JPS632223B2 - - Google Patents
Info
- Publication number
- JPS632223B2 JPS632223B2 JP18392982A JP18392982A JPS632223B2 JP S632223 B2 JPS632223 B2 JP S632223B2 JP 18392982 A JP18392982 A JP 18392982A JP 18392982 A JP18392982 A JP 18392982A JP S632223 B2 JPS632223 B2 JP S632223B2
- Authority
- JP
- Japan
- Prior art keywords
- section
- atomization
- frequency
- liquid
- temperature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 238000000889 atomisation Methods 0.000 claims description 32
- 239000007788 liquid Substances 0.000 claims description 24
- 230000010355 oscillation Effects 0.000 claims description 5
- 238000010586 diagram Methods 0.000 description 6
- 239000000919 ceramic Substances 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 230000003321 amplification Effects 0.000 description 3
- 238000001514 detection method Methods 0.000 description 3
- 238000003199 nucleic acid amplification method Methods 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 230000007423 decrease Effects 0.000 description 2
- 238000006073 displacement reaction Methods 0.000 description 2
- 239000000446 fuel Substances 0.000 description 2
- 238000009688 liquid atomisation Methods 0.000 description 2
- 101000684181 Homo sapiens Selenoprotein P Proteins 0.000 description 1
- 102100023843 Selenoprotein P Human genes 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 238000009499 grossing Methods 0.000 description 1
- 239000003350 kerosene Substances 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 229940119265 sepp Drugs 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05B—SPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
- B05B17/00—Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups
- B05B17/04—Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods
- B05B17/06—Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods using ultrasonic or other kinds of vibrations
- B05B17/0607—Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods using ultrasonic or other kinds of vibrations generated by electrical means, e.g. piezoelectric transducers
- B05B17/0638—Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods using ultrasonic or other kinds of vibrations generated by electrical means, e.g. piezoelectric transducers spray being produced by discharging the liquid or other fluent material through a plate comprising a plurality of orifices
- B05B17/0646—Vibrating plates, i.e. plates being directly subjected to the vibrations, e.g. having a piezoelectric transducer attached thereto
Landscapes
- Special Spraying Apparatus (AREA)
Description
【発明の詳細な説明】
産業上の利用分野
本発明は、灯油や軽油等の液体燃料・水・薬溶
液・記録液等を、電気的振動子を用いて霧化する
液体の霧化装置に関する。DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a liquid atomization device that atomizes liquid fuel such as kerosene or light oil, water, medicinal solution, recording liquid, etc. using an electric vibrator. .
従来例の構成とその問題点
従来から液体の霧化装置には、種々のものが提
案されており、圧電素子等の電気的振動子を用い
たものを見うけられる。Configurations of Conventional Examples and Their Problems Various types of liquid atomization devices have been proposed in the past, and some use electric vibrators such as piezoelectric elements.
例えば、(1)ホーン型の振動子の圧電素子をボル
ト締め、又は、接着し、圧電素子の機械的振動振
幅をホーン型振動子で増幅し、ホーン先端の振幅
拡大面に液体を供給、滴下して霧化する振幅増幅
型超音波霧化装置、あるいは、(2)近年インクジエ
ツト記録装置に実用化されているような超音波霧
化粒子列を噴射するもので、液室の一端に圧電振
動子を設け、他端にオリフイスを設けた構成で、
圧電振動子の振動による液室内の圧力上昇を液体
を介してオリフイスに伝え、その結果オリフイス
より霧化粒子をかなりの飛散速度で噴射すること
が出来る霧化装置がある。 For example, (1) the piezoelectric element of a horn-shaped vibrator is bolted or glued, the mechanical vibration amplitude of the piezoelectric element is amplified by the horn-shaped vibrator, and liquid is supplied and dripped onto the amplitude amplifying surface at the tip of the horn. (2) An amplitude-amplified ultrasonic atomizer that atomizes the liquid by atomizing the liquid, or (2) a device that injects an array of ultrasonic atomized particles as has been put into practical use in inkjet recording devices in recent years. It has a configuration in which one end is provided and an orifice is provided at the other end.
There is an atomization device that can transmit the pressure increase in a liquid chamber due to the vibration of a piezoelectric vibrator to an orifice through the liquid, and as a result, can spray atomized particles from the orifice at a considerable scattering speed.
しかし、上記従来の霧化装置は以下に示すよう
な欠点を有していた。 However, the above-mentioned conventional atomizing device had the following drawbacks.
(1)の霧化装置は、ホー型振動子の高い加工精度
と、液体を供給するポンプ等が必要となるため高
価とならざるを得ない上、霧化面への液体供給方
法が複雑であつた。また、20c.c./minの霧化量を
得るためには、5〜10ワツトとかなり大きな消費
電力が必要な上、その霧化能力も十分なものでは
なかつた。 The atomization device (1) requires high machining precision for the Ho-type vibrator and a pump to supply the liquid, so it is expensive, and the method for supplying the liquid to the atomization surface is complicated. It was hot. Further, in order to obtain an atomization amount of 20 c.c./min, a considerably large power consumption of 5 to 10 watts is required, and the atomization ability is not sufficient.
(2)の霧化装置は、インクジエツトに利用されて
いる事実からも明らかなように、構成が簡単で動
作も安定という長所を有していたが、振動子の振
動による液室内の圧力上昇を液体を介してオリフ
イスに伝達する構成であるため、溶存空気を多量
に含む一般的な液体を使用した場合には、液室内
にキヤビテーシヨン気泡が発生し、この気泡のた
めに安定した霧化動作を維持できないという欠点
を有していた。そこで一般の液体を霧化するには
溶存空気を脱気しなければならず、極めて汎用性
に欠けていた。 The atomizing device (2) had the advantage of being simple in structure and stable in operation, as is clear from the fact that it is used in inkjet. Since the configuration transmits the information to the orifice via the liquid, when a typical liquid containing a large amount of dissolved air is used, cavitation bubbles will occur in the liquid chamber, and these bubbles will prevent stable atomization operation. It had the disadvantage of being unsustainable. Therefore, in order to atomize ordinary liquids, the dissolved air must be degassed, making it extremely lacking in versatility.
また、これらのセラミツク圧電体駆動では、周
囲温度変化と、セラミツク体内部の温度上昇によ
り固有の機械的振動数がずれるのを、電流検出に
より移相器の中心周波数を偏位させて補償する方
式が特公昭50−13657号公報「セラミツク体の駆
動方式」にあつたが、これは素子に印加される電
圧と電流を同相にすべく温度の補正を加えるもの
で構成が複雑となる。 In addition, in these piezoelectric ceramic drives, a method is used to compensate for deviations in the inherent mechanical frequency caused by changes in ambient temperature and temperature increases inside the ceramic body by shifting the center frequency of the phase shifter using current detection. This method was published in Japanese Patent Publication No. 13657/1983 entitled "Driving Method for Ceramic Body," but this requires temperature correction to make the voltage and current applied to the element in phase, making the structure complicated.
発明の目的
本発明は、このような従来の霧化装置の欠点を
排し、構成が簡単でしかもコンパクト、かつ、低
消費電力であり、構成によるユニツトとしての温
度補償を実施することにより、最適な駆動条件で
液滴を噴霧する霧化装置を提供することを目的と
する。Purpose of the Invention The present invention eliminates the drawbacks of the conventional atomization device, has a simple configuration, is compact, has low power consumption, and achieves optimum performance by implementing temperature compensation as a unit depending on the configuration. An object of the present invention is to provide an atomization device that atomizes droplets under suitable driving conditions.
発明の構成
本発明の霧化装置は、噴霧される液体を充填す
る加圧室を備えたボデイーと、前記加圧室に液体
を供給するための供給部と、前記加圧室に臨むよ
うに設けたノズル部と、前記ノズル部を加振する
電気的振動子と、前記電気的振動子に駆動信号を
与え、しかも、周囲温度に対して負の温度特性を
有する構成の周波数発生部とから構成されてい
る。Structure of the Invention The atomization device of the present invention includes a body including a pressurized chamber filled with a liquid to be atomized, a supply section for supplying the liquid to the pressurized chamber, and a supply section facing the pressurized chamber. a nozzle section provided, an electric vibrator that vibrates the nozzle section, and a frequency generating section configured to give a drive signal to the electric vibrator and have negative temperature characteristics with respect to ambient temperature. It is configured.
上記のような本発明の構成では、電気的振動子
の機械的固有振動数の温度偏位に加えて、加圧室
の寸法が温度により変化するので、霧化部ユニツ
ト全体としての共振周波数のずれが発生する。後
述するように、周囲温度上昇に伴つて加圧室内径
が増加し、霧化部ユニツトとしての共振波長が伸
びる、つまり、共振周波数が低下する。これを補
償するために、温度係数が負の駆動周波数を印加
し、最適霧化状態を維持するのである。 In the configuration of the present invention as described above, in addition to the temperature deviation of the mechanical natural frequency of the electric vibrator, the dimensions of the pressurizing chamber change depending on the temperature, so the resonant frequency of the atomization section unit as a whole changes. Misalignment occurs. As will be described later, as the ambient temperature rises, the inside diameter of the pressurizing chamber increases, and the resonant wavelength of the atomizer unit increases, that is, the resonant frequency decreases. To compensate for this, a driving frequency with a negative temperature coefficient is applied to maintain the optimum atomization state.
実施例の説明
次に本発明の霧化装置の霧化部を第1図の断面
図に基づいて説明する。DESCRIPTION OF EMBODIMENTS Next, the atomization section of the atomization device of the present invention will be explained based on the sectional view of FIG.
1は液体を充填する加圧室で、2は前記加圧室
を形成するボデイである。3は噴霧される液体を
前記加圧室に供給する供給部、4は負圧等の利用
により加圧室1中に液体を満たすと共に所定位置
まで引き上げ、さらに、駆動時に加圧室1中に発
生する気体を排出する排出部である。5は前記加
圧室に臨むよう配されたノズル部で、外周はボデ
イー2に接合されている。ノズル部5の中央には
液滴吐出用の微細な孔6(例えば、径が80μm程
度)を有する球面状の突起7が形成されている。 1 is a pressurized chamber filled with liquid, and 2 is a body forming the pressurized chamber. 3 is a supply unit that supplies the liquid to be sprayed to the pressurizing chamber; 4 is a supply unit that uses negative pressure to fill the pressurizing chamber 1 with the liquid and pull it up to a predetermined position; This is an exhaust section that exhausts the generated gas. Reference numeral 5 denotes a nozzle portion arranged to face the pressurizing chamber, and its outer periphery is joined to the body 2. A spherical protrusion 7 having a fine hole 6 (for example, about 80 μm in diameter) for ejecting liquid droplets is formed in the center of the nozzle portion 5 .
さらにノズル部5には、円環状の電気的振動
子、ここではセラミツク圧電体8が装着されてい
る。この圧電体8は厚さ方向に分極処理されてお
り、ノズル部5との接合面及び反対側の面には電
極が形成されている。9は圧電体8へ駆動信号を
伝達するための導線で、一方は圧電体8の電極面
へハンダ付けされ、他方はビス10でボデイ2に
接続されている。駆動信号により圧電体8の機械
的振動が励起されると、ノズル部5も付勢されて
加振されるので、結果として加圧室1内の液体が
霧化粒子11となつて孔6から噴出される。とこ
ろでボデイ2は、取付板12からビス13で固定
されている。 Furthermore, an annular electric vibrator, here a ceramic piezoelectric body 8, is attached to the nozzle portion 5. This piezoelectric body 8 is polarized in the thickness direction, and electrodes are formed on the joint surface with the nozzle portion 5 and on the opposite surface. Reference numeral 9 denotes a conductive wire for transmitting a drive signal to the piezoelectric body 8, one of which is soldered to the electrode surface of the piezoelectric body 8, and the other connected to the body 2 with a screw 10. When the mechanical vibration of the piezoelectric body 8 is excited by the drive signal, the nozzle part 5 is also energized and vibrated, and as a result, the liquid in the pressurizing chamber 1 becomes atomized particles 11 and flows from the hole 6. It is squirted. By the way, the body 2 is fixed to the mounting plate 12 with screws 13.
次に第2図で、ノズル部5の加振状態をさらに
詳しく説明する。Aは第1図の断面図と同様で、
同一番号は同じ機能を有する構成物を表わしてい
る。kは中心軸の位置を、−r2,−r1,+r1,+r2は
それぞれ中心からの偏位を示している。圧電体8
に駆動信号が印加されると、a,bの矢印で示す
ような径方向の振動を発生する。この圧電体8の
径方向振動によりノズル部6には、図の実線及び
破線で示したような振動が励起される。7は球面
状の突起部が最も大きく振動し、ここに形成され
ている細孔6から加圧室1内の液が微粒子となつ
て飛び出る。Bでは、横軸に中心cからの距離
と、縦軸にノズル部6各部の振幅変位量δをと
り、各点の振幅の程度を示している。前述したよ
うに、突起部7が最も大きく励振されている様子
がわかる。 Next, referring to FIG. 2, the vibration state of the nozzle section 5 will be explained in more detail. A is the same as the cross-sectional view in Figure 1,
Like numbers represent components having the same function. k indicates the position of the center axis, and -r 2 , -r 1 , +r 1 , +r 2 each indicate the deviation from the center. Piezoelectric body 8
When a drive signal is applied to , vibrations in the radial direction as shown by arrows a and b are generated. This radial vibration of the piezoelectric body 8 excites vibrations in the nozzle portion 6 as shown by solid lines and broken lines in the figure. The spherical protrusion 7 vibrates the most, and the liquid in the pressurizing chamber 1 bursts out in the form of fine particles from the pores 6 formed here. In B, the horizontal axis represents the distance from the center c, and the vertical axis represents the amplitude displacement amount δ of each part of the nozzle section 6, and shows the degree of amplitude at each point. As mentioned above, it can be seen that the protrusion 7 is excited the most.
図中AのDは加圧室1の内径を表わしている。
周囲温度変化により、ボデイーを構成している材
料(例えば金属)の特性に依存してボデイー自体
も膨張・収縮を行う。温度が上昇すれば、ボデイ
ー全体として膨張傾向にあるから、前述の内径寸
法Dは大きくなる。加圧室の内径寸法D、つま
り、振動部の外径とを考えられる寸法と、機械的
固有振動数rとの関係は、次のように示される。 In the figure, D in A represents the inner diameter of the pressurizing chamber 1.
Due to changes in ambient temperature, the body itself expands and contracts depending on the characteristics of the material (for example, metal) that makes up the body. As the temperature rises, the body as a whole tends to expand, so the above-mentioned inner diameter dimension D increases. The relationship between the inner diameter dimension D of the pressurizing chamber, that is, the dimension considered to be the outer diameter of the vibrating part, and the mechanical natural frequency r is shown as follows.
r∝1/D2
つまり、寸法の二乗に反比例しており、寸法D
が増大すれば共振周波数は低下するのである。ま
た、図の霧化部としての温度に対する共振周波数
の変化は、圧電体8の特性自体によるものより
も、前述した加圧室1内径の変化によるものの方
が約一桁大きいので、振動体ユニツトとしての機
械的共振周波数は負の温度係数を持つのである。
第3図で、振動体ユニツトとして構成された中の
圧電体8に通電される電流の周波数特性、及び、
実霧化量の周波数特性を示す。Aで=rは共振
周波数を表わし、周波数増加と共に全体として電
流値も増大傾向にあるので、容量性の負荷である
ことが分かる。Bは霧化量で、前述の共振点より
も少し高い周波数=r1で最大値を示している。
最大霧化周波数はAにおいて、共振及び反共振点
の中間の周波数となつている。A,Bそれぞれの
実線は周囲温度Ta=20℃での特性、破線はTa=
40℃での特性を示している。温度の高いTa=40
℃の方が加圧室1内径が増大するので、最大霧化
量発生周波数が低い方にシフトしている。この周
波数r1が、最適霧化状態に合致している。 r∝1/D 2 In other words, it is inversely proportional to the square of the dimension, and the dimension D
As the value increases, the resonant frequency decreases. Furthermore, the change in the resonant frequency of the atomizing section shown in the figure with respect to temperature is approximately one order of magnitude larger due to the change in the inner diameter of the pressurizing chamber 1 mentioned above than due to the characteristics of the piezoelectric body 8 itself. The mechanical resonance frequency as has a negative temperature coefficient.
In FIG. 3, the frequency characteristics of the current flowing through the piezoelectric body 8 configured as a vibrating body unit, and
The frequency characteristics of the actual atomization amount are shown. In A, =r represents the resonant frequency, and as the frequency increases, the overall current value also tends to increase, so it can be seen that it is a capacitive load. B is the amount of atomization, which has a maximum value at a frequency = r 1 , which is slightly higher than the aforementioned resonance point.
The maximum atomization frequency is at A, a frequency midway between the resonance and anti-resonance points. The solid lines in A and B are the characteristics at ambient temperature T a = 20℃, and the broken lines are T a =
Characteristics at 40℃ are shown. High temperature T a = 40
℃, the inner diameter of the pressurizing chamber 1 increases, so the maximum atomization amount generation frequency shifts to the lower side. This frequency r 1 matches the optimum atomization state.
第4図では、周囲温度Taに対する前記最大霧
化量発生周波数r1の変化aと、圧電体8両端の
容量変化bの例を示している。周波数r1は温度
に対して負の特性を示し、この例ではΔr1−
50Hz/degであり、圧電体8の等価容量は温度に
対して逆に増加している。 FIG. 4 shows an example of the change a in the maximum atomization generation frequency r 1 and the capacitance change b at both ends of the piezoelectric body 8 with respect to the ambient temperature T a . The frequency r 1 exhibits a negative characteristic with respect to temperature, in this example Δr 1 −
50Hz/deg, and the equivalent capacitance of the piezoelectric body 8 increases inversely with temperature.
第5図は、第4図で示した周波数r1の温度特
性を補償する周波数発生部を含む、圧電体8駆動
のブロツク構成図である。前述周波数発生部14
は、雰囲気温度を検知する温度センサ15と、前
記温度センサ15の信号に依存してr1を発生す
る発振器16とで構成され、出力部17を介して
圧電体8へ駆動信号を伝達している。 FIG. 5 is a block configuration diagram for driving the piezoelectric body 8, including a frequency generating section that compensates for the temperature characteristics of the frequency r1 shown in FIG. The frequency generating section 14 mentioned above
is composed of a temperature sensor 15 that detects the ambient temperature, and an oscillator 16 that generates r 1 depending on the signal from the temperature sensor 15, and transmits a drive signal to the piezoelectric body 8 via an output section 17. There is.
第6図は、負の温度係数を有する駆動周波数発
生部を含む別の実施例で、第5図と同一番号のも
のは同じ機能を有する要素である。18は圧電体
8へ流れる電流を検出する電流検出部であり、そ
の信号は、位相比較部19で電気的振動子への印
加電圧波形信号(例えば、正弦波)と位相が比較
され、所定位相になるように発振器16へ信号を
送つている。発振器16は、前記位相比較器から
の信号と、温度センサ15からの信号を受け、所
定の駆動発振周波数を発生している。 FIG. 6 shows another embodiment including a drive frequency generator having a negative temperature coefficient, and the same numbers as in FIG. 5 are elements having the same functions. Reference numeral 18 denotes a current detection unit that detects the current flowing to the piezoelectric body 8, and the phase of the signal is compared with a voltage waveform signal (for example, a sine wave) applied to the electric vibrator in a phase comparison unit 19, and a predetermined phase is determined. A signal is sent to the oscillator 16 so that The oscillator 16 receives the signal from the phase comparator and the signal from the temperature sensor 15, and generates a predetermined drive oscillation frequency.
ところで、第5図、第6図では温度センサ15
を別に示しているが、発振器16の構成要素部品
中に周囲温度補償要素を持たせても良いのであ
る。 By the way, in FIGS. 5 and 6, the temperature sensor 15
Although shown separately, an ambient temperature compensation element may be included in the component parts of the oscillator 16.
第7図は、圧電体8の共振信号を正帰還・増幅
して発振させる自励発振系を例に挙げた実施例で
ある。20は交流を整流平滑して作られた直流電
源部、21は帰還された共振信号を増幅し電気的
振動子8に印加するSEPP構成の増幅部、22は
圧電体8の共振信号を取り出す検出部でその信号
は23のフイルタを介し、24のパスコンを介し
て前記増幅部に正帰還されている。この正帰還増
幅発振系自体で温度補償は成されるが、さらに、
フイルター部の温度特性を、霧化部の負の温度係
数に合致させれば、最適霧化状態を維持しつつ発
振を続行出来る。 FIG. 7 shows an example of a self-excited oscillation system in which the resonance signal of the piezoelectric body 8 is positively fed back and amplified to oscillate. 20 is a DC power supply unit made by rectifying and smoothing alternating current; 21 is an amplification unit with an SEPP configuration that amplifies the feedback resonance signal and applies it to the electric vibrator 8; and 22 is a detection unit that extracts the resonance signal of the piezoelectric body 8. In the section, the signal is positively fed back to the amplification section via a filter 23 and a bypass capacitor 24. Temperature compensation is achieved in this positive feedback amplification oscillation system itself, but in addition,
By matching the temperature characteristics of the filter section to the negative temperature coefficient of the atomization section, oscillation can be continued while maintaining the optimum atomization state.
発明の効果
本発明の霧化装置によれば次のような効果が得
られる。Effects of the Invention According to the atomization device of the present invention, the following effects can be obtained.
(1) 負圧力等の利用により加圧室に液体が充填さ
れ霧化動作が開始されれば、燃料の自給作用が
得られるので、霧化ユニツトとしての構成がコ
ンパクトかつ簡単な上、低消費電力化が図れ
る。例えば、20c.c./minの霧化動作に1ワツト
程度の電力で済む。(1) When the pressurized chamber is filled with liquid using negative pressure and the atomization operation starts, fuel self-sufficiency is achieved, so the configuration of the atomization unit is compact and simple, and the consumption is low. Electricity can be achieved. For example, an atomization operation of 20 c.c./min requires only about 1 watt of power.
(2) 霧化部の構成要素である加圧室の寸法変化に
大きく起因する機械的共振周波数のずれが、所
定の負の温度係数を有する周波数発生部によつ
て補正されるので、広範囲な温度変化に対して
も常に最適な霧化動作が維持される。(2) The deviation in the mechanical resonance frequency caused largely by the dimensional change of the pressurized chamber, which is a component of the atomization section, is corrected by the frequency generation section having a predetermined negative temperature coefficient, so it can be used over a wide range. Optimal atomization operation is always maintained even with temperature changes.
第1図は本発明の一実施例を示す霧化部の断面
図、第2図Aは霧化部の断面図、同Bはノズル各
部の振幅変位量を示す図、第3図A,Bはそれぞ
れ駆動周波数に対する電流及び霧化量の特性図、
第4図は霧化部ユニツトとしての周囲温度に対す
る最大霧化量周波数と圧電体両端の容量特性図、
第5図は圧電体駆動ブロツク構成図、第6図は圧
電体駆動ブロツク図の別の一実施例を示す図、第
7図は自励発振系の一実施例を示す図である。
1……加圧室、2……ボデイ、3……供給部、
5……ノズル部、8……圧電体(電気的振動子)、
14……周波数発生部、15……温度センサ、1
6……発振器。
Fig. 1 is a sectional view of an atomizing part showing an embodiment of the present invention, Fig. 2 A is a sectional view of the atomizing part, Fig. 2 B is a diagram showing the amplitude displacement of each part of the nozzle, and Figs. 3 A and B. are characteristic diagrams of current and atomization amount with respect to driving frequency, respectively.
Figure 4 shows the maximum atomization amount frequency versus ambient temperature as an atomizer unit, and the capacitance characteristics of both ends of the piezoelectric body.
FIG. 5 is a block diagram of a piezoelectric drive block, FIG. 6 is a diagram showing another embodiment of the piezoelectric drive block, and FIG. 7 is a diagram showing an embodiment of a self-oscillation system. 1... Pressurization chamber, 2... Body, 3... Supply section,
5... Nozzle part, 8... Piezoelectric body (electric vibrator),
14... Frequency generator, 15... Temperature sensor, 1
6...Oscillator.
Claims (1)
前記加圧室に液体を供給するための供給部と、前
記加圧室に臨むように設けたノズル部と、前記ノ
ズル部を加振する電気的振動子と、前記電気的振
動子駆動用の周波数発生部とを備え、前記周波数
発生部は負の温度係数を有する構成とした霧化装
置。 2 周囲温度検出用の温度センサと、この温度セ
ンサの信号に依存して発振周波数を可変する発振
器にて前記温度係数が負の周波数発生部を構成し
た特許請求の範囲第1項記載の霧化装置。 3 電気的振動子の共振信号を正帰還及び増幅す
る系にて温度特性が負の周波数発生部を構成した
特許請求の範囲第1項記載の霧化装置。 4 発振器を構成する電気回路要素を周囲温度検
出用の温度センサと兼用した特許請求の範囲第2
項記載の霧化装置。[Claims] 1. A body equipped with a pressurized chamber filled with liquid;
a supply section for supplying liquid to the pressurizing chamber; a nozzle section provided facing the pressurizing chamber; an electric vibrator for vibrating the nozzle section; and an electric vibrator for driving the electric vibrator. a frequency generating section, the frequency generating section having a negative temperature coefficient. 2. The atomization according to claim 1, wherein the frequency generating section having a negative temperature coefficient is composed of a temperature sensor for detecting ambient temperature and an oscillator whose oscillation frequency is varied depending on the signal of the temperature sensor. Device. 3. The atomization device according to claim 1, wherein the frequency generating section with negative temperature characteristics is configured in a system that positively feedbacks and amplifies the resonance signal of the electric vibrator. 4 Claim 2 in which the electric circuit element constituting the oscillator also serves as a temperature sensor for detecting ambient temperature
The atomization device described in Section 1.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18392982A JPS5973072A (en) | 1982-10-19 | 1982-10-19 | Atomizer |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18392982A JPS5973072A (en) | 1982-10-19 | 1982-10-19 | Atomizer |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5973072A JPS5973072A (en) | 1984-04-25 |
JPS632223B2 true JPS632223B2 (en) | 1988-01-18 |
Family
ID=16144273
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP18392982A Granted JPS5973072A (en) | 1982-10-19 | 1982-10-19 | Atomizer |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5973072A (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104209221B (en) * | 2014-09-19 | 2016-05-25 | 江苏大学 | A kind of low frequency bending vibration formula twice ultrasonic atomizer |
JP6444774B2 (en) * | 2015-03-02 | 2018-12-26 | 国立大学法人東京工業大学 | Odor generator |
CN110918357A (en) * | 2019-12-05 | 2020-03-27 | 湖南嘉业达电子有限公司 | Frequency-adaptive microporous atomization element and preparation method thereof |
CN114308504B (en) * | 2021-12-16 | 2023-05-05 | 江苏大学 | Piezoelectric low-frequency ultrasonic nanometer atomizer and application method thereof |
-
1982
- 1982-10-19 JP JP18392982A patent/JPS5973072A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS5973072A (en) | 1984-04-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4703213A (en) | Device to operate a piezoelectric ultrasonic transducer | |
JPS632223B2 (en) | ||
JPS6246230B2 (en) | ||
US20050253905A1 (en) | Droplet generation by transverse disturbances | |
JPS6366267B2 (en) | ||
JPS6246224B2 (en) | ||
JPS6258788B2 (en) | ||
JPH0224588B2 (en) | ||
JPS648589B2 (en) | ||
JPH0118785B2 (en) | ||
JPS58180259A (en) | Atomizing device | |
JPH0119944B2 (en) | ||
JPS6314654B2 (en) | ||
JPS6327066B2 (en) | ||
JPS59112864A (en) | Atomizer | |
JPS6330518Y2 (en) | ||
JPS646827B2 (en) | ||
JPS645947B2 (en) | ||
JPS60132670A (en) | Atomizing apparatus | |
JPS6340593B2 (en) | ||
JPS6366266B2 (en) | ||
JPS6246228B2 (en) | ||
JPS60172376A (en) | Atomizing device | |
JPS6246227B2 (en) | ||
JPS6244986B2 (en) |