JPS63222228A - Apparatus for measuring propagation velocity of ultrasonic wave in object to be inspected - Google Patents

Apparatus for measuring propagation velocity of ultrasonic wave in object to be inspected

Info

Publication number
JPS63222228A
JPS63222228A JP5527887A JP5527887A JPS63222228A JP S63222228 A JPS63222228 A JP S63222228A JP 5527887 A JP5527887 A JP 5527887A JP 5527887 A JP5527887 A JP 5527887A JP S63222228 A JPS63222228 A JP S63222228A
Authority
JP
Japan
Prior art keywords
probe
spindle
propagation time
inspected
plate thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5527887A
Other languages
Japanese (ja)
Other versions
JPH0656320B2 (en
Inventor
Yoshihiko Takishita
芳彦 瀧下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Construction Machinery Co Ltd
Original Assignee
Hitachi Construction Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Construction Machinery Co Ltd filed Critical Hitachi Construction Machinery Co Ltd
Priority to JP5527887A priority Critical patent/JPH0656320B2/en
Publication of JPS63222228A publication Critical patent/JPS63222228A/en
Publication of JPH0656320B2 publication Critical patent/JPH0656320B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)

Abstract

PURPOSE:To easily measure the sonic velocity of an object to be inspected within a short time, by mounting a probe to the head of a movable spindle and providing a linear gauge measuring the moving distance of the spindle. CONSTITUTION:At first, a probe 9 is directly brought into contact with a surface plate 9 in such a state that there is no object 10 to be inspected on the surface plate 9 and an order of a plate thickness zero dimension is given to the plate thickness operation part connected to a linear gauge 5 in this state. Next, a spindle 7 is moved upwardly and the signal of a moving distance of the spindle 7 is sent to the aforementioned plate thickness operation part in such a state that the probe 8 is directly brought into contact with the object 10 to be inspected inserted between the probe 8 and the surface plate 9 to operate the thickness T of the object 10 to be inspected. In this state, an ultrasonic wave is transmitted to the probe 8 and the reflected wave from the object 10 to be inspected is received through the probe 8 to calculate a propagation time. Sonic velocity is calculated from the thickness T and the propagation time.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、被検体における超音波の音速測定装置に係わ
り、特に音速を短時間にかつ容易に測定するのに好適な
装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a device for measuring the speed of sound of ultrasonic waves in a subject, and particularly to a device suitable for easily measuring the speed of sound in a short time.

なお、ここにいう被検体は固体を指す。Note that the analyte here refers to a solid.

〔従来の技術〕[Conventional technology]

従来の被検体の音速測定は、通常の超音波探傷器を使用
し、パルス反射法により測定する簡易測定法が一般に広
く行われている。これは音速測定において現有する超音
波探傷器が使用でき、測定が筒便であるうえに超音波探
傷で必要な音速の一定レベルの測定精度、たとえば1%
程度の誤差内の精度が得られるからである。しかし、本
測定法における音速の算出は一般に(−探触子法の場合
)次式 T t ここで V=音速      (m/5ee)T=棲検
体の板厚  (m) t=超音波の伝搬時間(sec) で行われるから、被検体の板厚Tの測定が必要になる。
Conventionally, a simple method of measuring the sound velocity of an object using a normal ultrasonic flaw detector using a pulse reflection method is widely used. This means that existing ultrasonic flaw detectors can be used to measure the speed of sound, and the measurement is straightforward, and it also has a certain level of measurement accuracy for the speed of sound required for ultrasonic flaw detection, for example, 1%.
This is because accuracy within a certain degree of error can be obtained. However, the calculation of the sound speed in this measurement method is generally (in the case of the -probe method) using the following formula T t where V = sound speed (m/5ee) T = thickness of the specimen (m) t = propagation of ultrasonic waves Since the measurement takes time (sec), it is necessary to measure the thickness T of the object.

板w、Tの測定は従来マイクロメータやノギス等を使用
して行われており、超音波探傷器で伝搬時間tを測定す
るのとは別個の工程で行われる。
The measurements of the plates w and T have conventionally been performed using a micrometer, calipers, etc., and are performed in a separate process from measuring the propagation time t with an ultrasonic flaw detector.

一方、伝搬時間tは、超音波探傷器等のCRT上に表示
される被検体の第1回底面エコーB1と第2回底面エコ
ーBzとの間の時間、または第2回底面エコーB2と第
3回底面エコーB、との間の時間を読み取り、記憶また
は記録された値が使用される。
On the other hand, the propagation time t is the time between the first bottom echo B1 and the second bottom echo Bz of the object displayed on a CRT such as an ultrasonic flaw detector, or the time between the second bottom echo B2 and the second bottom echo Bz. The time between the three backplane echoes B, is read and the memorized or recorded value is used.

このように従来は、板厚Tと伝搬時間tは別々に求めら
れて前記式により音速が計算されるから、音速の算出は
必ず2工程以上を要し、被検体における板厚測定位置と
伝搬時間測定位置とのずれが生じ易く、測定結果の(t
 $1性が低下するとともに測定に手間がかかり時間も
多く要する問題点を有していた。
Conventionally, the plate thickness T and the propagation time t are determined separately and the sound velocity is calculated using the above formula, so calculating the sound velocity always requires two or more steps. It is easy to deviate from the time measurement position, and the measurement result (t
There were problems in that the $1 value was lowered and measurement was laborious and took a lot of time.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

前記の如〈従来の被検体の音速測定は、音速の算出に必
要な被検体の板厚と伝搬時間とを別工程で求めていたか
ら、測定に多くの手間と時間を要し、測定結果の信頼性
の低下が発生し易い問題点を有していた。
As mentioned above, in the conventional sound velocity measurement of a test object, the thickness of the test object and the propagation time necessary for calculating the sound speed were determined in separate processes, which required a lot of time and effort, and the reliability of the measurement results was low. However, this method had the problem of easily causing a decrease in performance.

本発明は前記従来技術の問題点を解消するものであって
、被検体の音速を、容易にかつ短時間に測定し、しかも
信頼性のある測定結果の得られる音速測定装置を提供す
ることを目的とする。
The present invention solves the problems of the prior art described above, and aims to provide a sound speed measuring device that can measure the sound speed of a subject easily and in a short time, and can provide reliable measurement results. purpose.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、ばねにより一定方向に押圧され、かつ前記ば
ねの伸縮により一定距離を移動するスピンドルを有する
リニアゲージと、該リニアゲージに接続され前記スピン
ドルの移動距離により被検体の板厚を演算する板厚演算
部と、前記スピンドルの先端に脱着可能に探触子を取り
付け、該探触子に超音波を送信し探触子が受信した被検
体からの反射波を受信する超音波送受信部と、該超音波
送受信部に接続され被検体の伝搬時間を演算する伝搬時
間演算部と、前記板厚演算部の板厚信号と伝搬時間演算
部の伝搬時間信号とを同時入力し、音速を演算する音速
演算部とを備えた被検体における超音波の音速測定装置
としたことにより、被検体の音速を容易かつ短時間に測
定し、しかも信頼性の高い測定結果が得られるようにし
たものである。
The present invention provides a linear gauge having a spindle that is pressed in a certain direction by a spring and moves a certain distance by the expansion and contraction of the spring, and a linear gauge that is connected to the linear gauge and calculates the thickness of the object based on the moving distance of the spindle. a plate thickness calculation unit; and an ultrasonic transceiver unit that attaches a probe to the tip of the spindle in a detachable manner, transmits ultrasonic waves to the probe, and receives reflected waves from the object received by the probe. , a propagation time calculation unit connected to the ultrasonic transmitting/receiving unit and calculating the propagation time of the object, and simultaneously inputting the plate thickness signal of the plate thickness calculation unit and the propagation time signal of the propagation time calculation unit to calculate the sound speed. By using an ultrasonic sound velocity measurement device for an object to be examined, which is equipped with a sound velocity calculation section that allows the sound speed of an object to be measured easily and in a short time, it is possible to obtain highly reliable measurement results. be.

〔作用〕[Effect]

リニアゲージ内に組み込まればねにより常時一定方向に
押圧されているスピンドルの先端に、肌着可能に探触子
が取り付けられる。前記スピンドルは外力により前記ば
ねが伸縮させられることにより一定距離だけ移動させら
れる。まず探触子と被検体をセットする定盤の面とを直
接探触させ、リニアゲージに接続されリニアゲージから
の信号を受けて板厚を演算する板厚演算部に、板厚0寸
法の指令を与える。つぎに測定者が前記ばねを短縮して
スピンドルを移動し、移動して生じた探触子と定盤との
間の隙間に被検体を挿入して定盤上にセットする。この
場合、リニアゲージを前記ばねを短縮した位置で保持部
材に保持すると、スピンドルは該ばねの圧縮力により被
検体側へ押圧され探触子が被検体を一定の力で押し付け
ることになる。この状態で被検体の板厚は、スピンドル
の移動距離の信号が板厚演算部に送られ直ちに演算され
る。一方、前記と同じ状態で超音波送受信部より探触子
に超音波を送信し、被検体からの反射波が探触子を介し
て超音波送受信部に受イεされる。
A probe is attached to the tip of a spindle, which is incorporated into a linear gauge and is always pressed in a fixed direction by a spring, so that it can be worn under the skin. The spindle is moved a certain distance by expanding and contracting the spring by an external force. First, the probe is directly probed with the surface of the surface plate on which the test object is set, and the plate thickness calculation section, which is connected to a linear gauge and calculates the plate thickness by receiving signals from the linear gauge, is Give instructions. Next, the measurer shortens the spring to move the spindle, inserts the object into the gap created by the movement between the probe and the surface plate, and sets it on the surface plate. In this case, when the linear gauge is held by the holding member in the position where the spring is shortened, the spindle is pressed toward the subject by the compressive force of the spring, and the probe presses against the subject with a constant force. In this state, the plate thickness of the object to be examined is immediately calculated by sending a signal indicating the moving distance of the spindle to the plate thickness calculating section. On the other hand, in the same state as above, the ultrasonic wave transmitting/receiving section transmits ultrasonic waves to the probe, and the reflected waves from the subject are received by the ultrasonic transmitting/receiving section via the probe.

この受信信号は超音波送受信部に接続されている伝搬時
間演算部に送られ伝搬時間が前記板厚の演算と並行して
同時に演算される。演算された伝搬時間と前記板厚との
情報は、音速演算部に同時に入力され音速が演算される
This received signal is sent to a propagation time calculating section connected to the ultrasonic transmitting/receiving section, and the propagation time is calculated simultaneously in parallel with the calculation of the plate thickness. Information on the calculated propagation time and the plate thickness is simultaneously input to a sound speed calculating section, and the sound speed is calculated.

板厚の異なる新たな被検体に対しては、スピンドルの移
動距離が異なるだけで前記と同様にして音速を測定する
ことができるが、被検体の材質、比重等の物性値が異な
る場合は、探触子が脱着可能なことがら探触子をそれら
の被検体に適したものと付は替えて測定が行われる。
For a new test object with a different plate thickness, the sound speed can be measured in the same way as above, just by changing the spindle travel distance, but if the test object has different physical properties such as material and specific gravity, Since the probe is removable, measurements are performed by replacing the probe with one suitable for the subject being examined.

〔実施例〕〔Example〕

本発明の実施例を第1図ないし第5図を参照して説明す
る。
Embodiments of the present invention will be described with reference to FIGS. 1 to 5.

第1図は本実施例の装置の正面図、第2図はスピンドル
の下部断面図、第3図は探触子の1例を示す断面図、第
4図は第1図のIV−IV失視図、第5図は装置のブロ
ック図である。図において1はスタンド、2はスタンド
1上に立設されたポール、3はポール2に沿って上下に
移動可能なガイドアームで、第4図に示すようにポール
2に嵌合する割り込みの入った穴3aと、リニアゲージ
5を支えその1部に嵌合する割り込みの入った穴3bと
を有している。穴3aの割り込み部にはガイドアーム3
をポール2の任意の高さ位置にロックするノブ4が取り
付けられ1、穴3bの割込み部にはリニアゲージ5をガ
イドアーム3にロックするノブ6が取り付けられている
。7はリニアゲージ5内に組み込まれているスピンドル
で、図示していないリニアゲージ5内の圧縮ばねにより
常時下方に押されており、前記ばねが外力(本実施例で
は測定者)により伸縮させられることにより一定距離だ
け移動させられる。スピンドル7の下端部には探触子8
が脱着可能に取り付けられるが、第2図に示すようにそ
の脱着部は、探触子8のハウジング16内に遊びのない
状態で嵌入する直径に形成されており、嵌着時に両者が
容易に離脱しないように該直径より張り出すガイドビン
18を設けている。また軸心部には穴7aが穿設されて
おり、穴7aの端部には探触子8の接栓17が嵌入され
るめす側の接栓19が設けられている。探触子8は振動
子14、ダンパ15がハウジング16内に設けられ、ハ
ウジング16の一端側にスピンドル7が嵌入される穴8
aが、そして他端例の振動子14の外面には前面板13
がそれぞれ設けられる。穴8aの外周にはガイドピン1
8が嵌着される凹部8bが設けられ、中央部には振動子
14からの信号線の取出し口である接栓17が設けられ
ている。9はスタンド1上に置かれている定盤で、定盤
9の上面には被検体10が載せられる。20は被検体1
0の板厚Tの演算部で、板厚ゼロ指令の機能を有し、リ
ニアゲージ5とケーブル11により接続されている。2
1は探触子8に超音波を送信し探触子10が受信した被
検体10からの反射波を受信する超音波送受信部で、ス
ピンドル7の穴7aを通る信号線とケーブル12により
接続されている。22は超音波送受信部21に接続され
、その送信信号により被検体10における超音波の伝搬
時間を演算する伝搬時間演算部である。23は板厚演算
部20の板厚信号と、伝搬時間演算部22の伝搬時間信
号とを同時に入力して音速を演算する音速演算部である
FIG. 1 is a front view of the device of this embodiment, FIG. 2 is a sectional view of the lower part of the spindle, FIG. 3 is a sectional view showing an example of the probe, and FIG. The perspective view, FIG. 5, is a block diagram of the apparatus. In the figure, 1 is a stand, 2 is a pole set up on the stand 1, and 3 is a guide arm that can be moved up and down along the pole 2. It has a hole 3a with a hole 3a and a hole 3b with an interruption that supports the linear gauge 5 and fits into a part thereof. The guide arm 3 is installed in the cut-in part of the hole 3a.
A knob 4 for locking the linear gauge 5 to the guide arm 3 is attached to the pole 2 at an arbitrary height position 1, and a knob 6 for locking the linear gauge 5 to the guide arm 3 is attached to the cut-in portion of the hole 3b. Reference numeral 7 denotes a spindle built into the linear gauge 5, which is constantly pushed downward by a compression spring (not shown) inside the linear gauge 5, and the spring is expanded and contracted by an external force (in this example, by the measurer). This allows it to be moved a certain distance. A probe 8 is attached to the lower end of the spindle 7.
As shown in FIG. 2, the removable part is formed with a diameter that allows it to fit into the housing 16 of the probe 8 without any play, so that both can be easily connected when fitted. A guide bin 18 is provided that extends beyond the diameter so as not to come off. A hole 7a is bored in the axial center, and a female connector 19 into which the connector 17 of the probe 8 is inserted is provided at the end of the hole 7a. The probe 8 includes a vibrator 14 and a damper 15 in a housing 16, and a hole 8 into which the spindle 7 is fitted at one end of the housing 16.
a, and a front plate 13 is provided on the outer surface of the vibrator 14 at the other end.
are provided respectively. A guide pin 1 is attached to the outer periphery of the hole 8a.
A recess 8b into which the resonator 8 is fitted is provided, and a plug 17, which is an outlet for the signal line from the vibrator 14, is provided in the center. A surface plate 9 is placed on the stand 1, and a subject 10 is placed on the upper surface of the surface plate 9. 20 is subject 1
This is a calculating section for a plate thickness T of 0, which has a function of issuing a zero plate thickness command, and is connected to a linear gauge 5 by a cable 11. 2
Reference numeral 1 denotes an ultrasonic transmitting/receiving unit that transmits ultrasonic waves to the probe 8 and receives reflected waves from the subject 10 received by the probe 10, and is connected by a signal line passing through the hole 7a of the spindle 7 and a cable 12. ing. Reference numeral 22 denotes a propagation time calculation unit that is connected to the ultrasound transmission/reception unit 21 and calculates the propagation time of the ultrasound in the subject 10 based on the transmitted signal. Reference numeral 23 denotes a sound velocity calculation unit that simultaneously inputs the plate thickness signal from the plate thickness calculation unit 20 and the propagation time signal from the propagation time calculation unit 22 to calculate the speed of sound.

つぎに前記装置の作用について説明する。まず定盤9上
に被検体lOが無い状態でノブ4を弛めてガイドアーム
3をリニアゲージ5.探触子8等とともに下げ、探触子
8の前面板13を定盤9に直接接触させ板厚演算部20
に板厚ゼロ寸法の指令を与える。つぎにスピンドル7を
下方に押している図示していない圧縮ばねを短縮してス
ピンドル7を上方に移動させる。そして移動して生じた
前面板13と定盤9との間隙に被検体10を挿入してセ
ットする。スピンドル7は前記圧縮ばねにより常時下方
に押されているから、スピンドル7の下端部に取り付け
られている探触子8は被検体10を一定の力で押し付け
る状態になる。この状態で被検体10の板厚Tが、スピ
ンドル7の移動距離の信号が板厚演算部20に送られる
ことにより演算される。一方、前記状態で、超音波送受
信部21より探触子8に超音波を送信し、被検体10か
らの反射波が探触子8を介して超音波送受部21に受信
される。この受信信号は伝搬時間演算部22に送られ、
前記板厚Tの演算と並行して同時に伝搬時間が演算され
る。演算された伝搬時間と前記板厚との情報は、音速演
算部23に同時に入力され被検体10上に探触子8を当
接するだけで即座に音速が算出される。
Next, the operation of the device will be explained. First, with no subject lO on the surface plate 9, loosen the knob 4 and move the guide arm 3 to the linear gauge 5. The front plate 13 of the probe 8 is brought into direct contact with the surface plate 9 by lowering it together with the probe 8 and the like, and the plate thickness calculating section 20
Give the zero thickness dimension command to . Next, a compression spring (not shown) pushing the spindle 7 downward is shortened to move the spindle 7 upward. Then, the subject 10 is inserted and set in the gap between the front plate 13 and the surface plate 9 created by the movement. Since the spindle 7 is constantly pressed downward by the compression spring, the probe 8 attached to the lower end of the spindle 7 is in a state of pressing the subject 10 with a constant force. In this state, the plate thickness T of the subject 10 is calculated by sending a signal of the moving distance of the spindle 7 to the plate thickness calculating section 20. On the other hand, in the above state, the ultrasound transmitting/receiving section 21 transmits ultrasound to the probe 8, and the reflected wave from the subject 10 is received by the ultrasound transmitting/receiving section 21 via the probe 8. This received signal is sent to the propagation time calculation section 22,
In parallel with the calculation of the plate thickness T, the propagation time is calculated at the same time. The information on the calculated propagation time and the plate thickness is simultaneously input to the sound speed calculating section 23, and the sound speed is immediately calculated by simply bringing the probe 8 into contact with the object 10.

測定する被検体10の板厚が異なる場合は、スピンドル
7の移動距離が異なり、板厚演算部20により異なる板
厚が演算され、伝搬時間演算部22により異なる伝搬時
間が演算されて前記と同様に音速が測定される。また被
検体10の材質や比重等の物性値が異なる場合には、そ
れらの被検体に適した探触子に適宜付は替えて測定する
ことができ、音速装置だけでなく音速と相関関係を有す
る比重計測も行うことができる。
When the thickness of the object 10 to be measured is different, the moving distance of the spindle 7 is different, and the thickness calculation unit 20 calculates a different thickness, and the propagation time calculation unit 22 calculates a different propagation time, and the process is similar to the above. The speed of sound is measured. In addition, if the material and physical property values such as specific gravity of the object 10 are different, it is possible to change the probe suitable for the object and measure it. Specific gravity measurements can also be performed.

このように被検体10上に探触子8を当接するだけで音
速測定ができ、しかもその測定は板厚と伝搬時間の計測
位置が同一で位置ずれがなく行われ、しかも探触子8を
ばねにより一定の押し付は力で押し付けて行うことがで
きる効果がある。
In this way, the speed of sound can be measured simply by bringing the probe 8 into contact with the object 10, and the measurement is carried out at the same measurement position for the plate thickness and propagation time without any positional deviation. The spring has the effect that a certain amount of pressing can be performed by pressing with force.

〔発明の効果〕〔Effect of the invention〕

以上説明した如く、本発明は、ばねにより一定方向に押
圧され、かつ該ばねの伸縮により移動するスピンドルを
有するリニアゲージと、該リニアゲージに接続され前記
スピンドルの移動距離により被検体の板厚を演算する板
厚演算部と、前記スピンドルの先端に脱着可能に探触子
を取り付け、該探触子と超音波を送受信する超音波送受
信部と、被検体の伝搬時間を演算する伝搬時間演算部と
、演算された板厚信号と伝搬時間信号とを同時入力して
音速を演算する音速演算部とを備えた音速測定装置とし
たから、被検体の音速を容易にかつ短時間に測定でき、
しかも信頼性の高い測定結果が得られる実用上の効果を
有する。
As explained above, the present invention includes a linear gauge having a spindle that is pressed in a certain direction by a spring and moves by the expansion and contraction of the spring, and a linear gauge that is connected to the linear gauge and measures the plate thickness of the specimen by the moving distance of the spindle. a plate thickness calculating section for calculating; a probe detachably attached to the tip of the spindle; an ultrasonic transmitting/receiving section for transmitting and receiving ultrasonic waves to and from the probe; and a propagation time calculating section for calculating the propagation time of the object. and a sound speed calculation unit that calculates the sound speed by simultaneously inputting the calculated plate thickness signal and propagation time signal, so the sound speed of the object can be measured easily and in a short time.
Moreover, it has the practical effect of providing highly reliable measurement results.

【図面の簡単な説明】[Brief explanation of the drawing]

図面はいずれも本発明に係わる実施例の説明図で、第1
図は装置の正面図、第2図はスピンドルの下部断面図、
第3図は探触子の1例を示す断面図、第4図は第1図の
IV−IV失視図、第5図は装置のブロック図である。
The drawings are all explanatory diagrams of embodiments according to the present invention, and the first
The figure is a front view of the device, the second figure is a sectional view of the lower part of the spindle,
FIG. 3 is a sectional view showing one example of the probe, FIG. 4 is an IV-IV blind view of FIG. 1, and FIG. 5 is a block diagram of the device.

Claims (1)

【特許請求の範囲】 1、被検体における超音波の音速測定装置であって、ば
ねにより一定方向に押圧され、かつ前記ばねの伸縮によ
り一定距離を移動するスピンドルを有し、該スピンドル
の移動距離により被検体の板厚を演算する板厚演算部に
接続されたリニアゲージと、前記スピンドルの先端に脱
着可能に探触子を取り付け、該探触子に超音波を送信し
探触子が受信した被検体からの反射波を受信する超音波
送受信部と、該超音波送受信部に接続され被検体の伝搬
時間を演算する伝搬時間演算部と、前記板厚演算部の板
厚信号と伝搬時間演算部の伝搬時間信号とを同時入力し
、音速を演算する音速演算部とを備えた被検体における
超音波の音速測定装置。 2、前記スピンドルが、軸心部に穴を穿設し、該穴に前
記超音波送受信部に接続される信号ケーブルを挿設して
いる特許請求の範囲第1項記載の被検体における超音波
の音速測定装置。
[Scope of Claims] 1. An ultrasonic sound velocity measurement device in a subject, which includes a spindle that is pressed in a certain direction by a spring and moves a certain distance by the expansion and contraction of the spring, and the movement distance of the spindle. A linear gauge is connected to a thickness calculation unit that calculates the thickness of the object to be examined, and a probe is removably attached to the tip of the spindle, and ultrasonic waves are transmitted to the probe and received by the probe. an ultrasonic transmitter/receiver that receives reflected waves from the object to be examined; a propagation time calculator connected to the ultrasonic transmitter/receiver and calculates the propagation time of the object; and a plate thickness signal and propagation time of the plate thickness calculator. 1. An ultrasonic sound speed measurement device in a subject, comprising a sound speed calculation unit that simultaneously inputs a propagation time signal of the calculation unit and calculates the sound speed. 2. Ultrasonic waves in a subject according to claim 1, wherein the spindle has a hole bored in its axial center, and a signal cable connected to the ultrasonic transmitter/receiver is inserted into the hole. Sound speed measuring device.
JP5527887A 1987-03-12 1987-03-12 Ultrasonic sound velocity measuring device in subject Expired - Lifetime JPH0656320B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5527887A JPH0656320B2 (en) 1987-03-12 1987-03-12 Ultrasonic sound velocity measuring device in subject

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5527887A JPH0656320B2 (en) 1987-03-12 1987-03-12 Ultrasonic sound velocity measuring device in subject

Publications (2)

Publication Number Publication Date
JPS63222228A true JPS63222228A (en) 1988-09-16
JPH0656320B2 JPH0656320B2 (en) 1994-07-27

Family

ID=12994124

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5527887A Expired - Lifetime JPH0656320B2 (en) 1987-03-12 1987-03-12 Ultrasonic sound velocity measuring device in subject

Country Status (1)

Country Link
JP (1) JPH0656320B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100360478B1 (en) * 1996-10-31 2002-12-18 삼성전자 주식회사 Thickness and conductivity measuring apparatus
KR100442826B1 (en) * 1997-07-24 2004-09-18 삼성전자주식회사 Thickness and conductivity measuring apparauts

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100360478B1 (en) * 1996-10-31 2002-12-18 삼성전자 주식회사 Thickness and conductivity measuring apparatus
KR100442826B1 (en) * 1997-07-24 2004-09-18 삼성전자주식회사 Thickness and conductivity measuring apparauts

Also Published As

Publication number Publication date
JPH0656320B2 (en) 1994-07-27

Similar Documents

Publication Publication Date Title
KR20150115725A (en) Sensor device and residual stress detection system employing same
CN101266228A (en) Material sonic velocity measurement method
CN106198739A (en) A kind of TOFD near surface blind region defect location detection method based on shape transformation
CN114487119B (en) Ultrasonic detection device and method for soil moisture content by fusing soil volume weight
CN111157065A (en) Acoustic time delay measuring method in ultrasonic signal transmission loop of gas ultrasonic flowmeter
CN210621786U (en) Improved structure of foundation pile guide wheel by ultrasonic transmission method
CA2106515A1 (en) Out-of-plane ultrasonic velocity measurement
CN108802202A (en) A kind of ultrasonic wave tandem probe apparatus and method
SU917711A3 (en) Method of tuning ultrasonic apparatus
US4545249A (en) Acoustical position gage
CN112484836B (en) Ultrasonic probe device and workpiece sound velocity measurement method
CA1189944A (en) Well logging device
JPS63222228A (en) Apparatus for measuring propagation velocity of ultrasonic wave in object to be inspected
JPS61184458A (en) Measuring device for depth of crack of surface
CN209821382U (en) Dynamic plane height measurement sensor and height measurement system
JPH0614025B2 (en) Ultrasonic wave metal appraisal device
Douville et al. Critical evaluation of continuous‐wave Doppler probes for carotid studies
ATE46764T1 (en) SURFACE PROFILE MEASUREMENT.
CN111413414A (en) Zero-sound calibration device of ultrasonic system
CN212111265U (en) Ultrasonic spheroidization searchlighting instrument for high-strength supporting steel member
CN215493330U (en) Device for accurately testing acoustic delay time of ultrasonic transducer
CN215641034U (en) Pipeline blocks up early warning system based on singlechip
CN220580062U (en) Automatic foundation pile ultrasonic detector device of survey pitch
CN206818652U (en) A kind of Air Coupling ultrasonic device for measuring of material shear wave velocity
CN210689778U (en) Ultrasonic level meter calibrating device