JP2970884B2 - Probe device for vascular elasticity measurement - Google Patents

Probe device for vascular elasticity measurement

Info

Publication number
JP2970884B2
JP2970884B2 JP3100187A JP10018791A JP2970884B2 JP 2970884 B2 JP2970884 B2 JP 2970884B2 JP 3100187 A JP3100187 A JP 3100187A JP 10018791 A JP10018791 A JP 10018791A JP 2970884 B2 JP2970884 B2 JP 2970884B2
Authority
JP
Japan
Prior art keywords
blood vessel
ultrasonic
ultrasonic probe
diameter
wall
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP3100187A
Other languages
Japanese (ja)
Other versions
JPH04329938A (en
Inventor
邦彰 上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp filed Critical Olympus Corp
Priority to JP3100187A priority Critical patent/JP2970884B2/en
Publication of JPH04329938A publication Critical patent/JPH04329938A/en
Application granted granted Critical
Publication of JP2970884B2 publication Critical patent/JP2970884B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、血管の径方向へ送波す
る超音波の受信までの時間と脈圧に基づき血管弾性率を
測定する血管弾性率測定用プローブ装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a blood vessel elasticity measuring probe device for measuring a blood vessel elasticity based on a time until reception of an ultrasonic wave transmitted in a radial direction of a blood vessel and a pulse pressure.

【0002】[0002]

【従来の技術】動脈硬化は加齢とともに若年より進行
し、老年期に至って各種疾患を引き起こすが、動脈硬化
度に関する定量的診断技術は未だ確率されておらず、早
期に動脈硬化の進行の程度を把握できる手法の開発が
たれており、動脈硬化度を高精度に測定できる装置の開
発は極めて重要である。
2. Description of the Related Art Atherosclerosis progresses from young age with aging and causes various diseases up to old age. However, a quantitative diagnostic technique for the degree of arteriosclerosis has not yet been established, and the degree of progression of arteriosclerosis at an early stage has not been established. wait for the development of techniques that can be grasped
It is extremely important to develop a device that can measure the degree of arteriosclerosis with high accuracy.

【0003】動脈硬化度は血管の硬さ、すなわち血管弾
性率によって評価するのが最も的確な評価法とされてお
り、これまでに種々の血管弾性率が提案されている。生
体下の非摘出血管では、その計測法はいずれも拍動性血
管内圧変化すなわち脈圧に対する血管径の変化率を測定
することが基本となっており、動脈硬化度が進行すれば
同一の脈圧でも拍動性径変化は少なくなり、硬化性変化
を知ることができる。種々ある血管弾性率の中でも、非
摘出血管の動脈硬化度を評価しえるものとしては、下記
の血管弾性率が頻用されている。ひとつは圧力弾性率E
pであり、脈圧をΔP、血管径をD、拍動性径変化をΔ
Dとすると、 Ep =ΔP/(ΔD/D) ……(1) で定義されている。圧力弾性率Ep は血管壁の材質的硬
さのみならず、壁の厚みにも存在する弾性率であり、血
管自体の材質的硬さは評価できない。これを評価するに
は、さらに血管壁の厚みを測定しヤング率を求める必要
がある。ヤング率が分かれば動脈硬化による硬化性変化
が質的変化あるいは壁厚のいずれに起因するかを明らか
にできる。このような血管壁ヤング率を与える血管弾性
率として従来より増分弾性率が提案されており、増分弾
性率Einc は壁厚をhとして良好な精度で、 Einc =Ep ・(1−σ2 )/(2h/D) ……
(2) なる近似式で求められる。ここでσはポアソン比で血管
壁は0.5である。
[0003] The most accurate evaluation method is to evaluate the degree of arteriosclerosis based on the hardness of blood vessels, that is, the vascular elasticity, and various vascular elasticities have been proposed so far. In non-excised blood vessels in a living body, the measurement method is basically to measure the pulsatile intravascular pressure change, that is, the rate of change of the blood vessel diameter with respect to the pulse pressure. The pulsatile diameter change is reduced even by pressure, and the change in curability can be known. Among various vascular elastic moduli, the following vascular elastic moduli are frequently used to evaluate the degree of arteriosclerosis of a non-excised blood vessel. One is the pressure elastic modulus E
p, pulse pressure ΔP, blood vessel diameter D, pulsatile diameter change Δ
Let D be Ep = ΔP / (ΔD / D) (1) The pressure elasticity Ep is an elasticity that exists not only in the material hardness of the blood vessel wall but also in the thickness of the wall, and the material hardness of the blood vessel itself cannot be evaluated. To evaluate this, it is necessary to further measure the thickness of the blood vessel wall to determine the Young's modulus. If the Young's modulus is known, it is possible to clarify whether the sclerotic change due to arteriosclerosis is caused by a qualitative change or a wall thickness. Conventionally, an incremental elastic modulus has been proposed as a vascular elastic modulus that gives such a vascular wall Young's modulus. The incremental elastic modulus Einc can be obtained with good accuracy by setting the wall thickness to h, and Einc = Ep ・ (1-σ 2 ) / (2h / D) ......
(2) It can be obtained by the following approximate expression. Here, σ is Poisson's ratio and the blood vessel wall is 0.5.

【0004】従来より、圧力弾性率Ep を求めることを
目的として血管径D、拍動性径変化ΔDを超音波を用い
て測定する手段が種々提案されている。
Conventionally, various means have been proposed for measuring the blood vessel diameter D and the pulsatile diameter change ΔD using ultrasonic waves for the purpose of obtaining the pressure elastic modulus Ep.

【0005】例えば、特開平2−104340号公報で
は、図12〜図14に示すように、血管1内に挿入した
超音波プローブ2の先端周囲の対称な位置に配設した超
音波振動子3から周辺の血管壁へ超音波ビームを送波
し、血管内壁、血管外面からの反射波を受信するまでの
時間から上記超音波送受信手段3と上記血管内壁までの
距離χa,χc、血管外面までの距離を求め、この各距
離データから血管径D(D=χa+χc+χ χ:超
音波プローブの径)、拍動性径変化ΔD、および、血管
壁厚hを求める。
For example, in Japanese Patent Application Laid-Open No. 2-104340, as shown in FIGS. 12 to 14, an ultrasonic transducer 3 disposed at a symmetrical position around the distal end of an ultrasonic probe 2 inserted into a blood vessel 1 is disclosed. From the time until the ultrasonic beam is transmitted to the surrounding blood vessel wall and the reflected wave from the blood vessel inner wall and the blood vessel outer surface is received, the distance Δa, Δc between the ultrasonic transmitting / receiving means 3 and the blood vessel inner wall and the blood vessel outer surface From the distance data, the blood vessel diameter D (D = {a + {c +}}: the diameter of the ultrasonic probe), the pulsatile diameter change ΔD, and the blood vessel wall thickness h are calculated.

【0006】また、上記超音波プローブ2の先端面に設
けた圧力センサ4の動きをライトガイドファイバ5で検
出し、この検出値に基づき脈圧ΔPを算出する。
Further, the movement of the pressure sensor 4 provided on the distal end surface of the ultrasonic probe 2 is detected by the light guide fiber 5, and the pulse pressure ΔP is calculated based on the detected value.

【0007】そして、上記(1)、(2)式に上記諸量
を代入し、圧力弾性率Ep ,増分弾性率Einc を求め、
この圧力弾性率Ep ,増分弾性率Einc から、血管弾性
率を算出する技術、および、図15に示すように、超音
波プローブ1の先端周囲に4個の超音波送受信手段3を
設け、血管径D、拍動性径変化ΔD、血管壁厚hを4方
向の距離測定により割出す技術が開示されている。
[0007] Then, the above amounts are substituted into the above equations (1) and (2) to obtain a pressure elastic modulus Ep and an incremental elastic modulus Einc.
A technique for calculating a blood vessel elastic modulus from the pressure elastic modulus Ep and the incremental elastic modulus Einc, and, as shown in FIG. A technique for determining D, pulsatile diameter change ΔD, and blood vessel wall thickness h by distance measurement in four directions is disclosed.

【0008】[0008]

【発明が解決しようとする課題】上記先行技術によれ
ば、図16に示すように超音波プローブ2が血管1内の
一方へ偏倚した位置に挿通された場合、例えば、4方向
の距離測定により血管径Dなどの諸量を割出そうとして
も、上記超音波プローブ2が血管1の中心に挿通されな
い限り正確な測定値を得ることはできず、この諸量に基
づいて算出した血管弾性率にも誤差が生じやすい。
According to the above prior art, when the ultrasonic probe 2 is inserted into a position deviated to one side in the blood vessel 1 as shown in FIG. Even when trying to determine various quantities such as the blood vessel diameter D, accurate measurements cannot be obtained unless the ultrasonic probe 2 is inserted through the center of the blood vessel 1, and the blood vessel elastic modulus calculated based on the various quantities is not obtained. Errors also tend to occur.

【0009】本発明は、上記事情に鑑みてなされたもの
で、血管内のどの位置に超音波プローブがあっても、血
管径を正確に測定し、精度良く血管弾性率を求めること
のできる血管弾性率測定用プローブ装置を提供すること
を目的としている。
The present invention has been made in view of the above circumstances, and a blood vessel capable of accurately measuring a blood vessel diameter and accurately obtaining a blood vessel elasticity regardless of an ultrasonic probe at any position in the blood vessel. An object of the present invention is to provide a probe device for measuring elastic modulus.

【0010】[0010]

【課題を解決するための手段】本発明による血管弾性率
測定用プローブ装置は、血管に挿入する超音波プローブ
の周囲の少なくとも3箇所の各々が異なる方向へ指向す
る超音波送受信手段と、上記超音波プローブに配置して
脈圧を検出する脈圧検出手段と、上記各超音波送受信手
段から送波された超音波ビームの反射波を受信するまで
の時間に基づき血管径を正弦法則を用いて算出する血管
径算出手段と、上記脈圧と上記血管径とに基づき血管弾
性率を算出する血管弾性率算出手段とを備えるものであ
る。
According to the present invention, there is provided a probe apparatus for measuring a vascular elasticity according to the present invention, comprising: an ultrasonic transmitting / receiving means in which at least three positions around an ultrasonic probe inserted into a blood vessel are directed in different directions; Pulse pressure detecting means for detecting the pulse pressure arranged in the ultrasonic probe, using the sine law of the blood vessel diameter based on the time until receiving the reflected wave of the ultrasonic beam transmitted from each ultrasonic transmitting and receiving means A blood vessel elasticity calculating means for calculating a blood vessel elasticity based on the pulse pressure and the blood vessel diameter.

【0011】[0011]

【作用】上記構成において、血管に挿入した超音波プロ
ーブの周囲の少なくとも3箇所の超音波送受信手段から
上記血管の壁面方向へ超音波を送波すると、血管径算出
手段では上記超音波の上記血管からの反射波を受信する
までの時間から血管径を正弦法則を用いて算出する。
In the above construction, when ultrasonic waves are transmitted from at least three ultrasonic transmitting / receiving means around the ultrasonic probe inserted into the blood vessel toward the wall surface of the blood vessel, the blood vessel diameter calculating means causes the ultrasonic wave to be transmitted to the blood vessel. The blood vessel diameter is calculated from the time until the reflected wave is received using the sine law.

【0012】そして、上記超音波プローブに配置した脈
圧検出手段で検出した脈と上記血管径とに基づき、血管
弾性率算出手段で血管弾性率を算出する。
Then, based on the pulse detected by the pulse pressure detecting means arranged on the ultrasonic probe and the blood vessel diameter, the blood vessel elasticity calculating means calculates the blood vessel elasticity.

【0013】[0013]

【実施例】以下、図面に基づいて本発明の実施例を説明
する。
Embodiments of the present invention will be described below with reference to the drawings.

【0014】図1〜図5は本発明の第1実施例を示し、
図1は、血管弾性率測定用プローブ装置の機能ブロック
図、図2は血管に超音波プローブを挿入した状態の正面
図、図3は血管弾性率測定用プローブ装置の構成図、図
4は図3の左正面図、図5は血管径の算出状態を示す概
念図である。
FIGS. 1 to 5 show a first embodiment of the present invention.
1 is a functional block diagram of a probe device for measuring the elasticity of a blood vessel, FIG. 2 is a front view showing a state in which an ultrasonic probe is inserted into a blood vessel, FIG. 3 is a configuration diagram of the probe device for measuring the elasticity of a blood vessel, and FIG . 3 is a conceptual diagram showing a calculation state of a blood vessel diameter.

【0015】(構成)血管弾性率測定用プローブ装置
は、超音波プローブ11と観測装置12とからなり、こ
の超音波プローブ11の先端面に、脈圧検出手段の一例
でダイヤフラムなどからなる圧力センサ13が設けられ
ている。
(Construction) A probe device for measuring the elasticity of a blood vessel comprises an ultrasonic probe 11 and an observing device 12, and a pressure sensor comprising a diaphragm as an example of pulse pressure detecting means is provided on the distal end surface of the ultrasonic probe 11. 13 are provided.

【0016】また、上記超音波プローブ11の先端部1
1aの外周に、超音波送受信手段の一例である3個の超
音波振動子14が各々異なる指向方向(θ1 ,θ2 ,θ
3 )を有して取付けられており、この各超音波振動子1
4が信号線15を介して上記観測装置12に接続されて
いる。
The tip 1 of the ultrasonic probe 11
Three ultrasonic vibrators 14 as an example of ultrasonic transmitting and receiving means are provided on the outer periphery of 1a with different directing directions (θ1, θ2, θ
3) Each of the ultrasonic vibrators 1
4 is connected to the observation device 12 via a signal line 15.

【0017】さらに、上記圧力センサ13の動きがライ
トファイバケーブルなどの伝達手段16を介して上記観
測装置12に伝達される。
Further, the movement of the pressure sensor 13 is transmitted to the observation device 12 via transmission means 16 such as a light fiber cable.

【0018】図1に示すように、上記観測装置12が、
上記各超音波プローブ11に接続する送受信回路21
と、この各送受信回路21の出力を入力する血管壁検出
部22と、この血管壁検出部22の出力を入力する距離
算出部23と、この各距離算出部23の出力を入力する
血管径算出部24と、上記圧力センサ13に接続する脈
圧算出部25、上記各回路21、各算出部22、23、
24を制御する制御回路26、および上記血管径算出部
24の出力を入力する血管弾性率算出部27で構成され
ている。
As shown in FIG. 1, the observation device 12
Transmission / reception circuit 21 connected to each ultrasonic probe 11
A blood vessel wall detecting unit 22 that receives an output of each transmitting / receiving circuit 21, a distance calculating unit 23 that receives an output of the blood vessel wall detecting unit 22, and a blood vessel diameter calculating unit that receives an output of each of the distance calculating units 23. Unit 24, a pulse pressure calculation unit 25 connected to the pressure sensor 13, the circuits 21, the calculation units 22, 23,
The blood vessel elasticity calculating unit 27 receives the output of the blood vessel diameter calculating unit 24 and a control circuit 26 for controlling the blood vessel diameter calculating unit 24.

【0019】なお、図2の符号28は血管壁である。Reference numeral 28 in FIG. 2 denotes a blood vessel wall.

【0020】(作用)次に上記構成による実施例の作用
について説明する。
(Operation) Next, the operation of the embodiment having the above configuration will be described.

【0021】観測装置12に設けた各送受信回路21か
ら出力する励振パルスにより各超音波振動子14から血
管壁28の三方向へ向けて超音波ビームを送波する。
An ultrasonic beam is transmitted from each ultrasonic transducer 14 to three directions of the blood vessel wall 28 by an excitation pulse output from each transmitting / receiving circuit 21 provided in the observation device 12.

【0022】すると、この超音波ビームの上記血管壁2
8からの反射波が上記各超音波振動子14で受波され、
信号線15を介して上記送受信回路21に出力される。
Then, the blood vessel wall 2 of the ultrasonic beam
8 is received by each of the ultrasonic transducers 14,
The signal is output to the transmission / reception circuit 21 via the signal line 15.

【0023】そして、血管壁検出部22で上記送受信回
路21に入力された反射波の受信波形に基づき血管壁2
からの反射波を検出し、距離算出部23で超音波が送
波されてから上記血管壁検出部22で算出した血管壁2
8からの反射波を受信するまでの時間に基づき、上記超
音波振動子14の表面から上記血管壁28の各点A,
B,Cまでの距離を算出するとともに、この値に超音波
プローブ11の中心0から上記超音波振動子14までの
長さを加算して、この超音波プローブ11の中心から血
管壁28の各点A,B,Cまでの長さLOA,LOB,LOC
を求める。
The vascular wall detector 2 detects the vascular wall 2 based on the received waveform of the reflected wave input to the transmitting / receiving circuit 21.
8 is detected by the distance calculation unit 23, and the vascular wall 2 calculated by the vascular wall detection unit 22 after the ultrasonic wave is transmitted by the distance calculation unit 23.
8 from the surface of the ultrasonic transducer 14 to each point A,
The distance from B to C is calculated, and the length from the center 0 of the ultrasonic probe 11 to the ultrasonic transducer 14 is added to this value. Length LOA, LOB, LOC to points A, B, C
Ask for.

【0024】その後、血管径算出部24で、上記各長さ
L0A,L0B,L0Cに基づき正弦法則を利用して上記血管
壁28の血管径D、拍動性径変化D、壁厚Dを算出す
る。
Thereafter, the blood vessel diameter D, the pulsatile diameter change D, and the wall thickness D of the blood vessel wall 28 are calculated by the blood vessel diameter calculating unit 24 based on the lengths L0A, L0B, and L0C using the sine law. I do.

【0025】すなわち、図5に示すように、上記各超音
波振動子14の挾み角θ1 ,θ2 ,θ3 が予め定められ
ているため、余弦法則により、三角形ABCの各変の長
さAB,BC,CA,および、挾み角θA ,θB ,θc
を求め、次いで、この長さAB,BC,CA,挾み角θ
A ,θB ,θc に基づき正弦法則から上記三角形ABC
の外接面、すなわち、血管断面の直径Dを下式から求め
る。
That is, as shown in FIG. 5, since the included angles θ1, θ2, and θ3 of the respective ultrasonic transducers 14 are predetermined, the lengths AB, AB of the triangle ABC are determined according to the cosine law. BC, CA, and included angles θA, θB, θc
Then, the lengths AB, BC, CA, and the included angle θ
Based on A, θB, θc, the triangle ABC
, Ie, the diameter D of the cross section of the blood vessel is obtained from the following equation.

【0026】 [0026]

【0027】この測定を上記血管壁28の内壁、外壁に
対して行い、血管壁28の血管径D(内径と外径)、拍
動性径変化ΔD、壁厚hを算出する。
This measurement is performed on the inner and outer walls of the blood vessel wall 28, and the blood vessel diameter D (inner and outer diameters), the pulsatile diameter change ΔD, and the wall thickness h of the blood vessel wall 28 are calculated.

【0028】一方、脈圧算出部25では、圧力センサ1
3の血管内圧に応じた変動をライトファイバケーブルな
どの伝達手段16を介して入力し、この血管内圧の変動
から脈圧ΔPを算出する。
On the other hand, the pulse pressure calculator 25
The fluctuation according to the intravascular pressure of No. 3 is input via the transmission means 16 such as a light fiber cable, and the pulse pressure ΔP is calculated from the fluctuation of the intravascular pressure.

【0029】そして、血管弾性率算出部27で、上記血
管径D、拍動性径変化ΔD、壁圧h、および、脈圧ΔP
を前記(1),(2)に代入して圧力弾性率Ep 、増分
弾性率Einc を求め、この各弾性率Ep 、Einc に基づ
き血管弾性率を算出する。
Then, the blood vessel elasticity calculating section 27 calculates the blood vessel diameter D, the pulsatile diameter change ΔD, the wall pressure h, and the pulse pressure ΔP.
Is substituted into the above (1) and (2) to determine the pressure elasticity Ep and the incremental elasticity Einc, and the blood vessel elasticity is calculated based on the elasticities Ep and Einc.

【0030】この実施例によれば、超音波プローブ11
が血管壁28内のどの位置に挿通されていても、血管径
Dを正確に求めることが可能となり、血管弾性率を測定
する精度が向上する。
According to this embodiment, the ultrasonic probe 11
No matter where in the blood vessel wall 28 is inserted, the blood vessel diameter D can be accurately obtained, and the accuracy of measuring the blood vessel elasticity is improved.

【0031】(第二実施例)図6〜図11は本発明の第
二実施例を示し、図6は超音波プローブの要部展開図、
図7は図6のVII-VII 断面図、図8は血管弾性率測定用
プローブ装置の構成図、図9は血管に超音波プローブを
挿入した状態の正面図、図10は血管弾性率測定用プロ
ーブ装置の機能ブロック図、図11はメカニカルラジア
ルスキャン方式の超音波プローブの(a)は側面図、
(b)は正面図、(c)は背面図である。
(Second Embodiment) FIGS. 6 to 11 show a second embodiment of the present invention, and FIG.
7 is a sectional view taken along the line VII-VII of FIG. 6, FIG. 8 is a configuration diagram of a probe device for measuring the elasticity of a blood vessel, FIG. 9 is a front view of a state in which an ultrasonic probe is inserted into a blood vessel, and FIG. FIG. 11 is a functional block diagram of a probe device, FIG. 11 is a mechanical radial scan type ultrasonic probe, (a) is a side view,
(B) is a front view, (c) is a rear view.

【0032】この実施例では、超音波プローブ31を構
成する本体部分を、複数の内部導体33を高分子圧電体
34で被覆して形成したものである。
In this embodiment, the main body of the ultrasonic probe 31 is formed by covering a plurality of internal conductors 33 with a piezoelectric polymer 34.

【0033】すなわち、まず、所定間隔ごとに配置した
複数の内部導体33の周囲に高分子圧電体34を配置
し、この内部導体33、高分子圧電体34が一体となる
ように、フラケットケーブル状に形成する。
That is, first, a polymer piezoelectric body 34 is arranged around a plurality of internal conductors 33 arranged at predetermined intervals, and a flake cable is connected so that the internal conductor 33 and the polymer piezoelectric body 34 are integrated. It is formed in a shape.

【0034】次いで、フラットケーブル状に形成した上
記高分子圧電体34の一方の端部の片面側に金、銅など
の導体35を蒸着し、この導体35に信号線36を接続
する。なお、この端部が超音波振動子37の集合部を構
成する。
Next, a conductor 35 such as gold or copper is deposited on one side of one end of the polymer piezoelectric body 34 formed in a flat cable shape, and a signal line 36 is connected to the conductor 35. In addition, this end part forms an assembly part of the ultrasonic transducer 37.

【0035】その後、上記高分子圧電体34を上記導体
35が外側に露呈するようにして円筒状に形成し、内部
圧力センサ13とライトファイバケーブルなどの伝達手
段(図示せず)を設けて、超音波プローブ31を形成す
る。
Thereafter, the polymer piezoelectric body 34 is formed in a cylindrical shape so that the conductor 35 is exposed to the outside, and an internal pressure sensor 13 and a transmission means (not shown) such as a light fiber cable are provided. An ultrasonic probe 31 is formed.

【0036】血管壁28に上記超音波プローブ31を挿
入した後、上記複数の内部導体33の中から3群を選択
し、この選択した内部導体33と導体35との間に、観
測装置38に設けた送受信回路39から励振パルスを印
加する。
After inserting the ultrasonic probe 31 into the blood vessel wall 28, three groups are selected from the plurality of internal conductors 33, and the observation device 38 is disposed between the selected internal conductor 33 and conductor 35. An excitation pulse is applied from the transmission / reception circuit 39 provided.

【0037】すると、この内部導体33と導体35とに
挾まれた高分子圧電体34から超音波が放射される。
Then, ultrasonic waves are radiated from the piezoelectric polymer 34 sandwiched between the inner conductor 33 and the conductor 35.

【0038】そして、上記超音波の上記血管壁28から
の反射波を上記送受信回路39で受信し、境界検出部4
0で血管壁28の境界(内壁、あるいは、外壁)を検出
する。
Then, the reflected wave of the ultrasonic wave from the blood vessel wall 28 is received by the transmission / reception circuit 39, and the boundary detection unit 4
At 0, the boundary (inner wall or outer wall) of the blood vessel wall 28 is detected.

【0039】位相制御部41では、上記境界検出部40
で検出した境界に上記超音波ビームの焦点が合うよう
に、上記送受信回路39から内部導体33の各群へ出力
する励振パルスの位相差を制御する。
In the phase control unit 41, the boundary detection unit 40
The phase difference of the excitation pulse output from the transmission / reception circuit 39 to each group of the internal conductors 33 is controlled so that the ultrasonic beam is focused on the boundary detected by the above.

【0040】そして、上記フォーカス点を順次移動し、
血管壁全体の断層像をDSC(デジタルスキャンコンバ
ータ)42にて画像信号に変換した後、モニタ43に表
示する。 上記超音波プローブ31が血管壁28に対
し、中心より偏倚した位置にある場合、この血管壁28
の境界(内壁、外壁)に超音波ビームの焦点がくるよう
に内部導体33の各群の各超音波振動子37の位相差を
制御し、三角形ABCの外接円を前記第一実施例と同様
に求めれば、血管弾性率を測定することができる。
Then, the focus points are sequentially moved,
The tomographic image of the entire blood vessel wall is converted into an image signal by a DSC (Digital Scan Converter) 42 and then displayed on a monitor 43. When the ultrasonic probe 31 is at a position deviated from the center with respect to the blood vessel wall 28,
The phase difference between the ultrasonic transducers 37 of each group of the internal conductors 33 is controlled such that the ultrasonic beam is focused on the boundary (inner wall, outer wall), and the circumscribed circle of the triangle ABC is set as in the first embodiment. , The blood vessel elastic modulus can be measured.

【0041】この実施例によれば、超音波ビーム径を小
さくすることができるので、血管弾性率の測定精度を向
上させることができる。
According to this embodiment, since the diameter of the ultrasonic beam can be reduced, the measurement accuracy of the blood vessel elasticity can be improved.

【0042】また、血管壁28の境界に超音波ビームの
焦点を合せる手段は、図11に示すメカニカルラジアル
スキャン方式の超音波プローブ41においても実現する
ことができる。
The means for focusing the ultrasonic beam on the boundary of the blood vessel wall 28 can also be realized in the mechanical radial scan type ultrasonic probe 41 shown in FIG.

【0043】この超音波プローブ41は全体像を作成す
る振動子(単一フォーカス)41aの背面にアニュラア
レイ振動子41bを取付けたもので、単一フォーカスの
振動子41aで得た像から境界を検出し、この境界に超
音波ビームの焦点を合せるべくアニュラアレイ振動子4
1bの位相差を制御し断層像を作成する。
This ultrasonic probe 41 has an annular array vibrator 41b attached to the back of a vibrator (single focus) 41a for forming an entire image, and a boundary is formed from an image obtained by the single focus vibrator 41a. An annular array transducer 4 is detected to focus the ultrasonic beam on this boundary.
The tomographic image is created by controlling the phase difference 1b.

【0044】そして、ある角度ごとに検出した血管壁2
8の境界点A,B,C(図9参照)から三角形ABCの
外接円を求め、上述と同様の手順で血管弾性率を求め
る。
The blood vessel wall 2 detected at each certain angle
The circumscribed circle of the triangle ABC is determined from the eight boundary points A, B, and C (see FIG. 9), and the blood vessel elastic modulus is determined in the same procedure as described above.

【0045】このメカニカルラジアルスキャン方式の超
音波プローブ41によれば、血管弾性率を短時間で計算
することができる。
According to the mechanical radial scan type ultrasonic probe 41, the elasticity of the blood vessel can be calculated in a short time.

【0046】[0046]

【発明の効果】以上、説明したように本発明によれば、
血管内のどの位置に超音波プローブがあっても、血管径
を正確に測定し、精度良く血管弾性率を求めることがで
きるなど優れた効果が奏される。
As described above, according to the present invention,
No matter where the ultrasonic probe is located in the blood vessel, excellent effects such as accurate measurement of the blood vessel diameter and accurate determination of the elasticity of the blood vessel can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1〜図5は本発明の第一実施例を示し、図1
は血管弾性率測定用卯プローブ装置の機能ブロック図
1 to 5 show a first embodiment of the present invention.
Is a functional block diagram of a probe device for measuring blood vessel elasticity

【図2】血管に超音波プローブを挿入した状態の正面図FIG. 2 is a front view showing a state where an ultrasonic probe is inserted into a blood vessel.

【図3】血管弾性率測定用プローブ装置の構成図FIG. 3 is a configuration diagram of a probe device for measuring a blood vessel elasticity.

【図4】図2の左正面図FIG. 4 is a left front view of FIG. 2;

【図5】血管径の算出状態を示す概念図FIG. 5 is a conceptual diagram showing a calculation state of a blood vessel diameter.

【図6】図6〜図11は本発明の第二実施例を示し、図
6は超音波プローブの要部展開図
6 to 11 show a second embodiment of the present invention, and FIG. 6 is a development view of a main part of an ultrasonic probe.

【図7】図6のVII-VII 断面図FIG. 7 is a sectional view taken along the line VII-VII of FIG. 6;

【図8】血管弾性率測定用プローブ装置の構成図FIG. 8 is a configuration diagram of a probe device for measuring a blood vessel elasticity.

【図9】血管に超音波プローブを挿入した状態の正面図FIG. 9 is a front view showing a state where an ultrasonic probe is inserted into a blood vessel.

【図10】血管弾性率測定用プローブ装置の機能ブロッ
ク図
FIG. 10 is a functional block diagram of a blood vessel elasticity measurement probe device.

【図11】メカニカルラジアルスキャン方式の超音波プ
ローブの(a)は側面図、(b)は正面図、(c)は背
面図
11A is a side view, FIG. 11B is a front view, and FIG. 11C is a rear view of the mechanical radial scan type ultrasonic probe.

【図12】図12以下は従来例を示し、図12は超音波
プローブの先端部の断面図
FIG. 12 and subsequent figures show a conventional example, and FIG. 12 is a cross-sectional view of a tip portion of an ultrasonic probe.

【図13】超音波プローブの先端部の斜視図FIG. 13 is a perspective view of a distal end portion of the ultrasonic probe.

【図14】図12のXIV-XIV 断面図14 is a sectional view taken along the line XIV-XIV in FIG.

【図15】他の態様による図14相当の断面図FIG. 15 is a cross-sectional view corresponding to FIG. 14 according to another embodiment.

【図16】従来例による概念図FIG. 16 is a conceptual diagram according to a conventional example.

【符号の説明】[Explanation of symbols]

11,31,41…超音波プローブ 13…脈圧検出手段 14,37,41A,41b…超音波送受信手段 24…血管径算出手段 27…血管弾性率算出手段 28…血管壁 D…血管径 ΔP…脈圧 11, 31, 41 ... ultrasonic probe 13 ... pulse pressure detecting means 14, 37, 41A, 41b ... ultrasonic transmitting and receiving means 24 ... blood vessel diameter calculating means 27 ... blood vessel elasticity calculating means 28 ... blood vessel wall D ... blood vessel diameter ΔP ... Pulse pressure

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 血管に挿入する超音波プローブの周囲の
少なくとも3箇所の各々が異なる方向へ指向する超音波
送受信手段と、上記超音波プローブに配置して脈圧を検
出する脈圧検出手段と、上記各超音波送受信手段から送
波された超音波ビームの反射波を受信するまでの時間に
基づき血管径を正弦法則を用いて算出する血管径算出手
段と、上記脈圧と上記血管径とに基づき血管弾性率を算
出する血管弾性率算出手段とを備えることを特徴とする
血管弾性率測定用プローブ装置。
1. An ultrasonic transmitting / receiving means in which at least three points around an ultrasonic probe to be inserted into a blood vessel are directed in different directions, and a pulse pressure detecting means arranged on the ultrasonic probe to detect a pulse pressure. A blood vessel diameter calculating means for calculating the blood vessel diameter using a sine law based on the time until the reflected wave of the ultrasonic beam transmitted from each ultrasonic transmitting and receiving means is received, and the pulse pressure and the blood vessel diameter A blood vessel elastic modulus calculating means for calculating a blood vessel elastic modulus based on the blood vessel elastic modulus.
JP3100187A 1991-05-01 1991-05-01 Probe device for vascular elasticity measurement Expired - Fee Related JP2970884B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3100187A JP2970884B2 (en) 1991-05-01 1991-05-01 Probe device for vascular elasticity measurement

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3100187A JP2970884B2 (en) 1991-05-01 1991-05-01 Probe device for vascular elasticity measurement

Publications (2)

Publication Number Publication Date
JPH04329938A JPH04329938A (en) 1992-11-18
JP2970884B2 true JP2970884B2 (en) 1999-11-02

Family

ID=14267304

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3100187A Expired - Fee Related JP2970884B2 (en) 1991-05-01 1991-05-01 Probe device for vascular elasticity measurement

Country Status (1)

Country Link
JP (1) JP2970884B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3857788B2 (en) 1997-09-01 2006-12-13 テルモ株式会社 Cardiovascular information measurement system
JP2004261233A (en) * 2003-02-20 2004-09-24 Univ Nihon Catheter sensor for measuring rigidity
EP2712553A3 (en) * 2005-01-11 2014-09-17 Volcano Corporation Vascular image co-registration
EP3064127B1 (en) 2011-10-14 2019-06-12 Acist Medical Systems, Inc. Device and methods for measuring and treating an anatomical structure
US9549679B2 (en) 2012-05-14 2017-01-24 Acist Medical Systems, Inc. Multiple transducer delivery device and method
CN103720490A (en) * 2013-12-31 2014-04-16 无锡海斯凯尔医学技术有限公司 Instantaneous elasticity detecting device
JP5854072B2 (en) * 2014-03-19 2016-02-09 セイコーエプソン株式会社 Blood vessel diameter measuring device, blood vessel diameter measuring method

Also Published As

Publication number Publication date
JPH04329938A (en) 1992-11-18

Similar Documents

Publication Publication Date Title
US4142412A (en) Doppler flow meter and method
US4669482A (en) Pulse echo method and apparatus for sound velocity estimation in vivo
US5289820A (en) Ultrasonic plethysmograph
US6770034B2 (en) Ultrasonic diagnostic apparatus
EP0146073B1 (en) Ultrasonic diagnosing apparatus
JPH05506371A (en) Ultrasonic testing method and device for determining tubular body position and dimensions
WO2006011544A1 (en) Blood vessel shape measuring instrument, blood flow velocity measuring instrument, and blood flow measuring instrument
JP2001218768A (en) Ultrasonograph
JP2970884B2 (en) Probe device for vascular elasticity measurement
US20100222679A1 (en) Method and apparatus for assessing risk of preterm delivery
JP4768100B2 (en) Ultrasonic diagnostic equipment
JP4711583B2 (en) Ultrasonic imaging device
EP1723912B1 (en) Apparatus for and method of processing ultrasonic signal
US7537566B2 (en) Bone strength measuring instrument and method
US5989191A (en) Using doppler techniques to measure non-uniform rotation of an ultrasound transducer
JP4191980B2 (en) Ultrasonic diagnostic apparatus and ultrasonic measurement method
KR100264970B1 (en) Ultrasonic probe for position detection
JPH069562B2 (en) Ultrasonic diagnostic equipment
US8795181B2 (en) System and method for analyzing carpal tunnel using ultrasound imaging
CN1257695A (en) Dual-ultrasonic Doppler method for measuring blood flow speed
JP3462904B2 (en) Needle-shaped ultrasonic probe
JPH04200539A (en) Ultrasonic wave probe and blood flow measuring instrument
JPH0824260A (en) Ultrasonic diagnostic apparatus
JPH069563B2 (en) Ultrasonic diagnostic equipment
JP3330091B2 (en) Apparatus and method for detecting probe moving speed of ultrasonic diagnostic apparatus

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19990803

LAPS Cancellation because of no payment of annual fees