JPS63222202A - Apparatus for measuring distance and angle of inclination - Google Patents

Apparatus for measuring distance and angle of inclination

Info

Publication number
JPS63222202A
JPS63222202A JP5705787A JP5705787A JPS63222202A JP S63222202 A JPS63222202 A JP S63222202A JP 5705787 A JP5705787 A JP 5705787A JP 5705787 A JP5705787 A JP 5705787A JP S63222202 A JPS63222202 A JP S63222202A
Authority
JP
Japan
Prior art keywords
light
light receiving
distance
measured
projection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5705787A
Other languages
Japanese (ja)
Inventor
Nobuyuki Suzuki
信幸 鈴木
Yoshito Kato
加藤 由人
Yasuo Ishiguro
石黒 恭生
Masao Kawase
昌男 川瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP5705787A priority Critical patent/JPS63222202A/en
Publication of JPS63222202A publication Critical patent/JPS63222202A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Measurement Of Optical Distance (AREA)

Abstract

PURPOSE:To perform measurement with good accuracy without receiving the obstruction of other optical system, by arranging three or more sets of sensor pairs detecting the reflected lights obtained by projecting the light signals from a light sources on a surface to be measured in a dispersed state and using light signals of different kinds in the sensor pairs. CONSTITUTION:The light signals different in a wavelength from light sources 3-5 arranged to a sensor part 1 in a dispersed state are projected on a surface 2 to be measured through projection lenses 6-8 under the control of a light emission controller part 9 to form images at light projecting positions 9-11. The light signals reflected from the light projecting positions 9-11 are formed into images on light receiving elements 15-17 through filters 22-24 and light receiving lenses 12, 14. The light receiving elements 15-17 are preliminarily inclined to take a measure with respect to the variation in the distances between the light projecting positions 9-11 and the light receiving lenses 12-14. The outputs of the light receiving elements 15-17 are operated by a light projecting distance operator 20 and a distance/angle-of- inclination operator 21 to detect the distance and angle of inclination between the surface 2 to be measured and the sensor part 1. By this method, the obstruction from other optical system is excluded and measuring accuracy is enhanced.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、溶接トーチ等の加工具と測定対象物の間の相
対距離間隔やその位置、形状等を非接触で検出するに好
適な光学的距離・傾斜角測定装置に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention is an optical system suitable for non-contact detection of the relative distance between a processing tool such as a welding torch and an object to be measured, as well as its position and shape. Related to target distance/inclination angle measuring device.

〔従来の技術〕[Conventional technology]

各種加工装置と被加工物(測定対象物)との間の相対距
離や被加工物の姿勢(傾斜角あるいは形状等)を非接触
で検出する場合の手段としては光学的に検出するものが
代表的である。そのような手段として特公昭59−27
843号公報に記載されたものが知られている。
Optical detection is a typical method for non-contact detection of the relative distance between various processing devices and the workpiece (object to be measured) and the posture of the workpiece (inclination angle, shape, etc.) It is true. As such a means, the
The one described in Publication No. 843 is known.

この従来技術は、ワーク面(測定対象面)上に3個以上
のスポット光を一定拡散角をもって照射し、その像をイ
メージセンサの焦点面に結び、上記ワーク面とイメージ
センサとの相対位置関係の変化に対するイメージセンサ
の焦点面におけるスポット光像の位置変化を検出するこ
とによって。
This conventional technology irradiates three or more spot lights with a constant diffusion angle onto the work surface (surface to be measured), connects the images to the focal plane of the image sensor, and establishes the relative positional relationship between the work surface and the image sensor. By detecting the position change of the spot light image in the focal plane of the image sensor with respect to the change in .

ワーク面のイメージセンサ光軸に対する傾斜角を算出す
るものである。
This is to calculate the inclination angle of the work surface with respect to the image sensor optical axis.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記従来の角度検出方法は、ワーク面からの反射光に多
量の正反射成分が含まれるような場合(例えば、鉄板等
のワークにおいて正反射成分が強い場合)、ワーク面の
検出器に対する傾斜角および相対距離を正確に測定する
ことが困難となる問題がある。すなわち、ワーク面上に
複数個の光スポットを全て焦点を合わせて同一受光面上
に結像させることは幾何光学的に不可能であり、いくつ
かのスポット光像は焦点のぼけたものになる。
The conventional angle detection method described above detects the inclination angle of the work surface with respect to the detector when the reflected light from the work surface contains a large amount of specular reflection component (for example, when the specular reflection component is strong in a work such as an iron plate). There is also the problem that it is difficult to accurately measure relative distances. In other words, it is geometrically impossible to focus multiple light spots on the work surface and form images on the same light-receiving surface, and some spot light images will be out of focus. .

それと同時に、正反射成分が含まれるような場合はある
特定の方向への反射光が極端に強い場合が生じ光スポッ
トが受光レンズ全面に一様な光量で入射しないこととな
り、その結果、スポット光像の光量的重心位置が偏心し
、距離および傾斜角の測定出力に誤差を含むことになる
からである。
At the same time, if a specular reflection component is included, the reflected light in a certain direction may be extremely strong, and the light spot will not be incident on the entire surface of the receiving lens with a uniform amount of light, resulting in the spot light This is because the light quantity center of gravity of the image is decentered, and the measured outputs of distance and inclination angle include errors.

本発明の目的は、各光源の光をそれぞれ異なる信号光と
することにより、各受光系が互に対となる投光系の反射
信号を受光して他の投光系の影響を受けることなく距離
・傾斜角を測定することにある。
An object of the present invention is to make the light from each light source a different signal light, so that each light receiving system can receive the reflected signal of the paired light projecting system without being influenced by other light projecting systems. Its purpose is to measure distances and angles of inclination.

〔問題点を解決するための手段〕[Means for solving problems]

上記問題点は、測定対象面に光信号を投光する光源を有
する投光系と、該2InIn法面からの反射光信号を受
光する受光素子を有する受光系との対が3対以上分散配
置され、各対の前記光源は互に異なる光信号を投光し、
各対の前記受光系が互に対となっている投光系の前記反
射光信号の情報を選択出力する手段を備えたセンサ部と
、受光系の該選択出力に基づいて前記投光系の所定位置
と測定対象面上の投光位置との間の相対距離を算出する
投光距離演算器と、各対の相対距離の該算出値に基づい
て前記センサ部の所定平面と前記測定対象面との平均相
対距離および傾斜角を算出する距離・傾斜角演算器とを
備えた距離・傾斜角測定装置によって解決される。
The problem described above is that three or more pairs of a light projecting system having a light source that projects an optical signal onto the surface to be measured and a light receiving system having a light receiving element that receives the reflected light signal from the 2InIn slope are arranged in a distributed manner. each pair of light sources emits different optical signals;
a sensor unit comprising means for selectively outputting information on the reflected light signals of the light emitting systems in which each pair of the light receiving systems is paired; a light projection distance calculator that calculates a relative distance between a predetermined position and a light projection position on the measurement target surface; and a light projection distance calculator that calculates a relative distance between a predetermined position and a light projection position on the measurement target surface; This problem is solved by a distance/inclination angle measuring device equipped with a distance/inclination angle calculator that calculates the average relative distance and inclination angle.

〔作用〕[Effect]

上記本発明の構成によれば、各投光系はそれぞれ固有の
光信号を測定対象面に投光し、この反射光信号の中から
各受光系は、対応する投光系の反射光信号に基づく情報
を選択的に出力し、該情報に基づき投光距離演算器は各
対の投光系の所定位置と測定対象面上の投光位置との間
の相対位置を算出し、該算出値に基づき距離・傾斜演算
器はセンサ部の所定平面と測定対象面との平均相対距離
および傾斜角を算出する。
According to the above configuration of the present invention, each light emitting system emits a unique optical signal onto the surface to be measured, and from among these reflected light signals, each light receiving system selects the reflected light signal of the corresponding light emitting system. Based on the information, the projection distance calculator calculates the relative position between the predetermined position of each pair of projection systems and the projection position on the surface to be measured, and calculates the calculated value. Based on this, the distance/inclination calculator calculates the average relative distance and inclination angle between the predetermined plane of the sensor section and the surface to be measured.

〔実施例〕〔Example〕

本発明にかかわる実施例を第1図〜第6図を用いて説明
する。
Embodiments relating to the present invention will be described using FIGS. 1 to 6.

第1図、第2図は本発明にかかわる装置のブロック図で
あり、第1図は光信号として波長の異なる光を用いた場
合、第2図は信号波として互に異なる変調波を用いた場
合を示す6本装置は大きく分けると光信号を測定対象面
2に投光9,10゜11してその反射光信号を受は検出
信号として出力するセンサ部1と、コントローラ部18
より構成され、該コントローラ部18は、センサ部1を
制御する発光コントロール部19と、前記検出値に基づ
き各投光系のセンサ部1所定位置(本実施例では投光レ
ンズ6.7.8の中心位置)と測定対象面上の投光位置
9,10.11との相対距離を算出する投光距離演算器
20と、各投光系の該相対距離を入力し、該相対距離の
平均値および各投光系のセンサ部1前記所定位置によっ
て規定される平面(本実施例では各投光レンズ6.7.
8の中心点を含む平面)と測定対象面との傾斜角を算出
する距離・傾斜角演算器よりなる。
Figures 1 and 2 are block diagrams of the device according to the present invention. Figure 1 shows a case in which light with different wavelengths is used as an optical signal, and Figure 2 shows a case in which different modulated waves are used as a signal wave. This device can be roughly divided into a sensor section 1 that emits an optical signal onto a measurement target surface 2, receives the reflected light signal, and outputs it as a detection signal, and a controller section 18.
The controller section 18 includes a light emission control section 19 that controls the sensor section 1, and a light emitting control section 19 that controls the sensor section 1 of each light projection system based on the detected value (in this embodiment, the light projection lens 6, 7, 8). A light projection distance calculator 20 calculates the relative distance between the center position of A plane defined by the value and the predetermined position of the sensor unit 1 of each light projection system (in this embodiment, each light projection lens 6.7.
It consists of a distance/inclination angle calculator that calculates the inclination angle between the plane (including the center point of 8) and the surface to be measured.

センサ部1は投光系と受光系との対を3対以上備えて構
成されている。この実施例では3対である。すなわち、
各投光系は光源3および投光レンズ6と、光源4および
投光レンズ7と、光源5および投光レンズ8とからなる
。各受光系は受光素子15、フィルタ22および受光レ
ンズ12と、受光素子16.フィルタ23および受光レ
ンズ13と、受光素子17.フィルタ24および受光レ
ンズ14とからなる。このうち、光源3の投光系と受光
素子15の受光系とが1対で対応し、他も同様に、光源
4の投光系と受光素子16の受光系、光源5の投光系と
受光素子17の受光系がそれぞれ対を成している。各投
光系と受光系の配置関係は、平面的にみて第3図に示す
ように互に三角形をなす位置とされ、正面的にみて実施
例では第4図に示すように各光源3,4.5が同一高さ
位置であり、各受光素子15,16,17も同一高さ位
置とされているが、同一高さに限定する必要はない。
The sensor section 1 includes three or more pairs of light emitting systems and light receiving systems. In this example, there are three pairs. That is,
Each light projection system includes a light source 3 and a light projection lens 6, a light source 4 and a light projection lens 7, and a light source 5 and a light projection lens 8. Each light receiving system includes a light receiving element 15, a filter 22, a light receiving lens 12, a light receiving element 16. Filter 23, light receiving lens 13, and light receiving element 17. It consists of a filter 24 and a light receiving lens 14. Among these, the light emitting system of the light source 3 and the light receiving system of the light receiving element 15 correspond to each other as a pair, and similarly, the light emitting system of the light source 4 and the light receiving system of the light receiving element 16 correspond to the light emitting system of the light source 5. The light receiving systems of the light receiving elements 17 each form a pair. The arrangement relationship between each light emitting system and the light receiving system is such that they mutually form a triangle as shown in FIG. 3 when viewed from above, and when viewed from the front, each light source 3 4.5 is the same height position, and each of the light receiving elements 15, 16, and 17 is also set at the same height position, but it is not necessary to limit it to the same height position.

光源としては、LEDや各種レーザ発光源を用いること
ができ、光源の数は本実施例では3個であるが、これに
限定する必要はなく、3個以上でよい、また、各投光ビ
ームの相互関係は平行、拡散、収束のいずれでもよいが
、説明を簡単にするため、本実施例では3つの各投光ビ
ームは互に平行であるものとする。
As a light source, an LED or various laser light emitting sources can be used, and although the number of light sources is three in this embodiment, there is no need to limit it to this, and three or more may be used. The mutual relationship may be parallel, divergent, or convergent; however, in order to simplify the explanation, in this embodiment, it is assumed that the three projected beams are parallel to each other.

受光素子15,16.17としては半導体−次元光位置
検出素子(P S D : Po5ition 5en
sitiveDetector )が適当である。すな
わち、他の種類の受光素子と対比した場合、CCD (
ChargedCouρlad Device)は走査
時間分だけ応答速度の遅れがあり、フォトダイオードア
レイは光像の分解能の点で劣るからである。これらに対
し、PSDの場合は高速応答性(10μS程度)を有し
、サンプリング周期の短い(例えば、5KHz)測定が
可能であり、PSDが適当である。
The light receiving elements 15, 16, and 17 are semiconductor-dimensional optical position detection elements (PSD: Po5ition 5en).
sitiveDetector) is suitable. In other words, when compared with other types of light receiving elements, CCD (
This is because the response speed of the charged coupled device is delayed by the scanning time, and the photodiode array is inferior in terms of optical image resolution. On the other hand, PSD is suitable because it has a high-speed response (about 10 μS) and can perform measurements with a short sampling period (for example, 5 KHz).

各受光素子15,16,17は第1図〜第5図のそれぞ
れに示すように1反射光信号の入射方向に対して傾斜し
た状庵で配置されている。これは、次の理由による。す
なわち、ワーク面2で反射された各光信号は各受光レン
ズ12,13.14のそれぞれのレンズを通って各受光
素子15,16゜17の受光面に照射され、ワーク面2
の位置が第5図の実線に示すように変化(第5図では降
下)した場合、受光素子15,16,17の受光面上に
結像される光信号の光像の位置が変化(第5図では左側
に変化)することになる。この場合に、ワーク面2の位
置変化に対応して常に受光素子15.16,17の各受
光面上に焦点の合った光信号の光像が結ばれるためには
、投光位置9゜10.11が受光レンズ12,13,1
4から離れると結像位置は受光レンズに近づくため図示
するように傾けて配置することが適当である。その傾き
の程度としては、例えば受光素子17についていえば、
受光レンズ14面延在方向線と受光素子17の延在方向
線との交点が投光レンズ8のレンズ中心を通る投光信号
光の光軸上に位置するように設定する。このことは他の
受光素子15゜17についても同様であり、説明は省略
する。
The light receiving elements 15, 16, and 17 are arranged in an inclined manner with respect to the direction of incidence of one reflected light signal, as shown in FIGS. 1 to 5, respectively. This is due to the following reason. That is, each optical signal reflected on the work surface 2 passes through each of the light receiving lenses 12, 13, 14, and is irradiated onto the light receiving surface of each light receiving element 15, 16.
When the position of the optical signal changes (descends in FIG. 5) as shown by the solid line in FIG. (in Figure 5, it changes to the left). In this case, in order to always form a focused optical image of the optical signal on each of the light receiving surfaces of the light receiving elements 15, 16, 17 in response to changes in the position of the work surface 2, the light emitting position must be 9° 10°. .11 is the light receiving lens 12, 13, 1
4, the imaging position approaches the light-receiving lens, so it is appropriate to arrange it at an angle as shown. For example, regarding the light receiving element 17, the degree of the inclination is as follows:
The intersection point between the extending direction line of the light receiving lens 14 surface and the extending direction line of the light receiving element 17 is set so as to be located on the optical axis of the projected signal light passing through the lens center of the projected lens 8. This also applies to the other light receiving elements 15 and 17, so the explanation will be omitted.

° 光信号として波長の異なる光を用いた場合の実施例
を第6図により説明する。
An embodiment in which lights of different wavelengths are used as optical signals will be described with reference to FIG.

光源3,4.5のそれぞれの光の波長を750nm、7
80nm、810nmとし、それぞれのレーザダイオー
ドより発光すると、対応する受光レンズ12,13,1
4の前に設けられた光学的バンドフィルタ22,23.
24によって第6図右側に示した透過率のように各対応
する光源3゜4.5の発光した波長の光のみが、対応す
る受光レンズ12,13.14を通り、対応する受光素
子15,16.17上に結像される。
The wavelength of each light from light sources 3 and 4.5 is 750 nm, 7
80 nm and 810 nm, and when the respective laser diodes emit light, the corresponding light receiving lenses 12, 13, 1
Optical band filters 22, 23 .
24, as shown in the transmittance shown on the right side of FIG. 6, only the light of the wavelength emitted by each corresponding light source 3°4.5 passes through the corresponding light receiving lens 12, 13, 14, and passes through the corresponding light receiving element 15, 16. Imaged on 17.

次に光信号として異なる周波数で変調した変調光を用い
た場合の実施例を第7図により説明する。
Next, an embodiment in which modulated light modulated at different frequencies is used as an optical signal will be described with reference to FIG.

第7図左下にその一例を示した発信回路により。By means of a transmitting circuit, an example of which is shown in the lower left of Fig. 7.

搬送波として所定の波長を有する光に、5KHz。5KHz for light having a predetermined wavelength as a carrier wave.

10KIlz、15KHzの信号波を発生し、これによ
って変調された変調光を光源3,4.5からそれぞれ発
光する。受光系の各受光レンズ12,13゜14、各受
光素子15,16,17は各対となる光源の変調光のみ
でなく他の対の変調光も受光する。しかし受光素子15
,16.17の出力をそれぞれの電気的バンドフィルタ
22,23.24に入力するとその出力は、受光系に対
応した光源3.4.5の変調光を選択することができる
。各周波数の変調光に対する電気的バンドフィルタ22
.23.24の通過率を第7図右上に示し、このフィル
タ回路の一例を同図右下に示す。
Signal waves of 10 KHz and 15 KHz are generated, and modulated light modulated by the signals is emitted from light sources 3 and 4.5, respectively. Each light receiving lens 12, 13.degree. 14 and each light receiving element 15, 16, 17 of the light receiving system receives not only the modulated light of each pair of light sources but also the modulated light of other pairs. However, the light receiving element 15
, 16.17 are input to the respective electric band filters 22, 23.24, the outputs can select the modulated light of the light source 3.4.5 corresponding to the light receiving system. Electric band filter 22 for modulated light of each frequency
.. The passage rate of 23.24 is shown in the upper right corner of FIG. 7, and an example of this filter circuit is shown in the lower right corner of the figure.

上述のごとく、本発明によれば、各受光系は、対応する
投光系の光信号のみ出力することができ、他の投光系に
よる干渉は受けない。
As described above, according to the present invention, each light receiving system can output only the optical signal of the corresponding light projecting system, and is not interfered with by other light projecting systems.

コントローラ部18は、互に波長の異る光又は互に異な
る変調波を発生する発光コントロール部19、投光距離
演算器20および距離・傾斜角演算器21より構成され
る。
The controller section 18 includes a light emission control section 19 that generates light of different wavelengths or modulated waves that are different from each other, a projection distance calculator 20, and a distance/inclination angle calculator 21.

第1図に示す発光コントロール部19は、第6図に示す
実施例では、レーザダイオード3,4゜5に可視光(発
振波長850nm、780nm)、赤外光(発振波長8
10nm)を発生させ、その光量等を制御し、第7図に
示す実施例では、発信回路より5に七、l0KI(z、
15KI(zの信号波を発生し、レーザダイオード3,
4.5より変調光を発生させ、その光量等の制御を行う
In the embodiment shown in FIG. 6, the light emission control unit 19 shown in FIG.
In the embodiment shown in FIG.
15KI (z signal wave is generated, laser diode 3,
From 4.5, modulated light is generated and the amount of light is controlled.

投光距離演算器20は、各受光系から出力される検出信
号に基づいて各投光位119,10.11と各投光系の
投光レンズ6.7.8の中心位置との間の相対距離(以
下、投光距離という−)02−D、、 D、を算出する
ものである。ここで、投光距離り、、 D、、 D、の
算出方法を説明する。なお、説明を簡単にするため、第
4図との対応において光源5と投光位置11との間の投
光距離D3についてのみ説明する。
The light projection distance calculator 20 calculates the distance between each light projection position 119, 10.11 and the center position of the light projection lens 6.7.8 of each light projection system based on the detection signal output from each light receiving system. Relative distances (hereinafter referred to as light projection distances) 02-D,, D, are calculated. Here, a method of calculating the light projection distance, D, D, will be explained. In order to simplify the explanation, only the light projection distance D3 between the light source 5 and the light projection position 11 will be described in correspondence with FIG.

第5図において、投光レンズ8のレンズ中心点とワーク
面2上の投光位置11との相対距離をD3とし、投光レ
ンズ8のレンズ中心点と受光レンズ14のレンズ中心点
との間の距離をL3一定とし、投光信号光と反射信号光
とのなす角を03とする。いま、ワーク面2の高さ位置
が点線位置から実線位置に変化した場合、実線位置にお
ける投光位置11と受光レンズ14のレンズ中心とを結
ぶ直線(すなわち、反射ビーム)は実線のごとく変化し
、受光素子17の受光面における信号光像の位置が変化
する。、このときの受光素子17の出力信号S3は角θ
、の関数として表わされ、53=f (0,) 角θ、は 、°・03=f″″1(sa)       ・・・・
・・・・・(1)となる。そして、投光距離り、は D、=□ tan O。
In FIG. 5, the relative distance between the lens center point of the light projecting lens 8 and the light projecting position 11 on the work surface 2 is defined as D3, and the distance between the lens center point of the light projecting lens 8 and the lens center point of the light receiving lens 14 is The distance L3 is constant, and the angle between the projected signal light and the reflected signal light is 03. Now, when the height position of the work surface 2 changes from the dotted line position to the solid line position, the straight line connecting the light emitting position 11 and the lens center of the light receiving lens 14 at the solid line position (that is, the reflected beam) changes as shown by the solid line. , the position of the signal light image on the light receiving surface of the light receiving element 17 changes. , the output signal S3 of the light receiving element 17 at this time is at an angle θ
It is expressed as a function of , 53=f (0,) Angle θ, is °・03=f″″1(sa)...
...(1). Then, the projection distance is D, =□ tan O.

で表わされる。It is expressed as

したがって、投光距離演算器20は上記(2)式により
投光距離D3を算出することになる。他の投光距離り、
、D、についても同様である。
Therefore, the light projection distance calculator 20 calculates the light projection distance D3 using the above equation (2). Other projection distances,
The same applies to ,D.

次に、距離・傾斜角演算器21は、上述のようにして求
められた各投光距離算出値D1.D、、D3に基づいて
センサ部1の位置とワーク面2との相対距離およびセン
サ部1の所定平面に対するワーク面2の傾斜角を算出す
るものである。ここで、算出方法を説明する。
Next, the distance/inclination angle calculator 21 calculates each light projection distance calculated value D1. The relative distance between the position of the sensor section 1 and the work surface 2 and the inclination angle of the work surface 2 with respect to a predetermined plane of the sensor section 1 are calculated based on D, , D3. Here, the calculation method will be explained.

第8図を参照して、センサ部1に第1直交座標系o−x
yzを設定する。前記所定平面はXY平面とする。光源
3,5間の中心に第1座標系の原点0を置き、この原点
0から光源4の方向をX軸。
Referring to FIG. 8, the sensor unit 1 has a first orthogonal coordinate system ox
Set yz. The predetermined plane is an XY plane. The origin 0 of the first coordinate system is placed at the center between the light sources 3 and 5, and the direction from the origin 0 to the light source 4 is the X axis.

光源5の方向をY軸、これらX軸とY軸に直角な方向を
Z軸とする。この場合、光源3,4.5は光源3,5間
を結ぶ線を長さaを底辺とする高さbの2等辺3角形の
各頂点に位置するものとする。
The direction of the light source 5 is defined as the Y axis, and the direction perpendicular to these X and Y axes is defined as the Z axis. In this case, it is assumed that the light sources 3, 4.5 are located at each vertex of an isosceles triangle having a height b and whose base is a length a, which is a line connecting the light sources 3 and 5.

次に、Z軸の負の方向においてワーク面2(ここで、ワ
ーク面は光投位置9,10,11を通る平面と仮定する
。)と交わる(突当る)点を原点0′とし、この原点0
′を通りX軸、Y軸に平行な軸をそれぞれX′軸、Y′
軸とし、Z軸上にあるZ′軸をもって第2直交座標系0
’−X’Y’2′を設定する。
Next, the point that intersects (collides with) the work surface 2 (here, the work surface is assumed to be a plane passing through the light projection positions 9, 10, and 11) in the negative direction of the Z-axis is defined as the origin 0', and this Origin 0
The axes that pass through ' and are parallel to the X and Y axes are X' and Y', respectively.
The second orthogonal coordinate system 0 has the Z′ axis on the Z axis.
Set '-X'Y'2'.

ここに、 Dを原点0−0′間距離(Dlとり、の平均距離) θ8をX′軸と原点O′−投光位置10間を結ぶ直線と
のなす角 θ7をY′軸と原点0′−投光位置11間を結ぶ直線と
のなす角 と定義する。
Here, D is the distance between the origin 0 and 0' (the average distance between Dl), and θ8 is the angle θ7 between the X' axis and the straight line connecting the origin O' and the light projection position 10 is the distance between the Y' axis and the origin 0. ' - defined as the angle formed by the straight line connecting the light projection position 11.

DveX+  07は次の(3)〜(5)式により算出
される。
DveX+07 is calculated using the following equations (3) to (5).

b        2b また、平均相対距離DHは次式となる。b      2b Further, the average relative distance DH is expressed by the following formula.

DM=−(D1+D2+D、)         ・・
・・・・(6)すなわち、距離・傾斜角演算器21は上
記(3)〜(6)式の演算を実施する。
DM=-(D1+D2+D,)...
(6) That is, the distance/inclination angle calculator 21 executes the calculations of the above equations (3) to (6).

〔発明の効果〕〔Effect of the invention〕

本発明によれば、各光源の光をそれぞれ互に異なる信号
光とすることにより、各受光系は対応する投光系の光信
号に対応した検出信号を出力できるので、他の投光系の
影響を受けることなく、センサ部の所定平面と測定対象
面との平均相対距離および傾斜角を精度よく算出するこ
とができる。
According to the present invention, by making the light of each light source a different signal light, each light receiving system can output a detection signal corresponding to the optical signal of the corresponding light projecting system, so that the light of the other light projecting system can be output. The average relative distance and inclination angle between the predetermined plane of the sensor section and the surface to be measured can be calculated with high accuracy without being affected.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例を示すブロック図、第2図は本
発明の他の実施例を示をブロック図、第3図はセンサ部
における投受光系の各要素の配置関係を示す平面図、第
4図は第3図の立面図、第5図は投光距離の算出方法の
説明図、第6図は波長の異なる光信号を用いた投受光系
説明図、第7図は変調周波数を変えた光信号を用いた投
受光系説明図、第8図は距離・傾斜角の算出方法の説明
図である。 1・・・センサ部、 2・・・測定対象面(ワーク面)、 3.4.5・・・光源、 6.7.8・・・投光レンズ、 9.10.11・・・投光位置、 12.13.14・・・受光レンズ、 15.16,17・・・受光素子、 18・・・コントローラ部、 19・・・発光コントロール部、 20・・・投光距離演算器、 21・・・距離・傾斜角演算器、 22.23,24・・・フィルタ。 代理人 弁理士 鵜 沼 辰 之 第1図 第3図 第4図 第5図 第8図 第7 7°信3〃劣
Fig. 1 is a block diagram showing an embodiment of the present invention, Fig. 2 is a block diagram showing another embodiment of the invention, and Fig. 3 is a plan view showing the arrangement relationship of each element of the light emitting/receiving system in the sensor section. Figure 4 is an elevational view of Figure 3, Figure 5 is an explanatory diagram of the method of calculating the projection distance, Figure 6 is an illustration of the light emitting/receiving system using optical signals of different wavelengths, and Figure 7 is FIG. 8 is an explanatory diagram of a light projection/reception system using optical signals with different modulation frequencies, and FIG. 8 is an explanatory diagram of a method of calculating distance and inclination angle. 1...Sensor part, 2...Measurement target surface (work surface), 3.4.5...Light source, 6.7.8...Light projection lens, 9.10.11...Projection Light position, 12.13.14... Light receiving lens, 15.16, 17... Light receiving element, 18... Controller section, 19... Light emission control section, 20... Light projection distance calculator, 21... Distance/inclination angle calculator, 22.23, 24... Filter. Agent Patent Attorney Tatsu Unuma Figure 1 Figure 3 Figure 4 Figure 5 Figure 8 Figure 7 7° Trust 3

Claims (5)

【特許請求の範囲】[Claims] (1)測定対象面に光信号を投光する光源を有する投光
系と、該測定対象面からの反射光信号を受光する受光素
子を有する受光系との対が3対以上分散配置され、各対
の前記光源は互に異なる光信号を投光し、各対の前記受
光系が互に対となっている投光系の前記反射光信号の情
報を選択出力する手段を備えたセンサ部と、受光系の該
選択出力に基づいて前記投光系の所定位置と測定対象面
上の投光位置との間の相対距離を算出する投光距離演算
器と、各対の相対距離の該算出値に基づいて前記センサ
部の所定平面と前記測定対象面との平均相対距離および
傾斜角を算出する距離・傾斜角演算器とを備えたことを
特徴とする距離傾斜角測定装置。
(1) Three or more pairs of a light projection system having a light source that projects an optical signal onto the surface to be measured and a light receiving system having a light receiving element that receives the reflected light signal from the surface to be measured are arranged in a distributed manner, The light sources of each pair emit different optical signals, and the light receiving system of each pair includes a sensor unit having means for selectively outputting information of the reflected light signals of the light emitting systems that are paired with each other. a light projection distance calculator that calculates a relative distance between a predetermined position of the light projection system and a light projection position on the surface to be measured based on the selected output of the light receiving system; A distance/inclination angle measuring device comprising: a distance/inclination angle calculator that calculates an average relative distance and inclination angle between a predetermined plane of the sensor section and the measurement target surface based on a calculated value.
(2)前記互に異なる光信号が波長の異なる光であるこ
とを特徴とする特許請求の範囲第1項記載の装置。
(2) The apparatus according to claim 1, wherein the mutually different optical signals are lights having different wavelengths.
(3)前記互に異なる光信号が互に異なる変調光である
ことを特徴とする特許請求の範囲第1項記載の装置。
(3) The apparatus according to claim 1, wherein the mutually different optical signals are mutually different modulated lights.
(4)前記選択出力する手段が、各受光系の受光レンズ
の前方に設けられ、該受光系と対になった投光系の前記
反射光信号を選択して通過させる光学的バンドフィルタ
であることを特徴とする特許請求の範囲第1項または第
2項に記載の装置。
(4) The means for selectively outputting is an optical band filter that is provided in front of the light receiving lens of each light receiving system and selectively passes the reflected light signal of the light projecting system paired with the light receiving system. An apparatus according to claim 1 or 2, characterized in that:
(5)前記選択出力する手段が、前記受光素子に後続し
て設けられ、該受光素子の出力のうち該受光素子の受光
系と対になっている投光系の前記反射光信号に基づく出
力を選択的に出力する電気的バンドフィルタであること
を特徴とする特許請求の範囲第1項または第3項記載の
装置。
(5) The means for selectively outputting is provided subsequent to the light receiving element, and among the outputs of the light receiving element, output is based on the reflected light signal of the light projecting system paired with the light receiving system of the light receiving element. 4. The device according to claim 1, wherein the device is an electrical band filter that selectively outputs.
JP5705787A 1987-03-12 1987-03-12 Apparatus for measuring distance and angle of inclination Pending JPS63222202A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5705787A JPS63222202A (en) 1987-03-12 1987-03-12 Apparatus for measuring distance and angle of inclination

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5705787A JPS63222202A (en) 1987-03-12 1987-03-12 Apparatus for measuring distance and angle of inclination

Publications (1)

Publication Number Publication Date
JPS63222202A true JPS63222202A (en) 1988-09-16

Family

ID=13044816

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5705787A Pending JPS63222202A (en) 1987-03-12 1987-03-12 Apparatus for measuring distance and angle of inclination

Country Status (1)

Country Link
JP (1) JPS63222202A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05126569A (en) * 1991-10-31 1993-05-21 Matsushita Electric Works Ltd Optical displacement measuring method and optical displacement gauge using it
JPH05126570A (en) * 1991-10-31 1993-05-21 Matsushita Electric Works Ltd Optical displacement measuring method and optical displacement gauge using it
JPH0743133A (en) * 1993-08-03 1995-02-10 Nec Corp Inclination detecting device
JP2010261742A (en) * 2009-04-30 2010-11-18 Fujitsu Ltd Surface inspection system, and surface inspection method
JP2011257267A (en) * 2010-06-09 2011-12-22 Kawada Industries Inc Imaging plane detection device and working robot with the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05126569A (en) * 1991-10-31 1993-05-21 Matsushita Electric Works Ltd Optical displacement measuring method and optical displacement gauge using it
JPH05126570A (en) * 1991-10-31 1993-05-21 Matsushita Electric Works Ltd Optical displacement measuring method and optical displacement gauge using it
JPH0743133A (en) * 1993-08-03 1995-02-10 Nec Corp Inclination detecting device
JP2010261742A (en) * 2009-04-30 2010-11-18 Fujitsu Ltd Surface inspection system, and surface inspection method
JP2011257267A (en) * 2010-06-09 2011-12-22 Kawada Industries Inc Imaging plane detection device and working robot with the same

Similar Documents

Publication Publication Date Title
US7489406B2 (en) Optical lens system and position measurement system using the same
EP0070141B1 (en) Device for measuring dimensions
JPS60205212A (en) Optical system surface approach-degree measuring device
JPS60185108A (en) Method and device for measuring body in noncontacting manner
JPH08247741A (en) Curvature measuring device of surface
JP3921004B2 (en) Displacement tilt measuring device
US4627722A (en) Method and apparatus for optically measuring three-dimensional coordinates
JPS63222202A (en) Apparatus for measuring distance and angle of inclination
JP4864734B2 (en) Optical displacement sensor and displacement measuring apparatus using the same
JPS63225108A (en) Distance and inclination measuring instrument
US6922232B2 (en) Test system for laser diode far-field pattern measurement
JP5487920B2 (en) Optical three-dimensional shape measuring apparatus and optical three-dimensional shape measuring method
JPS6210361B2 (en)
JPS63225109A (en) Distance and inclination measuring instrument
JPS63179207A (en) Distance and tilt angle measuring instrument
JPH03128409A (en) Three-dimensional shape sensor
CN112902838B (en) Zero sensor and detection system
JPS63252204A (en) Distance and angle-of-inclination measuring device
JPH071165B2 (en) Visual sensor using optical beam
JP3160402B2 (en) Displacement measuring device
JP3817232B2 (en) Displacement measuring device
JP2509776B2 (en) Three-dimensional shape measuring device
JP2000162307A (en) Laser tracking apparatus for locating position of reactor vessel-inspecting robot
JP2000018914A (en) Optical system round hole measuring method
JPH02276908A (en) Three-dimensional position recognizing device