JPS60525B2 - Control equipment for exhaust gas utilization plants - Google Patents

Control equipment for exhaust gas utilization plants

Info

Publication number
JPS60525B2
JPS60525B2 JP7687877A JP7687877A JPS60525B2 JP S60525 B2 JPS60525 B2 JP S60525B2 JP 7687877 A JP7687877 A JP 7687877A JP 7687877 A JP7687877 A JP 7687877A JP S60525 B2 JPS60525 B2 JP S60525B2
Authority
JP
Japan
Prior art keywords
steam
steam turbine
signal
exhaust gas
rotation speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP7687877A
Other languages
Japanese (ja)
Other versions
JPS5412005A (en
Inventor
俊三郎 永島
幹男 小尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP7687877A priority Critical patent/JPS60525B2/en
Publication of JPS5412005A publication Critical patent/JPS5412005A/en
Publication of JPS60525B2 publication Critical patent/JPS60525B2/en
Expired legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]

Landscapes

  • Engine Equipment That Uses Special Cycles (AREA)
  • Control Of Turbines (AREA)

Description

【発明の詳細な説明】 本発明は排ガス利用プラントの制御装置に関する。[Detailed description of the invention] The present invention relates to a control device for an exhaust gas utilization plant.

内燃機関、ガスタービンなどのように運転中に比較的高
温の排ガスを発生する熱機関原動機の排ガスの熱エネル
ギーを蒸気タービンに回収して、その蒸気タービンで発
電機とプロペラを駆動し、主機の負荷分担の軽減を計る
省エネルギープラントがある。
The thermal energy of the exhaust gas from a heat engine prime mover, such as an internal combustion engine or a gas turbine, which generates relatively high temperature exhaust gas during operation, is recovered into a steam turbine, and the steam turbine drives a generator and propeller to power the main engine. There are energy-saving plants that reduce load sharing.

本発明は斯る排ガス利用の省エネルギープラントを成立
させるために必要な蒸気タービンの制御装置に関するも
のである。
The present invention relates to a steam turbine control device necessary for establishing such an energy-saving plant that utilizes exhaust gas.

第1図を参照して従釆の排ガス利用プラントの制御装置
を説明する。
A control device for a subordinate exhaust gas utilization plant will be explained with reference to FIG.

排ガス利用プラントに於ける蒸気タービンの制御には一
般的に調速ガバナが使用されており、回転速度検出器b
により蒸気タービンcの回転数を検出して得た検出信号
は調速ガバナaに送られ、比較演算器nによって回転数
設定器dからの設定回転数と比較演算されてその偏差に
応じて蒸気タービンcの蒸気入口ラインeに組み込まれ
た蒸気加減弁fの開度を調節し、蒸気タービンcに供給
される蒸気量を加減して回転数を維持させるようにして
いる。しかしながら斯る制御機構に於ては (i)主機の回転数と蒸気タービンの設定回転数が異な
る場合、蒸気加減弁は全開又は全閉となり不安定な作動
をする。
A speed governor is generally used to control steam turbines in exhaust gas utilization plants, and a rotation speed detector b
The detection signal obtained by detecting the rotation speed of the steam turbine c is sent to the speed governor a, and is compared with the set rotation speed from the rotation speed setting device d by the comparator n, and the steam is adjusted according to the deviation. The opening degree of a steam control valve f built into the steam inlet line e of the turbine c is adjusted to adjust the amount of steam supplied to the steam turbine c to maintain the rotation speed. However, in such a control mechanism, (i) if the rotational speed of the main engine and the set rotational speed of the steam turbine are different, the steam control valve will be fully open or fully closed, resulting in unstable operation.

即ち、一般に主機gの発生馬力は蒸気タービンcより5
〜1の音程度あるため、運転中蒸気タービンcの回転数
は主機gの回転数と略同一となり「従って、今主機gの
回転数が下った場合は、蒸気タービンの回転数も下るた
め、回転数を設定回転数に保持しようとして蒸気加減弁
fは全開となり、蒸気タービンcは出し得る最大出力を
発生するが、前記とは反対に、主機gの回転数が上昇し
て蒸気タービンcの回転数も上昇すると、回転数を設定
回転数まで下げようとして調速ガバナaからの出力によ
り蒸気加減弁fは閉じられるのであり、そして蒸気加減
弁fが全閉になっても前述の通り蒸気タービンcは主機
gの回転数と略同一の上昇した回転数でまわされるので
、蒸気タービンcは空転して排ガスェコノマィザhから
の蒸気を有効に利用できず「動力回収の機能を果すこと
ができない不都合な点がある他、通常運転中でも、蒸気
タービンcは主機gの回転数の微少変動に追従するので
、蒸気加減弁fは全開と全開を繰り返し、従って蒸気タ
ービンcの発生出力も最大出力と琴出力を繰り返し、本
システムに外乱が生じて運転不能となり、又蒸気タービ
ンcの発生出力の変動により発電機iを駆動するための
動力が主機gと蒸気タービンcとの間で瞬間的に移行し
あうため不安定な運転となる。
That is, generally speaking, the horsepower generated by the main engine g is 5
Since the rotation speed of the steam turbine c during operation is approximately the same as the rotation speed of the main engine g, ``therefore, if the rotation speed of the main engine g decreases, the rotation speed of the steam turbine will also decrease. In an attempt to maintain the rotational speed at the set rotational speed, the steam control valve f is fully opened, and the steam turbine c generates the maximum output that it can produce.However, contrary to the above, the rotational speed of the main engine g increases and the rotational speed of the steam turbine c increases. When the rotation speed also increases, the steam control valve f is closed by the output from the speed governor a in an attempt to lower the rotation speed to the set rotation speed, and even if the steam control valve f is fully closed, the steam control valve f is closed as described above. Since the turbine c is rotated at an increased rotational speed that is approximately the same as the rotational speed of the main engine g, the steam turbine c is idling and cannot effectively utilize the steam from the exhaust gas economizer h, causing it to be unable to perform its power recovery function. In addition to the disadvantages, even during normal operation, the steam turbine c follows minute fluctuations in the rotational speed of the main engine g, so the steam control valve f repeats full opening and closing, and therefore the output of the steam turbine c also reaches its maximum output. The koto output is repeated, and a disturbance occurs in this system, making it inoperable.Also, due to fluctuations in the generated output of steam turbine c, the power to drive generator i is instantaneously transferred between main engine g and steam turbine c. This causes unstable driving.

ii)排ガスェコノマィザからの発生蒸気流量に比例し
た動力回収が行なえない。
ii) It is not possible to recover power proportional to the flow rate of steam generated from the exhaust gas economizer.

今、排ガスェコノマィザhの発生蒸気流量が増えた場合
、蒸気タービン入口圧力が上昇し、蒸気タービンが利用
し得るエネルギーたる断熱熱落差が増え、従って蒸気タ
ービンの発生馬力も増えるため、発電機とプロペラの負
荷及び主機gの発生馬力が一定の場合は蒸気タービンc
の回転数は上昇することになるが、設定回転数を超える
と調速ガバナaからの出力により蒸気加減弁f‘ま閉め
られるので、蒸気タービンcの蒸気流量は減少する。
Now, if the flow rate of steam generated by the exhaust gas seconomizer h increases, the steam turbine inlet pressure will rise, the adiabatic heat drop, which is the energy available to the steam turbine, will increase, and the horsepower generated by the steam turbine will also increase. If the load of the main engine g and the horsepower generated by the main engine g are constant, then the steam turbine c
The rotational speed will increase, but when the rotational speed exceeds the set rotational speed, the steam control valve f' is closed by the output from the speed governor a, so the steam flow rate of the steam turbine c decreases.

一般にノズル締切調速を採用した場合t蒸気タービンの
発生馬力はL=K×G×日 L;発生馬力 G;蒸気流量 日…断熱熱落差 K;比例定数 の計算式で示されるのであり、従って断熱熱落差日が増
えた場合は蒸気流量Gを少′なくしても同じ馬力を発生
させることができるが、前記の設定回転数を超えた場合
は排ガスヱコノマィザhからの発生蒸気流量が大きいに
もかかわらず蒸気加減弁fは閉となって、発生蒸気流量
と蒸気タービンでの消費量との差、即ち余剰蒸気は凝縮
器jヘダンプされるので、発生蒸気流量の全量を蒸気タ
ービンcで回収し得ないことになり、省エネルギープラ
ントとならない。
Generally, when nozzle shut-off speed control is adopted, the horsepower generated by a steam turbine is expressed by the following formula: L=K×G×day L; generated horsepower G; steam flow rate day...adiabatic heat drop K; proportionality constant; If the adiabatic heat drop increases, the same horsepower can be generated even if the steam flow rate G is decreased, but if the rotation speed exceeds the set rotation speed, even if the steam flow rate generated from the exhaust gas economizer h is large. Regardless, the steam control valve f is closed and the difference between the generated steam flow rate and the amount consumed by the steam turbine, that is, the surplus steam, is dumped to the condenser j, so the entire generated steam flow rate is recovered by the steam turbine c. Therefore, it will not be an energy-saving plant.

一方L排ガスェコノマィザhの発生蒸気流量が減った場
合は、第2図に示す如く蒸気タービンの入口圧力はPo
からP,に下降し、それに応じて断熱熱落差もHoから
日,に減少し、従って蒸気タービンの発生馬力が小さく
なり、回転数が下降するので調速ガバナaの出力により
蒸気加減弁fを開いて蒸気タービンへの蒸気流量を増や
して馬力を増加させ、蒸気タービンの回転数を設定回転
数に保持させているが、この場合断熱熱落差が小さくな
ったために△日だけ熱回収率が悪くなり省エネルギープ
ラントとならない。
On the other hand, when the flow rate of steam generated by the L exhaust gas seconomizer h decreases, the inlet pressure of the steam turbine decreases to Po
The adiabatic heat drop decreases from Ho to P, and the adiabatic heat drop accordingly decreases from Ho to Day. Therefore, the horsepower generated by the steam turbine decreases and the rotational speed decreases, so the output of the speed governor a causes the steam control valve f to decrease. The steam turbine is opened to increase the flow of steam to the steam turbine, increasing horsepower and maintaining the rotation speed of the steam turbine at the set rotation speed, but in this case, the heat recovery rate is poor only on △ days because the adiabatic heat drop is small. Therefore, it will not be an energy-saving plant.

尚図中P2はタービン出口圧力を示している。(iiD
蒸気タービンの入口圧力が変動した場合、気水分離ド
ラムがキャリオーバーを起こし、蒸気管、排ガスェコノ
マィザ及び蒸気タービンに水滴が侵入し、装置が損傷し
やすい。
Note that P2 in the figure indicates the turbine outlet pressure. (iiD
When the inlet pressure of the steam turbine fluctuates, the steam/water separation drum will cause carryover, and water droplets will enter the steam pipe, the exhaust gas seconomizer, and the steam turbine, easily damaging the equipment.

即ち、気水分離ドラムkの気相部より急激に蒸発が起こ
り、気液混合体が蒸気管1,mへ流れ、蒸気管の損傷を
起こし、更に排ガスェコ/マィザh及び蒸気タービンc
へ流れた場合「 これ等を損傷する塵れがある。
That is, rapid evaporation occurs from the gas phase of the steam/water separation drum k, and the gas-liquid mixture flows into the steam pipes 1, m, causing damage to the steam pipes, and further damaging the exhaust gas eco/misa h and the steam turbine c.
``There is dust that could damage these items.

等の種々の不都合な点がある。There are various disadvantages such as.

本発明の排ガス利用プラントの制御装置は前記した諸問
題点を解決するためになしたもので、9Eガスを発生す
る熱機関原動機とその排ガスの熱を利用した蒸気タービ
ンとを備え、且つ前記熱機関原動機の出力軸と蒸気ター
ビンの出力軸とを接続する伝動機構の途中に、前記熱機
関原動機と蒸気タービンによって駆動される一つ以上の
被駆動機を設けた排ガス利用プラントに於て、蒸気ター
ビンの蒸気入口側の蒸気流路に蒸気加減弁を設け「且つ
該蒸気流路の蒸気加減弁上流側圧を検出する圧力検出器
、該圧力検出器からの信号を圧力設定器からの信号と比
較する比較器、蒸気タービンの回転数を検出する回転数
検出器、該回転数検出器からの信号を回転数設定器から
の信号と比較する比較器、前記両比較器から出た信号を
比較し出力の小さい方の信号を選択するローシグナルセ
レク夕、蒸気タービンの空転を防止するのに必要な最少
蒸気流量を設定する最少蒸気流量設定器からの信号と前
記ローシグナルセレクタからの信号とを比較して出力の
大きい方の信号を選択し該選択信号を蒸気加減弁に入力
する/・ィシグナルセレクタを備えたことを特徴とする
ものである。
The control device for an exhaust gas utilization plant of the present invention was made to solve the above-mentioned problems, and includes a heat engine prime mover that generates 9E gas and a steam turbine that utilizes the heat of the exhaust gas. In an exhaust gas utilization plant in which one or more driven machines driven by the heat engine prime mover and the steam turbine are provided in the middle of a transmission mechanism that connects the output shaft of the engine prime mover and the output shaft of the steam turbine, A steam control valve is provided in the steam flow path on the steam inlet side of the turbine, and a pressure detector detects the pressure upstream of the steam control valve in the steam flow path, and the signal from the pressure detector is compared with the signal from the pressure setting device. a comparator for detecting the rotation speed of the steam turbine; a rotation speed detector for detecting the rotation speed of the steam turbine; a comparator for comparing the signal from the rotation speed detector with a signal from the rotation speed setting device; Compare the signal from the low signal selector that selects the signal with the smaller output with the signal from the minimum steam flow rate setting device that sets the minimum steam flow rate necessary to prevent the steam turbine from idling. The present invention is characterized by comprising a signal selector for selecting the signal with the larger output and inputting the selected signal to the steam control valve.

以下本発明の一実施例を第3図及び第4図を参照しつつ
説明する。
An embodiment of the present invention will be described below with reference to FIGS. 3 and 4.

1‘ま主機、3は該主機1から出た排ガスが流れる流路
に設けた排ガスェコノマィザ、9は涯排ガスェコノマィ
ザ3に発生した蒸気により駆動される蒸気タービンであ
り、前記主機1の出力軸38と蒸気タービン9の出力軸
39の間を、動力伝達軸、伝動歯車、クラッチなどから
なる伝動機構(全体を符号40で示す)により接続し、
該伝動機構40の途中に前記主機1と蒸気タービン9に
よって駆動される発電機10及びプロペラ装置41を設
けている。
1' is a main engine; 3 is an exhaust gas economizer provided in a flow path through which the exhaust gas discharged from the main engine 1 flows; 9 is a steam turbine driven by the steam generated in the exhaust gas economizer 3; and the output shaft 39 of the steam turbine 9 are connected by a transmission mechanism (generally indicated by reference numeral 40) consisting of a power transmission shaft, a transmission gear, a clutch, etc.
A generator 10 and a propeller device 41 driven by the main engine 1 and the steam turbine 9 are provided in the middle of the transmission mechanism 40.

プロペラ装置41はプロペラ範16にプロペラ42と歯
車43を取付けたもので、該歯車43は、伝動機構40
の動力伝達軸44に設けた伝動歯車45と伝動機構40
の補助動力伝達鞠22に設けた伝動歯車46の間に介在
して両伝動歯車45,46と噛合している。排ガスェコ
ノマィザ3に発生した蒸気の供給により駆動する蒸気タ
ービン9の制御装置は、調速制御系と前圧(蒸気タービ
ン入口圧力)制御系とからなっており「通常運転中は前
圧制御を、又起動及び停止時は調速制御を行なうもので
ある。以上を具体的に説明するに、ガバナ26の比較演
算器29に送られた回転速度検出器25からの蒸気ター
ビン9の回転数検出信号は、回転数設定器28からの設
定回数と比較演算され、その偏差信号に応じて蒸気ター
ビン9の蒸気入口ライン8に組み込まれた蒸気加減弁2
7の閥度を調節し、蒸気タービン9に供給される蒸気量
を加減して回転数を維持して調速制御を行ない、又ガバ
ナ26の比較演算器31に送られた蒸気入口ライン8に
臨む圧力検出器30からの蒸気タービン9の入口圧力検
出信号は、圧力設定器32からの設定圧力と比較演算さ
れ、その偏差信号に応じて蒸気加減弁27の関度を調節
し、該蒸気加減弁27の入口圧力を設定圧力に保持して
前圧制御を行なう。前記二つの制御糸は、ローシグナル
セレク夕33により二つの比較演算器29,31からの
出力の4・さい方だけが選択されていずれか一方のみが
作動し得るようになっており、従って回転数設定器28
を蒸気タービン9の回転数(通常時は主機1の回転数と
同じ)以上にセットしておくと、通常運転中は比較演算
器29から蒸気加減弁全開信号が出るので「ローシグナ
ルセレクタ33により選択されて出力レベルの低い前圧
制御系のみが作動する。− 従って通常運転中(前圧制
御中)に主機1の回転数が変化した場合でも、蒸気ター
ビン9の発生馬力が変化するだけで蒸気加減弁27の開
度はわずかしか変化せず、このため従来のような蒸気加
減弁の不安定な運動をなくすことができる。
The propeller device 41 has a propeller 42 and a gear 43 attached to the propeller range 16, and the gear 43 is connected to the transmission mechanism 40.
A transmission gear 45 and a transmission mechanism 40 provided on a power transmission shaft 44 of
It is interposed between a transmission gear 46 provided on the auxiliary power transmission ball 22 and meshes with both transmission gears 45 and 46. The control device for the steam turbine 9, which is driven by the supply of steam generated in the exhaust gas economizer 3, consists of a speed governor control system and a front pressure (steam turbine inlet pressure) control system. Also, speed governing control is performed during startup and shutdown.To explain the above specifically, the rotation speed detection signal of the steam turbine 9 from the rotation speed detector 25 sent to the comparator 29 of the governor 26. is compared with the set number of times from the rotation speed setting device 28, and the steam control valve 2 installed in the steam inlet line 8 of the steam turbine 9 is operated according to the deviation signal.
7 and adjusts the amount of steam supplied to the steam turbine 9 to maintain the rotational speed and perform speed control control. The inlet pressure detection signal of the steam turbine 9 from the facing pressure detector 30 is compared with the set pressure from the pressure setting device 32, and the relationship of the steam control valve 27 is adjusted according to the deviation signal. Prepressure control is performed by maintaining the inlet pressure of the valve 27 at a set pressure. The two control threads are such that only one of the outputs from the two comparators 29 and 31 is selected by the low signal selector 33, so that only one of them can be operated. Number setter 28
If set above the rotation speed of the steam turbine 9 (normally the same as the rotation speed of the main engine 1), the comparator 29 will output a steam control valve full open signal during normal operation, so the low signal selector 33 will Only the selected front pressure control system with a low output level operates. - Therefore, even if the rotational speed of the main engine 1 changes during normal operation (during front pressure control), only the horsepower generated by the steam turbine 9 changes. The opening degree of the steam control valve 27 changes only slightly, and therefore, the unstable movement of the steam control valve, which is conventional, can be eliminated.

尚前記発生馬力の変化に応じて主機1が全負荷に対する
過剰又は不足分を補うので、蒸気タービン9は最適な断
熱熱落差により動力の回収を行なうことができる。又通
常運転中(前圧制御中)、排ガスェコノマイザ3からの
発生蒸気流量が増え、蒸気タービン9の入口圧力が増え
た場合は、設定圧力に保持しようとして比較演算器31
により蒸気加減弁27が開かれ蒸気タービン9への蒸気
流量が更に増加するので主機1はその範囲に於て発電機
10又はプロペラ軸16の駆動に要していた負荷を少な
くできる。
Since the main engine 1 compensates for the excess or deficiency of the total load in accordance with the change in the generated horsepower, the steam turbine 9 can recover power through an optimal adiabatic heat drop. Also, during normal operation (during prepressure control), if the flow rate of steam generated from the exhaust gas economizer 3 increases and the inlet pressure of the steam turbine 9 increases, the comparator 31 tries to maintain the set pressure.
As a result, the steam control valve 27 is opened and the flow of steam to the steam turbine 9 is further increased, so that the load on the main engine 1 required to drive the generator 10 or the propeller shaft 16 can be reduced within that range.

一方排ガスェコノマイザ3からの発生蒸気流量の減少に
より蒸気タービン9の入口圧力が下降した場合は、設定
圧力を保持しようとして蒸気加減弁27は閉められ、蒸
気流量に従って蒸気タービン9の発生馬力は減少するの
で、この不足分は主機1により補完されるが、この場合
に於ても蒸気タービン9の入口圧力は設定圧力に保持さ
れているため、最適な断熱熱落差が保持され、蒸気ター
ビン9に於て有効に動力回収を行なうことができるので
省エネルギー化を達成できる。
On the other hand, when the inlet pressure of the steam turbine 9 decreases due to a decrease in the flow rate of steam generated from the exhaust gas economizer 3, the steam control valve 27 is closed in an attempt to maintain the set pressure, and the horsepower generated by the steam turbine 9 decreases according to the steam flow rate. This shortage is compensated for by the main engine 1, but even in this case, the inlet pressure of the steam turbine 9 is maintained at the set pressure, so the optimum adiabatic heat drop is maintained, and the steam turbine 9 Since power can be effectively recovered in the process, energy savings can be achieved.

尚排ガスェコノマィザ3からの発生蒸気流量が極端に少
なくなって、蒸気加減弁27が全閉になつても蒸気ター
ビン9の入口圧力が設定圧力まで回復しない場合は、蒸
気タービン9は主機1により空転されて過熱により損傷
されることがあるので、これを防止するためローシグナ
ルセレクタ33と蒸気加減弁27の間にハィシグナルセ
レクタ34並びに最少蒸気流量設定器35が設けてあり
、発生蒸気流量が極端に低下した場合でも蒸気タービン
9に冷却用の最少限の蒸気を供給せしめ得るよう構成し
てある。
If the flow rate of steam generated from the exhaust gas economizer 3 becomes extremely low and the inlet pressure of the steam turbine 9 does not recover to the set pressure even if the steam control valve 27 is fully closed, the steam turbine 9 will be idled by the main engine 1. To prevent this, a high signal selector 34 and a minimum steam flow rate setting device 35 are provided between the low signal selector 33 and the steam control valve 27, so that the generated steam flow rate is extremely high. The structure is such that even if the temperature decreases to 1, the minimum amount of steam for cooling can be supplied to the steam turbine 9.

従って、もし蒸気タービン入口圧力が極端に下がっても
、最少蒸気流量設定器35からの信号がハィシグナルセ
レクタ34で選択されるので、蒸気加減弁27は最小開
度を保持することができ、蒸気タービン9は最少限の蒸
気の供給が保証され、空転による過熱を防止することが
できる。次に本発明に係る排ガス利用プラントの制御装
置に於ける蒸気タービンの運転方法を説明する。
Therefore, even if the steam turbine inlet pressure drops extremely, the signal from the minimum steam flow rate setting device 35 is selected by the high signal selector 34, so the steam control valve 27 can maintain the minimum opening degree, and the steam The turbine 9 is guaranteed to be supplied with a minimum amount of steam, and overheating due to idle rotation can be prevented. Next, a method of operating a steam turbine in a control device for an exhaust gas utilization plant according to the present invention will be explained.

蒸気タービンを起動させるには、まず主機1と発電機1
0間のクラッチ23を脱として主機1を起動させ常用回
転数迄上昇せしめておき、しかる後蒸気タービン9を起
動してガバナ26の調速制御により発電機10を常用回
転数迄上昇せしめる。次いで蒸気タービン9の回転数を
調整して、主機1の補助動力伝達軸22と同期させ、ク
ラッチ23を鉄とし、これと同時に蒸気タービン9の回
転数設定器28を常用回転数以上(例えば約5%以上)
に上昇せしめて調速制御から前圧制御へ移行させる。そ
してディーゼル機関36駆動の発電機37のガバナを調
整して王機1及び蒸気タービン駆動の発電機10との並
列運転を行ない、負荷Aを主機1及び蒸気タービン駆動
の発電機10‘こ移行した後ディーゼル機関駆動の発電
機37を停止する。主機1の回転数及び負荷Aが減少し
た場合、主機1の回転数の低下を検出してディーゼル機
関駆動の発電機37を自動起動し、主機及び蒸気タービ
ン駆動の発電機10と並列運転した後、負荷Aをディー
ゼル機関駆動の発電機37へ移行する。
To start the steam turbine, first the main engine 1 and generator 1
0 clutch 23 is disengaged, the main engine 1 is started and the rotational speed is increased to the normal rotational speed, and then the steam turbine 9 is started and the generator 10 is raised to the normal rotational speed by speed control of the governor 26. Next, the rotation speed of the steam turbine 9 is adjusted to synchronize with the auxiliary power transmission shaft 22 of the main engine 1, the clutch 23 is made of iron, and at the same time, the rotation speed setting device 28 of the steam turbine 9 is set to a rotation speed higher than the normal rotation speed (for example, approximately 5% or more)
to shift from speed regulating control to front pressure control. Then, the governor of the generator 37 driven by the diesel engine 36 was adjusted to perform parallel operation with the main engine 1 and the steam turbine-driven generator 10, and the load A was transferred to the main engine 1 and the steam turbine-driven generator 10'. The generator 37 driven by the rear diesel engine is stopped. When the rotation speed and load A of the main engine 1 decrease, the decrease in the rotation speed of the main engine 1 is detected and the diesel engine-driven generator 37 is automatically started and operated in parallel with the main engine and the steam turbine-driven generator 10. , the load A is transferred to the generator 37 driven by the diesel engine.

そしてタービン駆動の発電機10は無負荷となり〜蒸気
タービン9は前圧制御のまま補助動力伝達軸22を介し
て出力をプロペラ軸16へ供給する。次で主機1の回転
数を低下してクラッチ23を脱にし、蒸気タービン9を
停止する。又蒸気タービン9が故障した時は、遮断弁を
閉領すると同時にクラッチ23を脱とする。
Then, the turbine-driven generator 10 becomes unloaded and the steam turbine 9 supplies output to the propeller shaft 16 via the auxiliary power transmission shaft 22 while maintaining the front pressure control. Next, the rotational speed of the main engine 1 is reduced, the clutch 23 is disengaged, and the steam turbine 9 is stopped. Further, when the steam turbine 9 breaks down, the shutoff valve is closed and the clutch 23 is disengaged at the same time.

この時発電機10は停止し、代りにディーゼル機関駆動
の発電機37が自動駆動する。尚第3図では1組のガバ
ナ、蒸気加減弁により蒸気タービンの前圧制御と調速制
御を行なうようにした例を示したが、第4図の如く2組
のガバナ26a,26b、蒸気加減弁27a,27bを
使用して一方は前圧制御を行なわしめ、又他方は調速制
御を行なわしめるようにすることも可能であり「(図中
「第3図に示す符号と同一符号のものは同一のものを示
す)又第3図では原動機(主機)に対する被駆動機とし
てプロペラと発電機を用いた例を示したが、この他に例
えば圧縮機、冷凍機、ポンプ等を装備するようにしても
良く、その他本発明の要旨を逸脱しない範囲に於て種々
変更して実施できることは勿論である。
At this time, the generator 10 is stopped, and the diesel engine-driven generator 37 is automatically driven instead. Although FIG. 3 shows an example in which the front pressure control and speed control of the steam turbine are performed using one set of governor and steam control valve, as shown in FIG. It is also possible to use the valves 27a and 27b so that one performs front pressure control and the other performs speed control control. Fig. 3 shows an example in which a propeller and a generator are used as driven devices for the prime mover (main engine), but it is also possible to use other equipment such as a compressor, refrigerator, pump, etc. It goes without saying that various changes and modifications can be made without departing from the gist of the present invention.

本発明の排ガス利用プラントの制御装置は前記した如く
通常運転時は前圧制御を行ない得るようにしたので、通
常運転中に主機の回転数が変化した場合でも蒸気加減弁
の開度はわずかしか変化せず、排ガス量「従って排ガス
ェコノマィザからの蒸気流量に比例した動力回収を安定
して行なうことができ、又排ガス量の変化、回転数変化
に対して蒸気タービン入口圧力を設定された圧力に迅速
に制御できるため、蒸気タービンは常に最適な蒸気条件
、即ち最適な断熱熱落差で運転できて高効率な動力回収
を行なうことができ、又気水分雛ドラムの気相部の圧力
が一定に保持できるのでキャリオ−バーによる蒸気管、
排ガスェコノマィザ或いは蒸気タービンの損傷を防止す
ることができ、又通常運転中は主機が調速制御をして蒸
気タービンは調速制御をせず前圧制御をするので、主機
と蒸気タービン間での回転数に関する相互干渉がなく「
又前圧制御と調速制御を1組のガバナ、蒸気加減弁で行
なう場合は構造並びに操作が簡単であり「又クラッチの
鉄脱、発電機の負荷分担が従来技術のままで行ない得る
ので本装置を簡単に操作できて実用化への問題点がなく
、又蒸気タービンへの最少蒸気流量を維持する装置を備
えたので蒸気タービンの空転による過熱を防止できて蒸
気タービン等に損傷を生じることがない、等の種々の効
果を奏することができる。
As described above, the control device for the exhaust gas utilization plant of the present invention is capable of controlling the prepressure during normal operation, so even if the rotational speed of the main engine changes during normal operation, the opening degree of the steam control valve will be small. Therefore, it is possible to stably recover power proportional to the steam flow rate from the exhaust gas economizer without changing the amount of exhaust gas, and to maintain the steam turbine inlet pressure at the set pressure in response to changes in the amount of exhaust gas or changes in rotational speed. Because it can be controlled quickly, the steam turbine can always be operated under optimal steam conditions, that is, with the optimal adiabatic heat drop, and highly efficient power recovery can be achieved. Because it can hold steam pipes with carry bar,
Damage to the exhaust gas economizer or steam turbine can be prevented, and during normal operation, the main engine performs speed governing control and the steam turbine does not perform speed governing control but performs front pressure control, so there is no damage between the main engine and the steam turbine. There is no mutual interference regarding rotation speed.
In addition, when prepressure control and speed control are performed using a single set of governor and steam control valve, the structure and operation are simple, and clutch iron disengagement and generator load sharing can be performed using conventional technology, making this an ideal solution. The device is easy to operate and there are no problems with practical application, and since it is equipped with a device that maintains the minimum steam flow rate to the steam turbine, it is possible to prevent overheating due to idling of the steam turbine, thereby preventing damage to the steam turbine, etc. It is possible to achieve various effects such as no

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の排ガス利用プラントの制御装置の回路図
、第2図は蒸気タービンに於ける熱回収率の説明図、第
3図は本発明に係る排ガス利用プラントの制御装置の回
路図、第4図は他の実施例を示す回路図である。 1は主機、3は排ガスヱコノマイザ、8は蒸気入口ライ
ン、9は蒸気タービン、10は発電機「25は回転速度
検出器、26,26a,26bはガバナ、27,27a
,27bは蒸気加減弁、28は回転数設定器、29,3
1は比較演算器、3川ま圧力検出器、32は圧力設定器
、33はローシグナルセレクタ、34はハイシグナルセ
レクタ、35は最4・蒸気流量設定器、36はディーゼ
ル機関、37は発電機を示す。 第1図 第2図 第3図 第4図
FIG. 1 is a circuit diagram of a conventional control device for an exhaust gas utilization plant, FIG. 2 is an explanatory diagram of the heat recovery rate in a steam turbine, and FIG. 3 is a circuit diagram of a control device for an exhaust gas utilization plant according to the present invention. FIG. 4 is a circuit diagram showing another embodiment. 1 is the main engine, 3 is the exhaust gas economizer, 8 is the steam inlet line, 9 is the steam turbine, 10 is the generator; 25 is the rotation speed detector, 26, 26a, 26b are the governors, 27, 27a
, 27b is a steam control valve, 28 is a rotation speed setting device, 29, 3
1 is a comparison calculator, 3 pressure detectors, 32 is a pressure setting device, 33 is a low signal selector, 34 is a high signal selector, 35 is a steam flow rate setting device, 36 is a diesel engine, and 37 is a generator shows. Figure 1 Figure 2 Figure 3 Figure 4

Claims (1)

【特許請求の範囲】[Claims] 1 排ガスを発生する熱機関原動機とその排ガスの熱を
利用した蒸気タービンとを備え、且つ前記熱機関原動機
の出力軸と蒸気タービンの出力軸とを接続する伝動機構
の途中に、前記熱機関原動機と蒸気タービンによって駆
動される一つ以上の被駆動機を設けた排ガス利用プラン
トに於て、蒸気タービンの蒸気入口側の蒸気流路に蒸気
加減弁を設け、且つ該蒸気流路の蒸気加減弁上流側圧を
検出する圧力検出器、該圧力検出器からの信号を圧力設
定器からの信号と比較する比較器、蒸気タービンの回転
数を検出する回転数検出器、該回転数検出器からの信号
を回転数設定器からの信号と比較する比較器、前記両比
較器から出た信号を比較し出力の小さい方の信号を選択
するローシグナルセレクタ、蒸気タービンの空転を防止
するのに必要な最小蒸気流量を設定する最小蒸気流量設
定器からの信号と前記ローシグナルセレクタからの信号
とを比較して出力の大きい方の信号を選択し該選択信号
を蒸気加減弁に入力するハイシグナルセレクタを備えた
ことを特徴とする排ガス利用プラントの制御装置。
1. The heat engine prime mover is provided with a heat engine prime mover that generates exhaust gas and a steam turbine that utilizes the heat of the exhaust gas, and that the heat engine prime mover is installed in the middle of a transmission mechanism that connects the output shaft of the heat engine prime mover and the output shaft of the steam turbine. In an exhaust gas utilization plant equipped with one or more driven machines driven by a steam turbine, a steam control valve is provided in a steam flow path on the steam inlet side of the steam turbine, and a steam control valve in the steam flow path is provided. A pressure detector that detects upstream pressure, a comparator that compares the signal from the pressure detector with a signal from the pressure setting device, a rotation speed detector that detects the rotation speed of the steam turbine, and a signal from the rotation speed detector. A comparator that compares the signal from the rotation speed setter with the signal from the speed setting device, a low signal selector that compares the signals output from both comparators and selects the signal with the smaller output, the minimum required to prevent the steam turbine from idling. A high signal selector that compares a signal from a minimum steam flow rate setting device for setting the steam flow rate with a signal from the low signal selector, selects a signal with a larger output, and inputs the selected signal to the steam control valve. A control device for an exhaust gas utilization plant, characterized by:
JP7687877A 1977-06-28 1977-06-28 Control equipment for exhaust gas utilization plants Expired JPS60525B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7687877A JPS60525B2 (en) 1977-06-28 1977-06-28 Control equipment for exhaust gas utilization plants

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7687877A JPS60525B2 (en) 1977-06-28 1977-06-28 Control equipment for exhaust gas utilization plants

Publications (2)

Publication Number Publication Date
JPS5412005A JPS5412005A (en) 1979-01-29
JPS60525B2 true JPS60525B2 (en) 1985-01-08

Family

ID=13617879

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7687877A Expired JPS60525B2 (en) 1977-06-28 1977-06-28 Control equipment for exhaust gas utilization plants

Country Status (1)

Country Link
JP (1) JPS60525B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5887699U (en) * 1981-12-09 1983-06-14 石川島播磨重工業株式会社 Marine generator drive system

Also Published As

Publication number Publication date
JPS5412005A (en) 1979-01-29

Similar Documents

Publication Publication Date Title
US5203160A (en) Combined generating plant and its start-up control device and start-up control method
JP3716244B2 (en) Operation control apparatus and operation control method for single-shaft combined plant provided with clutch.
US4081956A (en) Combined gas turbine and steam turbine power plant
US4590384A (en) Method and means for peaking or peak power shaving
US7500349B2 (en) Power plant and operating method
EP3653849B1 (en) Warming method for a steam turbine
JP4714159B2 (en) Rankine cycle power recovery system
EP2492458B1 (en) Turbo compound system and method for operating same
JP5563052B2 (en) Waste heat recovery system and waste heat recovery method
KR101589424B1 (en) Power generation system and method for controlling power generation system
JPS60525B2 (en) Control equipment for exhaust gas utilization plants
JPS5925853B2 (en) Power plant operation control method and device for implementing this method
KR101965122B1 (en) Electricity generation system and electricity generation system control method
JP2019094802A (en) Exhaust heat recovery system of marine engine, and control method of exhaust heat recovery system of marine engine
JP2918743B2 (en) Steam cycle controller
JPH0216040Y2 (en)
JPH074603A (en) Refuse incinerating power-plant
JPH0337304A (en) Start of steam turbine generation plant provided with turbine bypass device
JPH0693880A (en) Gas turbine facility and operation thereof
JPH04246244A (en) Pressurizing fluidized bed combined plant and partial load operation control and device therefor
JPS63192919A (en) Control device for coal gasification combined plant
JP2632147B2 (en) Combined cycle plant
JPS6154927B2 (en)
JP2507458B2 (en) Control equipment for coal gasification combined cycle plant
JPS6024284B2 (en) Steam turbine back pressure control method