JPH0656320B2 - Ultrasonic sound velocity measuring device in subject - Google Patents
Ultrasonic sound velocity measuring device in subjectInfo
- Publication number
- JPH0656320B2 JPH0656320B2 JP5527887A JP5527887A JPH0656320B2 JP H0656320 B2 JPH0656320 B2 JP H0656320B2 JP 5527887 A JP5527887 A JP 5527887A JP 5527887 A JP5527887 A JP 5527887A JP H0656320 B2 JPH0656320 B2 JP H0656320B2
- Authority
- JP
- Japan
- Prior art keywords
- subject
- sound velocity
- plate thickness
- probe
- spindle
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
Description
【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、被検体における超音波の音速測定装置に係わ
り、特に音速を短時間にかつ容易に測定するのに好適な
装置に関する。TECHNICAL FIELD The present invention relates to an ultrasonic sound velocity measuring device in a subject, and particularly to a device suitable for easily measuring the sound velocity in a short time.
なお、ここにいう被検体は固体を指す。Note that the subject here refers to a solid.
従来の被検体の音速測定は、通常の超音波探傷器を使用
し、パルス反射法により測定する簡易測定法が一般に広
く行われている。これは音速測定において現有する超音
波探傷器が使用でき、測定が簡便であるうえに超音波探
傷で必要な音速の一定レベルの測定精度、たとえば1%
程度の誤差内の精度が得られるからである。しかし、本
測定法における音速の算出は一般に(一探触子法の場
合)次式 ここで V=音速 (m/sec) T=被検体の板厚 (m) t=超音波の伝搬時間(sec) で行われるから、被検体の板厚Tの測定が必要になる。
板厚Tの測定は従来マイクロメータやノギス等を使用し
て行われており、超音波探傷器で伝搬時間tを測定する
のとは別個の工程で行われる。一方、伝搬時間tは、超
音波探傷器等のCRT 上に表示される被検体の第1回底面
エコーB1 と第2回底面エコーB2との間の時間、または
第2回底面エコーB2と第3回底面エコーB3との間の時間
を読み取り、記憶または記録された値が使用される。こ
のように従来は、板厚Tと伝搬時間tは別々に求められ
て前記式により音速が計算されるから、音速の算出は必
ず2工程以上を要し、被検体における板厚測定位置と伝
搬時間測定位置とのずれが生じ易く、測定結果の信頼性
が低下するとともに測定に手間がかかり時間も多く要す
る問題点を有していた。For the conventional measurement of sound velocity of an object, a simple measurement method in which a normal ultrasonic flaw detector is used and measurement is performed by a pulse reflection method is generally widely used. This is because the existing ultrasonic flaw detector can be used for sound velocity measurement, the measurement is simple, and the measurement accuracy of a certain level of sound velocity required for ultrasonic flaw detection is, for example, 1%.
This is because accuracy within a margin of error can be obtained. However, the calculation of the sound velocity in this measurement method is generally (for the one-probe method) Here, V = sound velocity (m / sec) T = plate thickness of the subject (m) t = propagation time of ultrasonic waves (sec) Therefore, it is necessary to measure the plate thickness T of the subject.
The plate thickness T is conventionally measured using a micrometer, a caliper, etc., and is performed in a step different from the step of measuring the propagation time t with an ultrasonic flaw detector. On the other hand, the propagation time t is the time between the first bottom echo B 1 and the second bottom echo B 2 of the subject displayed on the CRT such as an ultrasonic flaw detector, or the second bottom echo B 2 The time between and the third bottom echo B 3 is read and the stored or recorded value is used. As described above, conventionally, since the plate thickness T and the propagation time t are separately calculated and the sound velocity is calculated by the above equation, the calculation of the sound velocity always requires two or more steps, and the plate thickness measurement position and the propagation in the object are measured. There is a problem in that the time measurement position is likely to be displaced, the reliability of the measurement result is lowered, and the measurement is troublesome and takes a lot of time.
前記の如く従来の被検体の音速測定は、音速の算出に必
要な被検体の板厚と伝搬時間とを別工程で求めていたか
ら、測定に多くの手間と時間を要し、測定結果の信頼性
の低下が発生し易い問題点を有していた。As described above, in the conventional sound velocity measurement of the subject, the plate thickness of the subject and the propagation time required for the calculation of the sound velocity are obtained in separate steps, so that much labor and time are required for the measurement, and the reliability of the measurement result is high. However, there is a problem that the deterioration of
本発明は前記従来技術の問題点を解消するものであっ
て、被検体の音速を、容易にかつ短時間に測定し、しか
も信頼性のある測定結果の得られる音速測定装置を提供
することを目的とする。The present invention solves the above-mentioned problems of the prior art, and provides a sound velocity measuring device that can easily and quickly measure the sound velocity of a subject, and can obtain a reliable measurement result. To aim.
本発明は、ばねにより一定方向に押圧され、かつ前記ば
ねの伸縮により一定距離を移動するスピンドルを有する
リニアゲージと、該リニアゲージに接続され前記スピン
ドルの移動距離により被検体の板厚を演算する板厚演算
部と、前記スピンドルの先端に脱着可能に探触子を取り
付け、該探触子に超音波を送信し探触子が受信した被検
体からの反射波を受信する超音波送受信部と、該超音波
送受信部に接続され被検体の伝搬時間を演算する伝搬時
間演算部と、前記板厚演算部の板厚信号と伝搬時間演算
部の伝搬時間信号とを同時入力し、音速を演算する音速
演算部とを備えた被検体における超音波の音速測定装置
としたことにより、被検体の音速を容易かつ短時間に測
定し、しかも信頼性の高い測定結果が得られるようにし
たものである。According to the present invention, a linear gauge having a spindle that is pressed in a certain direction by a spring and that moves a certain distance by expansion and contraction of the spring, and a plate thickness of an object to be examined are connected to the linear gauge and a moving distance of the spindle is calculated. A plate thickness calculation unit and an ultrasonic wave transmission / reception unit that detachably attaches a probe to the tip of the spindle, transmits ultrasonic waves to the probe, and receives reflected waves from the subject received by the probe. , The ultrasonic wave transmission unit is connected to the propagation time calculation unit for calculating the propagation time of the subject, and the plate thickness signal of the plate thickness calculation unit and the propagation time signal of the propagation time calculation unit are simultaneously input to calculate the sound velocity. The sound velocity measuring device for ultrasonic waves in a subject provided with a sound velocity calculation unit that can measure the sound velocity of the subject easily and in a short time, and can obtain highly reliable measurement results. is there.
リニアゲージ内に組み込まればねにより常時一定方向に
押圧されているスピンドルの先端に、脱着可能に探触子
が取り付けられる。前記スピンドルは外力により前記ば
ねが伸縮させられることにより一定距離だけ移動させら
れる。まず探触子と被検体をセットする定盤の面とを直
接探触させ、リニアゲージに接続されリニアゲージから
の信号を受けて板厚を演算する板厚演算部に、板厚0寸
法の指令を与える。つぎに測定者が前記ばねを短縮して
スピンドルを移動し、移動して生じた探触子と定盤との
間の隙間に被検体を挿入して定盤上にセットする。この
場合、リニアゲージを前記ばねを短縮した位置で保持部
材に保持すると、スピンドルは該ばねの圧縮力により被
検体側へ押圧され探触子が被検体を一定の力で押し付け
ることになる。この状態で被検体の板圧は、スピンドル
の移動距離の信号が板圧演算部に送られ直ちに演算され
る。一方、前記と同じ状態で超音波送受信部より探触子
に超音波を送信し、被検体からの反射波が探触子を介し
て超音波送受信部に受信される。この受信信号は超音波
送受信部に接続されている伝搬時間演算部に送られ伝搬
時間が前記板厚の演算と並行して同時に演算される。演
算された伝搬時間と前記板厚との情報は、音速演算部に
同時に入力され音速が演算される。The probe is removably attached to the tip of the spindle that is always pressed in a certain direction by being installed in the linear gauge. The spring is expanded and contracted by an external force to move the spindle by a predetermined distance. First, the probe and the surface of the surface plate on which the subject is set are directly probed, and a plate thickness calculation unit that is connected to the linear gauge and receives the signal from the linear gauge to calculate the plate thickness Give orders. Next, the measurer shortens the spring to move the spindle, inserts the subject into the gap between the probe and the surface plate generated by the movement, and sets the object on the surface plate. In this case, if the linear gauge is held by the holding member at the position where the spring is shortened, the spindle is pressed toward the subject side by the compression force of the spring, and the probe presses the subject with a constant force. In this state, the plate pressure of the subject is immediately calculated by sending a signal of the movement distance of the spindle to the plate pressure calculator. On the other hand, in the same state as described above, an ultrasonic wave is transmitted from the ultrasonic wave transmitting / receiving unit to the probe, and a reflected wave from the subject is received by the ultrasonic wave transmitting / receiving unit via the probe. This received signal is sent to the propagation time calculation unit connected to the ultrasonic wave transmission / reception unit, and the propagation time is calculated in parallel with the calculation of the plate thickness. Information on the calculated propagation time and the plate thickness is simultaneously input to the sound velocity calculator to calculate the sound velocity.
板厚の異なる新たな被検体に対しては、スピンドルの移
動距離が異なるだけで前記と同様にして音速を測定する
ことができるが、被検体の材質、比重等の物性値が異な
る場合は、探触子が脱着可能なことから探触子をそれら
の被検体に適したものと付け替えて測定が行われる。For a new subject with a different plate thickness, the sound velocity can be measured in the same manner as above just by changing the moving distance of the spindle, but if the physical properties of the subject, such as specific gravity, are different, Since the probe can be attached and detached, the probe is replaced with one suitable for the object to be measured.
本発明の実施例を第1図ないし第5図を参照して説明す
る。An embodiment of the present invention will be described with reference to FIGS.
第1図は本実施例の装置の正面図、第2図はスピンドル
の下部断面図、第3図は探触子の1例を示す断面図、第
4図は第1図のIV−IV失視図、第5図は装置のブロック
図である。図において1はスタンド、2はスタンド1上
に立設されたポール、3はポール2に沿って上下に移動
可能なガイドアームで、第4図に示すようにポール2に
嵌合する割り込みの入った穴3aと、リニアゲージ5を支
えその1部に嵌合する割り込みの入った穴3bとを有して
いる。穴3aの割り込み部にはガイドアーム3をポール2
の任意の高さ位置にロックするノブ4が取り付けられ、
穴3bの割込み部にはリニアゲージ5をガイドアーム3に
ロックするノブ6が取り付けられている。7はリニアゲ
ージ5内に組み込まれているスピンドルで、図示してい
ないリニアゲージ5内の圧縮ばねにより常時下方に押さ
れており、前記ばねが外力(本実施例では測定者)によ
り伸縮させられることにより一定距離だけ移動させられ
る。スピンドル7の下端部には探触子8が脱着可能に取
り付けられるが、第2図に示すようにその脱着部は、探
触子8のハウジング16内に遊びのない状態で嵌入する直
径に形成されており、嵌着時に両者が容易に離脱しない
ように該直径より張り出すガイドピン18を設けている。
また軸心部には穴7aが穿設されており、穴7aの端部には
探触子8の接栓17が嵌入されるめす側の接栓19が設けら
れている。探触子8は振動子14、ダンパ15がハウジング
16内に設けられ、ハウジング16の一端側にスピンドル7
が嵌入される穴8aが、そして他端側の振動子14の外面に
は前面板13がそれぞれ設けられる。穴8aの外周にはガイ
ドピン18が嵌着される凹部8bが設けられ、中央部には振
動子14からの信号線の取出し口である接栓17が設けられ
ている。9はスタンド1上に置かれている定盤で、定盤
9の上面には被検体10が載せられる。20は被検体10の板
厚Tの演算部で、板厚ゼロ指令の機能を有し、リニアゲ
ージ5とケーブル11により接続されている。21は探触子
8に超音波を送信し探触子10が受信した被検体10からの
反射波を受信する超音波送受信部で、スピンドル7の穴
7aを通る信号線とケーブル12により接続されている。22
は超音波送受信部21に接続され、その送信信号により被
検体10における超音波の伝搬時間を演算する伝搬時間演
算部である。23は板厚演算部20の板厚信号と、伝搬時間
演算部22の伝搬時間信号とを同時に入力して音速を演算
する音速演算部である。FIG. 1 is a front view of the apparatus of this embodiment, FIG. 2 is a sectional view of the lower part of the spindle, FIG. 3 is a sectional view showing an example of a probe, and FIG. 4 is IV-IV loss of FIG. FIG. 5 is a block diagram of the device. In the figure, 1 is a stand, 2 is a pole erected on the stand 1, 3 is a guide arm that can move up and down along the pole 2, and as shown in FIG. It has a hole 3a and a hole 3b with an interruption for supporting the linear gauge 5 and fitting it in a part thereof. The guide arm 3 is used for the pole 2 at the interruption part of the hole 3a.
A knob 4 that locks at any height of
A knob 6 for locking the linear gauge 5 to the guide arm 3 is attached to the interruption portion of the hole 3b. Reference numeral 7 denotes a spindle incorporated in the linear gauge 5, which is constantly pushed downward by a compression spring (not shown) in the linear gauge 5, and the spring is expanded and contracted by an external force (in this embodiment, a measurer). This allows it to be moved a fixed distance. A probe 8 is removably attached to the lower end of the spindle 7, and as shown in FIG. 2, the detachable part is formed to have a diameter that allows the probe 8 to be fitted into the housing 16 of the probe 8 without play. The guide pin 18 is provided so as to project from the diameter so that they are not easily separated when they are fitted.
A hole 7a is formed in the axial center portion, and a female-side contact plug 19 into which the contact plug 17 of the probe 8 is fitted is provided at the end of the hole 7a. Transducer 8 has transducer 14 and damper 15 has housing
The spindle 7 is provided inside the housing 16 and is attached to one end of the housing 16.
A hole 8a into which is inserted and a front plate 13 is provided on the outer surface of the vibrator 14 on the other end side. A recess 8b into which a guide pin 18 is fitted is provided on the outer periphery of the hole 8a, and a connector 17 as a port for taking out a signal line from the vibrator 14 is provided at the center. A surface plate 9 is placed on the stand 1, and a subject 10 is placed on the upper surface of the surface plate 9. Reference numeral 20 denotes a plate thickness T calculation unit of the subject 10, which has a function of instructing a plate thickness zero, and is connected to the linear gauge 5 by a cable 11. Reference numeral 21 denotes an ultrasonic wave transmitting / receiving unit that transmits ultrasonic waves to the probe 8 and receives reflected waves from the subject 10 received by the probe 10, and is a hole of the spindle 7.
It is connected by a cable 12 and a signal line passing through 7a. twenty two
Is a propagation time calculation unit that is connected to the ultrasonic wave transmission / reception unit 21 and calculates the propagation time of ultrasonic waves in the subject 10 based on the transmission signal. Reference numeral 23 is a sound velocity calculation unit that calculates the sound velocity by simultaneously inputting the plate thickness signal of the plate thickness calculation unit 20 and the propagation time signal of the propagation time calculation unit 22.
つぎに前記装置の作用について説明する。まず定盤9上
に被検体10が無い状態でノブ4を弛めてガイドアーム3
をリニアゲージ5,探触子8等とともに下げ、探触子8の
前面板13を定盤9に直接接触させ板厚演算部20に板厚ゼ
ロ寸法の指令を与える。つぎにスピンドル7を下方に押
している図示していない圧縮ばねを短縮してスピンドル
7を上方に移動させる。そして移動して生じた前面板13
と定盤9との間隙に被検体10を挿入してセットする。ス
ピンドル7は前記圧縮ばねにより常時下方に押されてい
るから、スピンドル7の下端部に取り付けられている探
触子8は被検体10を一定の力で押し付ける状態になる。
この状態で被検体10の板厚Tが、スピンドル7の移動距
離の信号が板厚演算部20に送られることにより演算され
る。一方、前記状態で、超音波送受信部21より探触子8
に超音波を送信し、被検体10からの反射波が探触子8を
介して超音波送受部21に受信される。この受信信号は伝
搬時間演算部22に送られ、前記板厚Tの演算と並行して
同時に伝搬時間が演算される。演算された伝搬時間と前
記板厚との情報は、音速演算部23に同時に入力され被検
体10上に探触子8を当接するだけで即座に音速が算出さ
れる。Next, the operation of the device will be described. First, loosen the knob 4 and the guide arm 3 with the subject 10 not present on the surface plate 9.
Is lowered together with the linear gauge 5, the probe 8 and the like, and the front plate 13 of the probe 8 is brought into direct contact with the surface plate 9 to give a plate thickness calculation unit 20 a command of zero plate thickness dimension. Next, the compression spring (not shown) pushing the spindle 7 downward is shortened to move the spindle 7 upward. And the front plate 13 that was generated by moving
The subject 10 is inserted and set in the gap between the platen 9 and the platen 9. Since the spindle 7 is constantly pushed downward by the compression spring, the probe 8 attached to the lower end of the spindle 7 presses the subject 10 with a constant force.
In this state, the plate thickness T of the subject 10 is calculated by sending a signal of the moving distance of the spindle 7 to the plate thickness calculating section 20. On the other hand, in the above-mentioned state, the probe 8
Then, the ultrasonic wave is transmitted to the ultrasonic wave, and the reflected wave from the subject 10 is received by the ultrasonic wave transmitter / receiver 21 via the probe 8. This received signal is sent to the propagation time calculation unit 22, and the propagation time is calculated simultaneously with the calculation of the plate thickness T. Information on the calculated propagation time and the plate thickness is simultaneously input to the sound velocity calculation unit 23, and the sound velocity is immediately calculated only by bringing the probe 8 into contact with the subject 10.
測定する被検体10の板厚が異なる場合は、スピンドル7
の移動距離が異なり、板厚演算部20により異なる板厚が
演算され、伝搬時間演算部22により異なる伝搬時間が演
算されて前記と同様に音速が測定される。また被検体10
の材質や比重等の物性値が異なる場合には、それらの被
検体に適した探触子に適宜付け替えて測定することがで
き、音速装置だけでなく音速と相関関係を有する比重計
測も行うことができる。If the plate thickness of the object 10 to be measured is different, the spindle 7
Different moving distances, the plate thickness calculating section 20 calculates different plate thicknesses, the propagation time calculating section 22 calculates different propagation times, and the sound velocity is measured as described above. Also the subject 10
If the physical properties such as material and specific gravity are different, it can be replaced by a probe suitable for the object to be measured, and not only the sonic velocity device but also the specific gravity measurement having a correlation with the sonic velocity should be performed. You can
このように被検体10上に探触子8を当接するだけで音速
測定ができ、しかもその測定は板厚と伝搬時間の計測位
置が同一で位置ずれがなく行われ、しかも探触子8をば
ねにより一定の押し付け力で押し付けて行うことができ
る効果がある。In this way, the sound velocity can be measured only by bringing the probe 8 into contact with the subject 10, and the measurement can be performed without any misalignment because the measurement positions of the plate thickness and the propagation time are the same. There is an effect that it can be pressed with a constant pressing force by a spring.
以上説明した如く、本発明は、ばねにより一定方向に押
圧され、かつ該ばねの伸縮により移動するスピンドルを
有するリニアゲージと、該リニアゲージに接続され前記
スピンドルの移動距離により被検体の板厚を演算する板
厚演算部と、前記スピンドルの先端に脱着可能に探触子
を取り付け、該探触子と超音波を送受信する超音波送受
信部と、被検体の伝搬時間を演算する伝搬時間演算部
と、演算された板厚信号と伝搬時間信号とを同時入力し
て音速を演算する音速演算部とを備えた音速測定装置と
したから、被検体の音速を容易にかつ短時間に測定で
き、しかも信頼性の高い測定結果が得られる実用上の効
果を有する。As described above, the present invention provides a linear gauge having a spindle that is pressed in a certain direction by a spring and that moves by expansion and contraction of the spring, and a plate thickness of an object to be measured according to a moving distance of the spindle that is connected to the linear gauge. A plate thickness calculation unit for calculation, an ultrasonic wave transmission / reception unit for transmitting / receiving ultrasonic waves to / from the probe, and a propagation time calculation unit for calculating the propagation time of the subject. With the sonic velocity measuring device having a sonic velocity calculating unit for simultaneously calculating the sonic velocity by simultaneously inputting the calculated plate thickness signal and the propagation time signal, it is possible to easily and quickly measure the sonic velocity of the subject. In addition, it has a practical effect of obtaining highly reliable measurement results.
図面はいずれも本発明に係わる実施例の説明図で、第1
図は装置の正面図、第2図はスピンドルの下部断面図、
第3図は探触子の1例を示す断面図、第4図は第1図の
IV−IV失視図、第5図は装置のブロック図である。Each of the drawings is an explanatory view of an embodiment according to the present invention.
Figure is a front view of the device, Figure 2 is a bottom sectional view of the spindle,
FIG. 3 is a sectional view showing an example of the probe, and FIG. 4 is a sectional view of FIG.
FIG. 5 is a block diagram of the apparatus, which is an IV-IV blind sight diagram.
Claims (2)
って、ばねにより一定方向に押圧され、かつ前記ばねの
伸縮により一定距離を移動するスピンドルを有し、該ス
ピンドルの移動距離により被検体の板厚を演算する板厚
演算部に接続されたリニアゲージと、前記スピンドルの
先端に脱着可能に探触子を取り付け、該探触子に超音波
を送信し探触子が受信した被検体からの反射波を受信す
る超音波送受信部と、該超音波送受信部に接続され被検
体の伝搬時間を演算する伝搬時間演算部と、前記板厚演
算部の板厚信号と伝搬時間演算部の伝搬時間信号とを同
時入力し、音速を演算する音速演算部とを備えた被検体
における超音波の音速測定装置。1. An ultrasonic sound velocity measuring device for a subject, comprising a spindle that is pressed in a certain direction by a spring and that moves a certain distance by expansion and contraction of the spring, the subject being measured according to the moving distance of the spindle. A linear gauge connected to a plate thickness calculating unit for calculating the plate thickness, and a probe that is detachably attached to the tip of the spindle, and ultrasonic waves are transmitted to the probe and received by the probe. Of the ultrasonic wave transmitting / receiving unit for receiving the reflected wave from the ultrasonic wave transmitting / receiving unit, the propagation time calculating unit connected to the ultrasonic wave transmitting / receiving unit for calculating the propagation time of the subject, and the plate thickness signal and the propagation time calculating unit of the plate thickness calculating unit. A sound velocity measuring device for ultrasonic waves in a subject, comprising: a sound velocity calculator for simultaneously inputting a propagation time signal and calculating a sound velocity.
該穴に前記超音波送受信部に接続される信号ケーブルを
挿設している特許請求の範囲第1項記載の被検体におけ
る超音波の音速測定装置。2. The spindle has a hole formed in an axial center thereof,
The ultrasonic sound velocity measuring device for a subject according to claim 1, wherein a signal cable connected to the ultrasonic wave transmitting / receiving unit is inserted into the hole.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5527887A JPH0656320B2 (en) | 1987-03-12 | 1987-03-12 | Ultrasonic sound velocity measuring device in subject |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5527887A JPH0656320B2 (en) | 1987-03-12 | 1987-03-12 | Ultrasonic sound velocity measuring device in subject |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS63222228A JPS63222228A (en) | 1988-09-16 |
JPH0656320B2 true JPH0656320B2 (en) | 1994-07-27 |
Family
ID=12994124
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5527887A Expired - Lifetime JPH0656320B2 (en) | 1987-03-12 | 1987-03-12 | Ultrasonic sound velocity measuring device in subject |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0656320B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100360478B1 (en) * | 1996-10-31 | 2002-12-18 | 삼성전자 주식회사 | Thickness and conductivity measuring apparatus |
KR100442826B1 (en) * | 1997-07-24 | 2004-09-18 | 삼성전자주식회사 | Thickness and conductivity measuring apparauts |
-
1987
- 1987-03-12 JP JP5527887A patent/JPH0656320B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPS63222228A (en) | 1988-09-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4468959A (en) | Method and apparatus for tallying pipe | |
KR100208678B1 (en) | Apparatus for determining fluid flow | |
CN104812302B (en) | A kind of length-measuring appliance for measuring individual height | |
CN210621786U (en) | Improved structure of foundation pile guide wheel by ultrasonic transmission method | |
CN111521136B (en) | Reinforced concrete structure crack depth detection method and detection device based on horizontal shear wave | |
CN103988072B (en) | Method for measuring elastic properties using ultrasound | |
CA2106515A1 (en) | Out-of-plane ultrasonic velocity measurement | |
US3380293A (en) | Ultrasonic inspection apparatus | |
SU917711A3 (en) | Method of tuning ultrasonic apparatus | |
CA1189944A (en) | Well logging device | |
JPH0656320B2 (en) | Ultrasonic sound velocity measuring device in subject | |
CN102084246B (en) | Improved non-destructive ultrasonic testing with coupling check | |
JP2697508B2 (en) | Ultrasonic thickness measurement method of furnace wall | |
CN215339663U (en) | Ultrasonic detection transducer capable of measuring pressure | |
CN209821382U (en) | Dynamic plane height measurement sensor and height measurement system | |
JP2970884B2 (en) | Probe device for vascular elasticity measurement | |
CN111413414A (en) | Zero-sound calibration device of ultrasonic system | |
CN220580062U (en) | Automatic foundation pile ultrasonic detector device of survey pitch | |
DE3479919D1 (en) | Measurement of surface profile | |
JP3156012B2 (en) | Concrete structure thickness measurement method | |
JP4500391B2 (en) | Ultrasonic flaw detection image display method and ultrasonic flaw detection image display device | |
JP3529722B2 (en) | Concrete structure quality testing method and equipment | |
JP2824488B2 (en) | Method of measuring plate thickness of concrete structure by ultrasonic pulse reflection method | |
CN215641034U (en) | Pipeline blocks up early warning system based on singlechip | |
CN218723612U (en) | Novel digital display micrometer |