JPS6322216B2 - - Google Patents

Info

Publication number
JPS6322216B2
JPS6322216B2 JP58100067A JP10006783A JPS6322216B2 JP S6322216 B2 JPS6322216 B2 JP S6322216B2 JP 58100067 A JP58100067 A JP 58100067A JP 10006783 A JP10006783 A JP 10006783A JP S6322216 B2 JPS6322216 B2 JP S6322216B2
Authority
JP
Japan
Prior art keywords
castor oil
oil
viscosity
transesterification
cured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58100067A
Other languages
Japanese (ja)
Other versions
JPS59226016A (en
Inventor
Tsutomu Kusakawa
Yoshuki Ito
Seiichi Morooka
Norifumi Komazawa
Kenji Ueda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Itoh Seiyu KK
Original Assignee
Itoh Seiyu KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Itoh Seiyu KK filed Critical Itoh Seiyu KK
Priority to JP58100067A priority Critical patent/JPS59226016A/en
Publication of JPS59226016A publication Critical patent/JPS59226016A/en
Publication of JPS6322216B2 publication Critical patent/JPS6322216B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Fats And Perfumes (AREA)
  • Polyurethanes Or Polyureas (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、特定のヒマシ油改質物を用いたポリ
ウレタン系の硬化性組成物に関するものである。 ヒマシ油の化学組成はリシノール酸(12−ヒド
ロキシオレイン酸)を主成分とするトリグリセリ
ドであり、その構成脂肪酸の約90重量%がリシノ
ール酸であつて残りの脂肪酸のほとんどは水酸基
を持たないものであるため、ヒマシ油は分子内に
約2.7の水酸基を持つことになり、又その水酸基
は互いに遠く離れて位置し、その間はほとんどが
メチレン基でつながつている。このような化学構
造により、ヒマシ油は、ポリオールとして一般的
なポリエーテルポリオールやポリエステルポリオ
ールに比し耐水性や電気特性のすぐれた可撓性を
与える素材であるということができる。 ヒマシ油は上記のような性質を持つているた
め、電子部品封止用のポリウレタン樹脂製造の際
のポリオール成分として用いられているが、電子
部品の超小型化技術の開発が進むにつれ封止用樹
脂の要求特性もきびしくなり、より伸長性を高め
ることが要望されている。又ヒマシ油は、比較的
低粘度な素材としてウレタン系塗料やウレタン系
接着剤の高濃度システムや無溶媒システムの貴重
な材料として使われているが、ポツトライフや作
業性の点でより低粘度にすることが要望されてい
る。又他の絶縁材料でも同様の性質改善が求めら
れている。 これらの背景において、ヒマシ油の長所を失わ
ずに、電子部品封止剤用としては硬化樹脂のより
伸長性を高め、塗料・接着剤用としてはより低粘
度とする試みがなされているが、所期の目的を十
分には達成するまでには至つていない。 即ち、上記のような用途のウレタンシステムに
フタル酸エステル等の可塑剤を配合することが提
案されているが、硬化樹脂の性能が低下する不利
がある。又ヒマシ油に代え又はヒマシ油の一部に
置換して、エチレングリコール、プロピレングリ
コール、1,4−ブタンジオール、ネオペンチル
グリコール、1,6−ヘキサンジオールなどの二
価アルコールのリシノール酸エステルを用いるこ
とも提案されているが、二価アルコールのリシノ
ール酸エステルは、一旦ヒマシ油を加水分解し、
得られたヒマシ油脂肪酸を二価アルコールとエス
テル化するか、或いはヒマシ油脂肪酸のメチルエ
ステル又はヒマシ油と二価アルコールとのエステ
ル交換反応により得られるものであるため、これ
らのうちいずれの方法によつてもグリセリンの副
生を免れず、その結果副生したグリセリンの水洗
除去工程により生ずるグリセリン水(BODが高
い)の処理が必要となり、又収率面でも不利にな
る。 ヒマシ油は、又、ポリヒドロキシポリブタジエ
ン等の高粘度炭化水素系ポリオールをポリオール
成分とするポリウレタン樹脂の製造に際し粘度を
低下させかつポツトライフを長くする改質剤とし
て効果があることが知られているが、ヒマシ油は
高粘度炭化水素系ポリオールのような水酸基当量
の大きいポリオールとの相溶性に限界があつて、
特に低温では使用制限を受け、又その粘度低下効
果も必ずしも十分ではないという問題がある。 本発明は、ウレタンシステムにおけるヒマシ油
の上記のような問題点を、ヒマシ油の特定のエス
テル交換反応物を用いることにより解決せんとし
たものである。 本発明の硬化性組成物は、水酸基含有化合物X
及びポリイソシアートYよりなる硬化性組成物に
おいて、水酸基含有化合物Xの少なくとも一部
に、ヒマシ油aと水酸基を実質上有しない天然油
脂bとのエステル交換反応物X1を用いることを
特徴とするものである。 上記エステル交換反応物X1は、ヒマシ油(官
能基約2.7)に比し官能基が減少していることも
作用して、次に列挙するようなすぐれた効果を奏
する。 (1) 得られるウレタン硬化物は、ヒマシ油をポリ
オールとして用いたときに期待される耐水性、
電気特性、引張及び引裂強度などの利点が損な
われない。 (2) 得られるウレタン硬化物の伸長性を好ましい
程度にまで高めることができる。 (3) ウレタンシステムにおいて、系の粘度を大巾
に低下させ、しかもポツトライフを長くするこ
とができ、作業性が著しく向上するので、電子
部品、電機部品、電装部品、通信部品への絶縁
材料としての注入、含浸が改善される。又ウレ
タン系塗料やウレタン系接着剤の高濃度システ
ムや無溶媒システムにおいて、有機溶剤と同様
の役目を果し、しかも反応して樹脂成分となる
反応性希釈剤としても最適である。 (4) 水酸基当量の高い高粘度炭化水素系ポリオー
ルと併用しても相溶性が良く、しかもその併用
により系の粘度を低下させると共に、ポツトラ
イフを長くし、さらにはその併用によりウレタ
ン硬化物の物性を低下させないばかりかむしろ
その物性を向上させることができる。よつて高
粘度炭化水素系ポリオールとの併用で電気特
性、特に誘電率、誘電正接が良くなり、コイル
等、たとえばテレビジヨンのフライバツクトラ
ンスの含浸、注型が可能になる。 (5) ヒマシ油と天然油脂とのエステル交換反応物
は、工程的に簡単に取得でき、天然油脂も安価
なものを選択できるので、ウレタンポリオール
としてこのエステル交換反応物を用いることは
極めて工業性に富んでいる。 本発明の硬化性組成物は、水酸基含有化合物X
及びポリイソシアネートYよりなる。そして本発
明においては、水酸基含有化合物Xの少なくとも
一部として、ヒマシ油aと水酸基を実質上有しな
い天然油脂bとのエステル交換反応物X1を用い
る。ここでヒマシ油aとエステル交換させる相手
方の天然油脂bとしては、アマニ油、キリ油、ナ
タネ油、大豆油、ヤシ油、パーム油、えの油、く
るみ油、米ぬか油、綿実油、つばき油、オリーブ
油、らつかせい油などの植物油、牛脂、豚脂、魚
油、肝油、鯨油などの動物油が例示できる。 上記(a)と(b)のエステル交換には通常行われるエ
ステル交換反応が採用され、たとえば水酸化アル
カリ、アルカリ金属アルコラート、炭酸ソーダ等
のアルカリ触媒やリサージなどの触媒で、180〜
260℃、15分〜6時間の反応条件下にエステル交
換を行う。 上記(a)と(b)の反応割合は広く変えられるが、(a)
90〜30重量%、(b)10〜70重量%の範囲から選択す
ることが特に好ましい。(b)の割合が余りに少ない
ときは本発明の目的が十分には達成しえず、一方
(b)の割合が余りに多いときはウレタン化反応に寄
与できずに単なる配合物となり、硬化物の物性に
マイナスに作用する傾向がある。 なお上記エステル交換反応に際して、本発明の
趣旨に反しない範囲、即ちエステル交換反応物の
粘度がヒマシ油aより低下する範囲でかつこの反
応により副生グリセリンが生成しない範囲で、他
のポリオールc、たとえばエチレングリコール、
ジエチレングリコール、1,2−又は1,3−プ
ロピレングリコール、1,3−,1,4−又は
2,3−ブタンジオール、1,6−ヘキサンジオ
ール、ネオペンチルグリコール、グリセリン、ト
リメチロールプロパンなどを使用できる。 本発明においてはポリオールXとして上記エス
テル交換反応物X1を単独で用いることもできる
が、このエステル交換反応物X1を他の一般的な
ウレタンポリオールと併用することができる。 特にポリヒドロキシポリブタジエンやポリヒド
ロキシポリオレフインなどの高粘度炭化水素系ポ
リオールX2のように水酸基当量の大きなポリエ
ーテルは一般に粘度が高すぎて取扱いに難がある
が、上記特定のエステル交換反応物X1とは低温
でも相溶性を示す上、該X1の併用により粘度が
低下して取扱いが容易になり、しかもその併用は
ポリイソシアネートYによる硬化物の物性を低下
させないばかりか、むしろその物性を向上させる
という効果を奏する。 エステル交換反応物X1と高粘度炭化水素系ポ
リオールX2とを併用する場合の両者の配合比率
は広く変えうるが、X1とX2との重量比が8:2
〜1:9、特に7:3〜2:8となるような範囲
から選ぶことが好ましい。 本発明においては、上記水酸基含有化合物Xの
硬化剤としてポリイソシアネートYが用いられ
る。このようなポリイソシアネートYとしては、
トリレンジイソシアネート、ジフエニルメタンジ
イソシアネート、ナフタレンジイソシアネート、
キシリレンジイソシアネート、ジフエニルスルホ
ンジイソシアネート、トリフエニルメタンジイソ
シアネート、ヘキサメチレンジイソシアネート、
3−イソシアネートメチル−3,5,5−トリメ
チルシクロヘキシルイソシアネート、3−イソシ
アネートエチル−3,5,5−トリメチルシクロ
ヘキシルイソシアネート、3−イソシアネートエ
チル−3,5,5−トリエチルシクロヘキシルイ
ソシアネート、ジフエニルプロパンジイソシアネ
ート、フエニレンジイソシアネート、シクロヘキ
シリレンジイソシアネート、3,3′−ジイソシア
ネートジプロピルエーテル、ジフエニルエーテル
−4,4′−ジイソシアネート、イソホロンジイソ
シアネートなどがあげられる。これらのポリイソ
シアネートから誘導される末端イソシアネート基
を有するプレポリマーも同様に用いられる。 水酸基含有化合物XとポリイソシアネートYの
配合割合は、ポリイソシアネートY中のイソシア
ネート基がポリオールX中の水酸基の総量に対し
0.8〜1.4当量となるようにするのが、十分な硬化
が図られるので好ましい。 硬化は低温でゆつくり行つてもよく、加熱によ
り促進させてもよい。 本発明の組成物には、タルク、クレー、炭酸カ
ルシウム、バライタ粉、シリカ粉、アルミナ、カ
ーボンブラツク、酸化チタン、酸化鉄をはじめと
する充填剤又は顔料、リン化合物、ハロゲン化合
物、酸化アンチモン等の難燃剤、酸化防止剤、老
化防止剤、紫外線吸収剤など各種の添加剤を必要
に応じ配合してもよい。 本発明の組成物は、注型用組成物、含浸用組成
物、コーテイング剤、接着剤、塗料、コーキング
材、ポツテイング材、シーラント、発泡体、エン
カブシユレイテイング材、ライニング材、パツキ
ング材、工業用ゴム資材、ロケツト燃料バインダ
ーなどの用途に有用である。 次に実施例をあげて本発明の硬化性組成物をさ
らに説明する。 エステル交換反応物X1の合成 合成例 1 ヒマシ油a(水酸基価160、粘度700cps/25℃)
170g、ヤシ油b(水酸基価0.2)30g及び炭酸ソ
ーダ0.6gを500mlの四ツ口フラスコに仕込み、窒
素ガスを吹きこみながら撹拌下に昇温し、20分後
に180℃、さらに10分後に230℃とし、この温度に
90分間維持して撹拌を続けた後室温まで冷却して
反応を終了した。反応混合物はリン酸で中和後減
圧脱水し、白土処理を行つた。 このエステル交換反応により、水酸基価137、
水分0.01%、粘度484cps/25℃の油状物質X1が得
られた。 合成例 2 ヒマシ油a(水酸基価160、粘度700cps/25℃)
100g、ナタネ油b(水酸基価ほぼ0)100g及び
ソジウムメチラート28%メタノール溶液2gをフ
ラスコに仕込んで合成例1と同様にしてエステル
交換反応を行い、水酸基価84、水分0.01%、粘度
172cps/25℃の油状物質X1を得た。 合成例 3 ヒマシ油a(水酸基価160、粘度700cps/25℃)
84g、アマニ油b(水酸基価ほぼ0)116g及び炭
酸ソーダ0.4gをフラスコに仕込んで合成例1と
同様にしてエステル交換反応を行い、水酸基価
68、水分0.01%、粘度141cps/25℃の油状物質X1
を得た。 合成例 4 ヒマシ油a(水酸基価160、粘度700cps25℃)
142g、ラードb(水酸基価ほぼ0)58g及び炭酸
ソーダ0.6gをフラスコに仕込んで合成例1と同
様にしてエステル交換反応を行い、水酸基価115、
水分0.01%、粘度302cps/25℃の油状物質X1を得
た。 合成例 5 ヒマシ油a93g、ナタネ油b90g、トリメチロ
ールプロパンc13.4g及びソジウムメチラート28
%メタノール溶液2gをフラスコに仕込んで合成
例1と同様にしてエステル交換反応を行い、水酸
基価156、粘度210cps25℃の油状物質X1を得た。 以上の合成例を次の第1表にまとめた。
The present invention relates to a polyurethane-based curable composition using a specific modified castor oil. The chemical composition of castor oil is a triglyceride whose main component is ricinoleic acid (12-hydroxyoleic acid), and about 90% by weight of its constituent fatty acids are ricinoleic acid, and most of the remaining fatty acids do not have hydroxyl groups. Therefore, castor oil has about 2.7 hydroxyl groups in its molecule, and the hydroxyl groups are located far apart from each other, with most of them connected by methylene groups. Due to this chemical structure, castor oil can be said to be a material that provides flexibility with superior water resistance and electrical properties compared to polyether polyols and polyester polyols, which are common polyols. Because castor oil has the above-mentioned properties, it is used as a polyol component in the production of polyurethane resin for encapsulating electronic components, but as the development of ultra-miniaturization technology for electronic components progresses, castor oil The required properties of resins have become stricter, and there is a demand for higher extensibility. In addition, castor oil is a relatively low-viscosity material that is used as a valuable material in high-concentration systems and solvent-free systems for urethane paints and adhesives, but it is necessary to use a lower viscosity in terms of pot life and workability. It is requested to do so. Similar improvements in properties are also required for other insulating materials. Against this background, attempts have been made to improve the extensibility of cured resins for use in electronic component encapsulants, and to lower the viscosity for use in paints and adhesives, without losing the advantages of castor oil. The intended purpose has not yet been fully achieved. That is, it has been proposed to incorporate a plasticizer such as a phthalate ester into the urethane system for the above-mentioned applications, but this has the disadvantage of lowering the performance of the cured resin. In addition, ricinoleic acid esters of dihydric alcohols such as ethylene glycol, propylene glycol, 1,4-butanediol, neopentyl glycol, and 1,6-hexanediol are used in place of castor oil or in partial substitution of castor oil. It has also been proposed that ricinoleic acid ester, a dihydric alcohol, can be used by first hydrolyzing castor oil.
It is obtained by esterifying the obtained castor oil fatty acid with a dihydric alcohol, or by transesterifying the methyl ester of castor oil fatty acid or the castor oil and a dihydric alcohol. However, the by-product of glycerin cannot be avoided, and as a result, it is necessary to treat the glycerin water (high BOD) generated in the step of washing and removing the by-product glycerin, which is also disadvantageous in terms of yield. Castor oil is also known to be effective as a modifier that lowers the viscosity and lengthens the pot life in the production of polyurethane resins whose polyol components are high-viscosity hydrocarbon polyols such as polyhydroxypolybutadiene. , castor oil has limited compatibility with polyols with large hydroxyl equivalents such as high viscosity hydrocarbon polyols,
In particular, there are problems in that it is limited in use at low temperatures, and its viscosity lowering effect is not necessarily sufficient. The present invention aims to solve the above problems of castor oil in urethane systems by using a specific transesterification product of castor oil. The curable composition of the present invention contains a hydroxyl group-containing compound
and a curable composition consisting of polyisocyanate Y, characterized in that at least a part of the hydroxyl group-containing compound X is a transesterification product X 1 of castor oil a and a natural fat or oil b that does not substantially have hydroxyl groups. It is. The transesterification product X 1 has a reduced number of functional groups compared to castor oil (approximately 2.7 functional groups), and thus exhibits excellent effects as listed below. (1) The resulting cured urethane has the water resistance expected when castor oil is used as a polyol;
Advantages such as electrical properties, tensile and tear strength are not compromised. (2) The extensibility of the resulting cured urethane product can be increased to a desirable level. (3) In urethane systems, the viscosity of the system can be greatly reduced, the pot life can be extended, and workability is significantly improved, so it can be used as an insulating material for electronic parts, electrical equipment parts, electrical equipment parts, and communication parts. Injection and impregnation are improved. In addition, it plays the same role as an organic solvent in high-concentration systems and solvent-free systems for urethane paints and urethane adhesives, and is also ideal as a reactive diluent that reacts to become a resin component. (4) It has good compatibility even when used in combination with a high viscosity hydrocarbon polyol with a high hydroxyl equivalent, and its combination reduces the viscosity of the system and lengthens the pot life, and its combination also improves the physical properties of the cured urethane. Not only does it not reduce the properties, but it can even improve its physical properties. Therefore, when used in combination with a high viscosity hydrocarbon polyol, the electrical properties, particularly the dielectric constant and dielectric loss tangent, are improved, making it possible to impregnate and cast coils, for example flyback transformers for televisions. (5) Since the transesterification product of castor oil and natural fats and oils can be easily obtained in terms of process, and natural fats and oils can also be selected from inexpensive ones, it is extremely industrially possible to use this transesterification product as a urethane polyol. rich in The curable composition of the present invention contains a hydroxyl group-containing compound
and polyisocyanate Y. In the present invention, as at least a part of the hydroxyl group-containing compound X, a transesterification product X 1 of castor oil a and a natural fat or oil b that does not substantially have a hydroxyl group is used. Here, the natural oils and fats B to be transesterified with castor oil A include linseed oil, tung oil, rapeseed oil, soybean oil, coconut oil, palm oil, edible oil, walnut oil, rice bran oil, cottonseed oil, camellia oil, Examples include vegetable oils such as olive oil and horsetail oil, and animal oils such as beef tallow, lard, fish oil, liver oil, and whale oil. For transesterification of (a) and (b) above, a commonly used transesterification reaction is used, for example, using an alkali catalyst such as alkali hydroxide, alkali metal alcoholate, or sodium carbonate, or a catalyst such as litharge.
Transesterification is carried out under reaction conditions of 260°C and 15 minutes to 6 hours. Although the reaction ratios of (a) and (b) above can be varied widely, (a)
It is particularly preferable to select from the range of 90 to 30% by weight and (b) 10 to 70% by weight. If the proportion of (b) is too small, the object of the present invention cannot be fully achieved;
When the proportion of (b) is too high, it cannot contribute to the urethanization reaction and becomes a mere compound, which tends to have a negative effect on the physical properties of the cured product. In the above transesterification reaction, other polyols c, For example, ethylene glycol
Diethylene glycol, 1,2- or 1,3-propylene glycol, 1,3-, 1,4- or 2,3-butanediol, 1,6-hexanediol, neopentyl glycol, glycerin, trimethylolpropane, etc. are used. can. In the present invention, the transesterification product X 1 can be used alone as the polyol X, but the transesterification product X 1 can be used in combination with other general urethane polyols. In particular, polyethers with large hydroxyl equivalents such as high viscosity hydrocarbon polyols X 2 such as polyhydroxy polybutadiene and polyhydroxy polyolefins are generally too viscous and difficult to handle; In addition to being compatible with polyisocyanate Y even at low temperatures, the combined use of X 1 lowers the viscosity and makes it easier to handle.Furthermore, the combined use of polyisocyanate Y does not reduce the physical properties of the cured product, but rather improves its physical properties. It has the effect of causing When the transesterification reaction product X 1 and the high viscosity hydrocarbon polyol X 2 are used together, the blending ratio of the two can be varied widely, but the weight ratio of X 1 and X 2 is 8:2.
It is preferable to select from a range of 1:9 to 1:9, particularly 7:3 to 2:8. In the present invention, polyisocyanate Y is used as a curing agent for the hydroxyl group-containing compound X. As such polyisocyanate Y,
Tolylene diisocyanate, diphenylmethane diisocyanate, naphthalene diisocyanate,
xylylene diisocyanate, diphenyl sulfone diisocyanate, triphenylmethane diisocyanate, hexamethylene diisocyanate,
3-Isocyanate methyl-3,5,5-trimethylcyclohexyl isocyanate, 3-isocyanate ethyl-3,5,5-trimethylcyclohexyl isocyanate, 3-isocyanate ethyl-3,5,5-triethylcyclohexyl isocyanate, diphenylpropane diisocyanate, Examples include phenylene diisocyanate, cyclohexylylene diisocyanate, 3,3'-diisocyanate dipropyl ether, diphenyl ether-4,4'-diisocyanate, and isophorone diisocyanate. Prepolymers with terminal isocyanate groups derived from these polyisocyanates can be used as well. The blending ratio of the hydroxyl group-containing compound
It is preferable to adjust the amount to 0.8 to 1.4 equivalents because sufficient curing can be achieved. Curing may be carried out slowly at low temperatures or may be accelerated by heating. The composition of the present invention contains fillers or pigments such as talc, clay, calcium carbonate, baryta powder, silica powder, alumina, carbon black, titanium oxide, iron oxide, phosphorus compounds, halogen compounds, antimony oxide, etc. Various additives such as flame retardants, antioxidants, anti-aging agents, and ultraviolet absorbers may be added as necessary. The composition of the present invention includes a casting composition, an impregnating composition, a coating agent, an adhesive, a paint, a caulking material, a potting material, a sealant, a foam, an encabbing material, a lining material, a packing material, It is useful for applications such as industrial rubber materials and rocket fuel binders. Next, the curable composition of the present invention will be further explained with reference to Examples. Synthesis example of transesterification reaction product X 1 1 Castor oil a (hydroxyl value 160, viscosity 700 cps/25°C)
170 g, 30 g of coconut oil B (hydroxyl value 0.2), and 0.6 g of soda carbonate were placed in a 500 ml four-necked flask, and the temperature was raised with stirring while blowing in nitrogen gas.After 20 minutes, the temperature was 180℃, and after another 10 minutes, it was 230℃. ℃ and at this temperature
Stirring was continued for 90 minutes and then cooled to room temperature to complete the reaction. The reaction mixture was neutralized with phosphoric acid, dehydrated under reduced pressure, and treated with clay. This transesterification reaction resulted in a hydroxyl value of 137,
An oily substance X 1 was obtained with a water content of 0.01% and a viscosity of 484 cps/25°C. Synthesis example 2 Castor oil a (hydroxyl value 160, viscosity 700cps/25℃)
A flask was charged with 100 g of rapeseed oil B (hydroxyl value almost 0) and 2 g of a 28% methanol solution of sodium methylate, and a transesterification reaction was carried out in the same manner as in Synthesis Example 1.
Oil X 1 was obtained at 172 cps/25°C. Synthesis example 3 Castor oil a (hydroxyl value 160, viscosity 700cps/25℃)
84 g, 116 g of linseed oil B (hydroxyl value almost 0), and 0.4 g of soda carbonate were charged into a flask, and a transesterification reaction was carried out in the same manner as in Synthesis Example 1.
68, moisture 0.01%, viscosity 141cps/25℃ oily substance x 1
I got it. Synthesis example 4 Castor oil a (hydroxyl value 160, viscosity 700cps25℃)
142 g, lard b (hydroxyl value almost 0), 58 g, and 0.6 g of soda carbonate were charged into a flask, and a transesterification reaction was carried out in the same manner as in Synthesis Example 1, resulting in a hydroxyl value of 115,
An oily substance X 1 with a water content of 0.01% and a viscosity of 302 cps/25°C was obtained. Synthesis example 5 Castor oil a 93g, rapeseed oil b 90g, trimethylolpropane c 13.4g and sodium methylate 28g
% methanol solution was charged into a flask and transesterification was carried out in the same manner as in Synthesis Example 1 to obtain an oily substance X 1 having a hydroxyl value of 156 and a viscosity of 210 cps at 25°C. The above synthesis examples are summarized in Table 1 below.

【表】 エステル交換反応物X1と高粘度炭化水素系ポ
リオールX2との相溶性試験 試験例 1 合成例2で得た油状のエステル交換反応物X1
と出光石油化学株式会社製「PB R−45HT」X2
を種々の温度条件下に種々の比率で混合後、同温
度に静置して相溶性を調べた。ここで「PB R−
45HT」は、数平均分子量2800、官能基数2.2〜
2.4、ヨウ素価398、水酸基価46の特性値を有する
ホリヒドロキシポリブタジエンである。 結果を第2表に示す。 対照試験例 1 ヒマシ油とポリヒドロキシポリブタジエン
「PB R−45HT」X2との相溶性を試験例1と同
様にして調べた。結果を第2表に合せて示す。
[Table] Compatibility test test example between transesterification product X 1 and high viscosity hydrocarbon polyol X 2 1 Oily transesterification product obtained in Synthesis Example 2 X 1
and “PB R- 45HT ” manufactured by Idemitsu Petrochemical Co., Ltd.
were mixed at various ratios under various temperature conditions, and then left to stand at the same temperature to examine compatibility. Here, “PB R-
45HT" has a number average molecular weight of 2800 and a functional group number of 2.2~
It is a polyhydroxypolybutadiene with characteristic values of 2.4, iodine value of 398, and hydroxyl value of 46. The results are shown in Table 2. Comparative Test Example 1 The compatibility between castor oil and polyhydroxypolybutadiene "PB R-45HT" X 2 was investigated in the same manner as in Test Example 1. The results are also shown in Table 2.

【表】【table】

【表】 二層分離)
試験例 2 合成例3で得た油状のエステル交換反応物X1
と出光石油化学株式会社製のポリヒドロキシポリ
ブタジエン「PB R−45HT」X2との相溶性を試
験例1と同様にして調べた。結果を第3表に示
す。
[Table] Two-layer separation)
Test Example 2 Oily transesterification product obtained in Synthesis Example 3 X 1
The compatibility between this and polyhydroxypolybutadiene "PB R-45HT" X 2 manufactured by Idemitsu Petrochemical Co., Ltd. was investigated in the same manner as in Test Example 1. The results are shown in Table 3.

【表】 試験例3、対照試験例2 合成例2で得た油状のエステル交換反応物X1
と三菱化成工業株式会社製のポリヒドロキシポリ
オレフイン「ポリテールHA」(水酸基価48、粘
度1000ps以上/25℃)X2とを重量比で4:6の
割合で混合し、25℃又は0℃で静置したが、クリ
アーな溶解状態を保ち、相溶性は極めてすぐれて
いた。(試験例3) 一方、上記の「ポリテールHA」X2にヒマシ油
を配合しようとしたが、「ポリテールHA」とヒ
マシ油はほとんど相溶しなかつた。(「ポリテール
HA」にヒマシ油は重量比で9:1でも相溶しな
い。)(対照試験例2) 水酸基含有化合物XとポリイソシアネートYと
の反応 実施例 1 この実施例1は、水酸基含有化合物Xとしてエ
ステル交換反応物X1を単独で用いた例である。 合成例1で得た油状のエステル交換反応物X1
とヘキサメチレンジイソシアネートYとを
NCO/OH当量比が1.05となるような割合でよく
混合した後デシケーター中で真空脱泡処理し、つ
いで厚さ3mmの金型に注入して120℃、1時間の
条件にて硬化させた。 X1とYとの混合及びこの混合物の脱泡、さら
には金型への注入は、系の粘度が低いため極めて
円滑に短時間で行うことができた。得られた硬化
シートの物性は第4表の通りであり、ウレタンポ
リオールとしてヒマシ油を用いた場合(後記対照
例1)に比し伸長性は大きく改善され、しかも引
張強度、引裂強度、体積固有抵抗は維持されてい
た。 対照例 1 ヒマシ油100gとヘキサメチレンジイソシアネ
ート25gを用いたほかは実施例1と同様にして硬
化シートを得た。結果を第4表に合せて示す。
[Table] Test Example 3, Control Test Example 2 Oily transesterification product obtained in Synthesis Example 2 X 1
and polyhydroxypolyolefin "Polytail HA" manufactured by Mitsubishi Chemical Corporation (hydroxyl value 48 , viscosity 1000ps or more/25℃) The solution remained clearly dissolved, and the compatibility was extremely good. (Test Example 3) On the other hand, an attempt was made to blend castor oil into the above-mentioned "Polytail HA" X 2 , but "Polytail HA" and castor oil were hardly compatible. (“Politaire
HA and castor oil are incompatible even at a weight ratio of 9:1. ) (Comparative Test Example 2) Reaction Example 1 between Hydroxyl Group-Containing Compound X and Polyisocyanate Y This Example 1 is an example in which the transesterification product X 1 was used alone as the hydroxyl group-containing compound X. Oily transesterification product obtained in Synthesis Example 1
and hexamethylene diisocyanate Y
After mixing thoroughly at a ratio such that the NCO/OH equivalent ratio was 1.05, the mixture was vacuum degassed in a desiccator, and then poured into a mold with a thickness of 3 mm and cured at 120° C. for 1 hour. Since the viscosity of the system was low, mixing of X 1 and Y, defoaming of this mixture, and further injection into a mold could be carried out extremely smoothly and in a short time. The physical properties of the obtained cured sheet are shown in Table 4, and the extensibility was greatly improved compared to when castor oil was used as the urethane polyol (Comparative Example 1 described later), and the tensile strength, tear strength, and volume specific properties were greatly improved. Resistance was maintained. Control Example 1 A cured sheet was obtained in the same manner as in Example 1, except that 100 g of castor oil and 25 g of hexamethylene diisocyanate were used. The results are also shown in Table 4.

【表】【table】

【表】 実施例 2〜9 実施例2〜9は、水酸基含有化合物Xとしてエ
ステル交換反応物X1と高粘度炭化水素系ポリオ
ールX2とを併用した例である。 実施例 2 合成例2で得た油状のエステル交換反応物X1
と出光石油化学株式会社製のポリヒドロキシポリ
ブタジエン「PB R−45HT」X2とを重量比1:
1の割合で混合し、ついでこの混合物に対しカル
ボジイミド変性4,4′−ジフエニルメタンジイソ
シアネート(日本ポリウレタン工業株式会社製
「ミリオネートMTL」)YをNCO/OH当量比が
1.05になるように配合し、2分間撹拌後直ちに鋳
型に流し込み、温度120℃で1時間硬化し、厚み
3mmの硬化シートを得た。 上記配合物の粘度低下効果とウレタン硬化物の
物性を第5表に示す。 実施例 3 合成例3で得た油状のエステル交換反応物X1
と出光石油化学株式会社製のポリヒドロキシポリ
ブタジエン「PB R−45HT」X2とを重量比3:
7の割合で混合し、以下実施例2と同様にして
「ミリオネートMTL」Yの配合、流し込み、硬化
を行い、硬化シートを得た。結果を第5表に示
す。 実施例 4 合成例4で得た油状のエステル交換反応物X1
と出光石油化学株式会社製のポリヒドロキシポリ
ブタジエン「PB R−45HT」X2とを重量比4:
6の割合で混合し、以下実施例2と同様にして
「ミリオネートMTL」Yの配合、流し込み、硬化
を行い、硬化シートを得た。結果を第5表に示
す。 対照例 2 出光石油化学株式会社製のポリヒドロキシポリ
ブタジエン「PB R−45HT」X2をウレタンポリ
オールとして単独で用い、以下実施例2と同様に
して「ミリオネートMTL」Yの配合、流し込み、
硬化を行い、硬化シートを得た。結果を第5表に
合せて示す。
[Table] Examples 2 to 9 Examples 2 to 9 are examples in which the transesterification product X 1 and the high viscosity hydrocarbon polyol X 2 were used together as the hydroxyl group-containing compound X. Example 2 Oily transesterification product obtained in Synthesis Example 2 X 1
and polyhydroxypolybutadiene "PB R-45HT" manufactured by Idemitsu Petrochemical Co., Ltd. X 2 at a weight ratio of 1:
Then, to this mixture, carbodiimide-modified 4,4'-diphenylmethane diisocyanate ("Millionate MTL" manufactured by Nippon Polyurethane Industries Co., Ltd.) Y was added to the mixture at a NCO/OH equivalent ratio.
1.05, and after stirring for 2 minutes, it was immediately poured into a mold and cured at a temperature of 120°C for 1 hour to obtain a cured sheet with a thickness of 3 mm. Table 5 shows the viscosity reducing effect of the above formulation and the physical properties of the cured urethane product. Example 3 Oily transesterification product obtained in Synthesis Example 3 X 1
and polyhydroxypolybutadiene "PB R-45HT" manufactured by Idemitsu Petrochemical Co., Ltd. X 2 at a weight ratio of 3:
"Millionate MTL" Y was blended, poured, and cured in the same manner as in Example 2 to obtain a cured sheet. The results are shown in Table 5. Example 4 Oily transesterification product obtained in Synthesis Example 4 X 1
and polyhydroxypolybutadiene "PB R-45HT" manufactured by Idemitsu Petrochemical Co., Ltd. X 2 at a weight ratio of 4:
"Millionate MTL" Y was blended, poured, and cured in the same manner as in Example 2 to obtain a cured sheet. The results are shown in Table 5. Control Example 2 Using polyhydroxypolybutadiene "PB R-45HT" X 2 manufactured by Idemitsu Petrochemical Co., Ltd. alone as the urethane polyol, "Millionate MTL" Y was blended and poured in the same manner as in Example 2.
Curing was performed to obtain a cured sheet. The results are also shown in Table 5.

【表】 実施例 5〜7 合成例5で得た油状のエステル交換反応物X1
と出光石油化学株式会社製のポリヒドロキシポリ
ブタジエン「PB R−45HT」X2とを重量比3:
7(実施例5)、1:1(実施例6)、7:3(実施
例7)の割合で混合し、以下実施例2と同様にし
て「ミリオネートMTL」Yの配合、流し込み、
硬化を行い、硬化シートを得た。結果を第6表に
示す。
[Table] Examples 5 to 7 Oily transesterification product obtained in Synthesis Example 5 X 1
and polyhydroxypolybutadiene "PB R-45HT" manufactured by Idemitsu Petrochemical Co., Ltd. X 2 at a weight ratio of 3:
7 (Example 5), 1:1 (Example 6), and 7:3 (Example 7), and then blended and poured "Millionate MTL" Y in the same manner as in Example 2.
Curing was performed to obtain a cured sheet. The results are shown in Table 6.

【表】 実施例 8 合成例2で得た油状のエステル交換反応物X1
と三菱化成工業株式会社製のポリヒドロキシポリ
オレフイン「ポリテールHA」(水酸基価48、粘
度1000ps以上/25℃)X2とを重量比4:6の割
合で混合し、ついでこの混合物に対しカルボジイ
ミド変性4,4′−ジフエニルメタンジイソシアネ
ート(日本ポリウレタン工業株式会社製「ミリオ
ネートMTL」YをNCO/OH当量比が1.05にな
るように加え、2分間撹拌後直ちに鋳型に流し込
み、温度120℃で1時間硬化し、厚み3mmの硬化
シートを得た。結果を第7表に示す。 なお、「ポリテールHA」は粘度が25℃で
1000ps以上であり、高粘度すぎてそのままでは常
温では二液ウレタンポリオールとしては取扱いが
困難である。 又「ポリテールHA」にヒマシ油を配合しよう
としたが、対照試験例2でも述べたように、「ポ
リテールHA」とヒマシ油はほとんど相溶せず、
作業上有効な粘度低下が期待できない。 対照例 3 「ポリテールHA」X2にフタル酸ジオクチルを
重量比で7:3になるように混合し、以下実施例
8と同様にして「ミリオネートMTL」Yの配合、
流し込み、硬化を行い、硬化シートを得た。結果
を第7表に合せて示す。
[Table] Example 8 Oily transesterification product obtained in Synthesis Example 2 X 1
and polyhydroxypolyolefin "Polytail HA" manufactured by Mitsubishi Chemical Corporation (hydroxyl value 48, viscosity 1000 ps or more /25°C) , 4′-diphenylmethane diisocyanate (“Millionate MTL” manufactured by Nippon Polyurethane Industries Co., Ltd.) was added so that the NCO/OH equivalent ratio was 1.05, and after stirring for 2 minutes, it was immediately poured into a mold and cured at a temperature of 120°C for 1 hour. A cured sheet with a thickness of 3 mm was obtained.The results are shown in Table 7.The viscosity of "Polytail HA" was 25℃.
The viscosity is over 1000 ps, which is so high that it is difficult to handle as a two-component urethane polyol at room temperature. I also tried to mix castor oil with "Polytail HA", but as mentioned in Control Test Example 2, "Polytail HA" and castor oil were hardly compatible.
No effective viscosity reduction can be expected during work. Control example 3 Dioctyl phthalate was mixed with 2 "Polytail HA" X at a weight ratio of 7:3, and then "Millionate MTL" Y was mixed in the same manner as in Example 8.
A cured sheet was obtained by pouring and curing. The results are also shown in Table 7.

【表】 実施例 9 合成例5で得た油状のエステル交換反応物X1
と三井日曹ウレタン株式会社製のポリヒドロキシ
ポリブタジエン「G−1000」(水酸基価73.3、粘
度800ps以上/25℃)X2とを重量比1:1の割合
で混合し、以下実施例8と同様にして「ミリオネ
ートMTL」Yの配合、流し込み、硬化シートを
得た。結果を第8表に示す。 対照例 4 三井日曹ウレタン株式会社製のポリヒドロキシ
ポリブタジエン「G−1000」X2をウレタンポリ
オールとして単独で用い、以下実施例8と同様に
して「ミリオネートMTL」Yの配合、流し込み、
硬化を行つたが、粘度が高いため作業性が劣つ
た。結果を第8表に合せて示す。
[Table] Example 9 Oily transesterification product obtained in Synthesis Example 5 X 1
and polyhydroxypolybutadiene "G-1000" manufactured by Mitsui Nisso Urethane Co., Ltd. (hydroxyl value 73.3, viscosity 800 ps or more / 25 ° C.) "Millionate MTL" Y was mixed, poured, and a cured sheet was obtained. The results are shown in Table 8. Control Example 4 Polyhydroxypolybutadiene "G-1000" X 2 manufactured by Mitsui Nisso Urethane Co., Ltd. was used alone as the urethane polyol, and "Millionate MTL" Y was blended and poured in the same manner as in Example 8.
Although it was cured, the workability was poor due to the high viscosity. The results are also shown in Table 8.

【表】【table】

Claims (1)

【特許請求の範囲】 1 水酸基含有化合物X及びポリイソシアネート
Yよりなる硬化性組成物であつて、水酸基含有化
合物Xの少なくとも一部が、ヒマシ油aと水酸基
を実質上有しない天然油脂bとのエステル交換反
応物X1である硬化性組成物。 2 エステル交換反応物X1が、ヒマシ油a90〜30
重量%と水酸基を実質上有しない天然油脂b10〜
70重量%とのエステル交換反応物である特許請求
の範囲第1項記載の硬化性組成物。 3 水酸基含有化合物Xが、ヒマシ油aと水酸基
を実質上有しない天然油脂bとのエステル交換反
応物X1及び高粘度炭化水素系ポリオールX2より
なることを特徴とする特許請求の範囲第1項記載
の硬化性組成物。
[Scope of Claims] 1. A curable composition comprising a hydroxyl group-containing compound X and a polyisocyanate Y, wherein at least a part of the hydroxyl group-containing compound A curable composition that is transesterification reactant X1 . 2 Transesterification reaction product X 1 is castor oil A90-30
Weight% and natural fats and oils with virtually no hydroxyl groups b10~
The curable composition according to claim 1, which is a transesterification product with 70% by weight. 3. Claim 1, characterized in that the hydroxyl group-containing compound X is comprised of a transesterification product X 1 of castor oil a and a natural oil b having substantially no hydroxyl groups, and a high viscosity hydrocarbon polyol X 2 The curable composition described in .
JP58100067A 1983-06-04 1983-06-04 Curable composition Granted JPS59226016A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58100067A JPS59226016A (en) 1983-06-04 1983-06-04 Curable composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58100067A JPS59226016A (en) 1983-06-04 1983-06-04 Curable composition

Publications (2)

Publication Number Publication Date
JPS59226016A JPS59226016A (en) 1984-12-19
JPS6322216B2 true JPS6322216B2 (en) 1988-05-11

Family

ID=14264115

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58100067A Granted JPS59226016A (en) 1983-06-04 1983-06-04 Curable composition

Country Status (1)

Country Link
JP (1) JPS59226016A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2506645B2 (en) * 1985-11-20 1996-06-12 松下電器産業株式会社 Waterproof electronic control unit
DE19947563A1 (en) * 1999-10-02 2001-04-19 Henkel Kgaa Transesterification polyols for polyurethane prepolymers with specifically adjustable viscosity

Also Published As

Publication number Publication date
JPS59226016A (en) 1984-12-19

Similar Documents

Publication Publication Date Title
US4603188A (en) Curable urethane composition
US4375521A (en) Vegetable oil extended polyurethane systems
US4412033A (en) One-part, curable polyurethane
US5302626A (en) Use of reaction mixtures containing polyester polyols in the production of solid polyurethane materials by casting
US4355130A (en) Polyalphaolefin extended polyurethane systems
WO2016181583A1 (en) Polyol composition for producing polyurethane resin composition
CN112708340A (en) Anti-sagging single-component polyurethane waterproof coating capable of being sprayed and constructed
JPS60188455A (en) Moisture-curing, one-component polyurethane composition
CN113999611B (en) Anti-aging single-component polyurethane waterproof coating
CN107406633B (en) Polyol component for producing PUR foams
JP4621460B2 (en) Liquid polymer composition
JPH0581624B2 (en)
JP2617738B2 (en) Polyester polyol composition
JPS6322216B2 (en)
JPH0370731B2 (en)
CA1186442A (en) One-part, curable polyurethane
JPS63130616A (en) Flexible elastomer composition
CN115595057A (en) Anti-aging single-component polyurethane waterproof coating
CN108178826A (en) A kind of Low temperature-resistanpolyurethane polyurethane footwear material resin and preparation method thereof
JPH0334766B2 (en)
JPH0346005B2 (en)
JPH0351750B2 (en)
JP4545302B2 (en) Electrical insulation material
JPS6314729B2 (en)
JP2889284B2 (en) Method for producing isocyanate-terminated urethane prepolymer composition