 is decreased. In this manner, after the steam turbine 1 is started, the induction motor 7 can be driven to perform pressure regulating operation of the steam turbine 1. In FIG. 5, Lmjn indicates the minimum required power of the driven machine 6. Note that the present invention is not limited to the illustrated and described embodiments;
Of course, various changes can be made without departing from the gist of the invention.

以上述べたように本発明の蒸気タービンの背圧制御方法
によれば、(1)制御系統の単純化を図り得るものと共
に、作動の時間遅れを少なくできる。
As described above, according to the steam turbine back pressure control method of the present invention, (1) the control system can be simplified and the time delay in operation can be reduced.

(ロ)蒸気タービンにおける蒸気絞り損失を従来に比し
大幅に少なくでき熱効率が改善できる。
(b) The steam throttling loss in the steam turbine can be significantly reduced compared to the conventional method, and the thermal efficiency can be improved.

(m) プロセス蒸気需要量の変化に対し蒸気タービン
の背圧を設定圧力範囲内で迅速に制御できる。
(m) The back pressure of the steam turbine can be quickly controlled within a set pressure range in response to changes in process steam demand.

(W)省エネルギー化を図りながら常に安定した運転を
行うことができる。
(W) Stable operation can be performed at all times while saving energy.

等の優れた効果を発揮する。Demonstrates excellent effects such as

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の蒸気タービンの背圧制御機構を示す説明
用系統図、第2図は本発明の蒸気タービンの背圧制御法
を実施する機構を示す説明用系統図、第3図は本発明に
おける蒸気タービン及び譲導電動機の出力と速度を示す
線図、第4図は本発明における蒸気タービンと誘導電動
機の出力及び蒸気タービンの蒸気流量とその背圧の関係
を示す線図、第5図は本発明における蒸気タービンの起
動後に誘導電動機を駆動して蒸気タービンが調圧運転を
行っている場合の状態を示す線図である。 1・・・蒸気タービン、2・・・蒸気加減弁、3・・・
ガバナ、4…スピードセンサー、5・・・圧力検出器、
6・・・被動機、7…誘導電動機、9・・・出力検出器
、I0・・・蒸気制御弁。 繁‘図 第2図 第3図 第4図 図 町 船
Fig. 1 is an explanatory system diagram showing a conventional steam turbine back pressure control mechanism, Fig. 2 is an explanatory system diagram showing a mechanism implementing the steam turbine back pressure control method of the present invention, and Fig. 3 is the main system diagram. FIG. 4 is a diagram showing the output and speed of the steam turbine and transfer motor in the invention; FIG. The figure is a diagram showing a state in which the steam turbine performs pressure regulating operation by driving the induction motor after starting the steam turbine according to the present invention. 1...Steam turbine, 2...Steam control valve, 3...
Governor, 4...Speed sensor, 5...Pressure detector,
6... Driven machine, 7... Induction motor, 9... Output detector, I0... Steam control valve. Figure 2 Figure 3 Figure 4 Town boat

Claims (1)

【特許請求の範囲】[Claims] 1 蒸気タービンと被動機と誘導電動機とを連結した系
において、蒸気源からの蒸気を分岐して、一方は蒸気タ
ービンへ供給した後蒸気需要個所へ導き、他方は蒸気制
御弁により蒸気供給量を制御して前記蒸気需要個所へ合
流させ、蒸気タービンの蒸気入口ラインに組込み且つガ
バナに連結した蒸気加減弁を、蒸気タービンの背圧を検
出してその検出信号をフイードバツク背圧信号として前
記ガバナに送ることにより調整すると共に、誘導電動機
の出力により前記ガバナを介し蒸気加減弁を調整して蒸
気タービンの背圧を制御することを特徴とする蒸気ター
ビンの背圧制御方法。
1 In a system that connects a steam turbine, a driven machine, and an induction motor, steam from a steam source is branched, one side supplies it to the steam turbine and then guides it to the steam demand point, and the other side controls the amount of steam supplied by a steam control valve. A steam control valve is connected to the steam inlet line of the steam turbine and connected to the governor to detect the back pressure of the steam turbine and send the detected signal to the governor as a feedback back pressure signal. 1. A method for controlling back pressure of a steam turbine, characterized in that the back pressure of the steam turbine is controlled by adjusting the steam control valve by transmitting the steam and adjusting the steam control valve via the governor using the output of the induction motor.
JP11018676A 1976-09-14 1976-09-14 Steam turbine back pressure control method Expired JPS6024284B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11018676A JPS6024284B2 (en) 1976-09-14 1976-09-14 Steam turbine back pressure control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11018676A JPS6024284B2 (en) 1976-09-14 1976-09-14 Steam turbine back pressure control method

Publications (2)

Publication Number Publication Date
JPS5335803A JPS5335803A (en) 1978-04-03
JPS6024284B2 true JPS6024284B2 (en) 1985-06-12

Family

ID=14529214

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11018676A Expired JPS6024284B2 (en) 1976-09-14 1976-09-14 Steam turbine back pressure control method

Country Status (1)

Country Link
JP (1) JPS6024284B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5718701U (en) * 1980-07-04 1982-01-30
JP2578328B2 (en) * 1985-07-30 1997-02-05 出光石油化学株式会社 Output control method for back pressure turbine generator

Also Published As

Publication number Publication date
JPS5335803A (en) 1978-04-03

Similar Documents

Publication Publication Date Title
JP2593578B2 (en) Combined cycle power plant
JPS6118649B2 (en)
JPH0468455B2 (en)
JPH0127242B2 (en)
JPS6158644B2 (en)
CA1082057A (en) Boiler feed water pump control systems
CN111412023A (en) Coordination control method for realizing stable operation of steam-electricity dual-drive system
JPH11509594A (en) Method and apparatus for regulating the heat output of a combined heat and power generation system
JPS6024284B2 (en) Steam turbine back pressure control method
CN106379154A (en) Hybrid driving system
US6363708B1 (en) Gas turbine engine
JPH0329523Y2 (en)
CN108386238B (en) Motor-small steam turbine variable-rotation-speed double-driving system
JP3680329B2 (en) Method for controlling power generator
JP2002115643A (en) Small hydraulic power generating facility
JPS5965507A (en) Operation of complex cycle power generating plant
JPS6153531B2 (en)
JPS6368493A (en) Method of controlling output of shaft generator/motor
JPH0693880A (en) Gas turbine facility and operation thereof
JP2612369B2 (en) Power source device
JP2731147B2 (en) Control unit for hydroelectric power plant
JPH0331884B2 (en)
JPH0610404B2 (en) Steam turbine controller
JP2680352B2 (en) Furnace draft control method
JPS60525B2 (en) Control equipment for exhaust gas utilization plants