JPH0334766B2 - - Google Patents

Info

Publication number
JPH0334766B2
JPH0334766B2 JP58162195A JP16219583A JPH0334766B2 JP H0334766 B2 JPH0334766 B2 JP H0334766B2 JP 58162195 A JP58162195 A JP 58162195A JP 16219583 A JP16219583 A JP 16219583A JP H0334766 B2 JPH0334766 B2 JP H0334766B2
Authority
JP
Japan
Prior art keywords
castor oil
polyol
viscosity
hydroxyl value
partially dehydrated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58162195A
Other languages
Japanese (ja)
Other versions
JPS6053522A (en
Inventor
Tsutomu Kusakawa
Yoshuki Ito
Sadatoshi Ozawa
Takashi Hamaguchi
Kanefumi Komazawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ITOH OIL Manufacturing
Original Assignee
ITOH OIL Manufacturing
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ITOH OIL Manufacturing filed Critical ITOH OIL Manufacturing
Priority to JP58162195A priority Critical patent/JPS6053522A/en
Publication of JPS6053522A publication Critical patent/JPS6053522A/en
Publication of JPH0334766B2 publication Critical patent/JPH0334766B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Sealing Material Composition (AREA)
  • Polyurethanes Or Polyureas (AREA)
  • Paints Or Removers (AREA)
  • Adhesives Or Adhesive Processes (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、ポリオール組成物、特にポリウレタ
ン系硬化物の製造に用いられるポリオール組成物
に関するものである。 炭化水素系化合物のうち水酸基を有するもの
は、二液ポリウレタンシステムの素材として用い
ることができる。なかでも水酸基当量の大きい炭
化水素系ポリオールは、弾性、ゴム接着性、油展
性、防水性、電気絶縁性などの点ですぐれた特質
を有するため広汎に使用されており、特にポリブ
ダジエン系ポリオールは、 塗料耐ピツチングプライマー(特開昭57−
68176号公報) 接着剤ゴム用(特開昭56−72066号公報) 電子部品封止用樹脂(電子技術総合研究所藁
44(3)209頁) をはじめ、広い分野においてさまざまな用途に用
いることが検討されている。 しかしながら一方において、水酸基当量の大き
い炭化水素系ポリオールは高粘度であるため、そ
の取扱いに際し作業性が著しく劣るという重大な
欠点がある。そこで粘度を下げるべく、かなりの
量の溶媒を使用したり、可塑剤やプロセスオイル
を併用したりするなどの工夫がなされているが、
前者にあつては作業環境の悪化、火災の危険、コ
ストの上昇などの問題があり、後者にあつては硬
化物の物性の低下を招くという問題がある。 そこで上記の水酸基当量の大きい高粘度の炭化
水素系ポリオールに低粘度の水酸基含有化合物、
たとえばポリエーテルポリオールやポリエステル
ポリオールを反応性希釈剤として配合することも
考えられるが、水酸基当量の大きい炭化水素系ポ
リオールは一般のポリエーテルポリオールやポリ
エステルポリオールとの相溶性が悪く、所期の目
的を達しがたい。又、高粘度の炭化水素系ポリオ
ールにヒマシ油を配合することも提案されている
が(特開昭58−93717号公報)、これも溶解性に限
界がある上(炭化水素系ポリマーの種類によつて
も異なるが、常温で10%程度或いは多く溶解する
場合でも精々25%程度)、ヒマシ油自体の粘度が
25℃で700cpsと比較的高いこともあつて、十分な
希釈効果、粘度低下効果が得られない。 又、高粘度炭化水素系ポリオールは、それ単独
では、ウレタンポリオールとして用いた場合に硬
化物の機械的性質(特に伸び)が十分ではない。
そこで、たとえばポリブタジエン系ポリオールに
ポリテトラメチレングリコールを配合して伸びを
よくする提案もなされているが(特開昭55−
98220号公報)、この場合は粘度低下効果が望みえ
ない。 上述のような背景から、水酸基当量の大きい高
粘度の炭化水素系ポリオールとよく相溶してその
粘度を低下させ、かつ硬化物の伸びをよくし、し
かも硬化物の他の物性を損わない物質を見出すこ
とが切望されている。 本発明はこのような要望に応えたものである。 本発明のポリオール組成物は、高粘度炭化水素
系ポリオール(A)及び部分的に脱水又はアシル化し
たヒマシ油(B)よりなるものである。 部分的に脱水又はアシル化したヒマシ油(B)は、
高粘度炭化水素系ポリオール(A)に極めてよく相溶
してその粘度を大巾に低下させることができるの
で、取扱いに際しての作業性が著しく改善される
上、ウレタン硬化物の伸びを大巾に向上すること
ができる。特に部分的に脱水したヒマシ油を用い
た場合は、粘度低下効果及び伸びの向上のほか、
硬化物の引張強度、引裂強度などの諸物性をも向
上させることができる。 本発明における高粘度炭化水素系ポリオール(A)
としては、水酸基当量の大きい炭化水素系ポリオ
ール(特に水酸基価が70以下の炭化水素系ポリオ
ール)があげられる。市販品としては、ポリブタ
ジエン系ポリオールである出光石油化学株式会社
製の「PB R−45HT」、ポリブタジエン系ポリ
オールである日本曹達株式会社製の「G−1000」、
ポリオレフイン系ポリオールである三菱化成工業
株式会社製の「ポリテールHA」などが例示でき
る。 このような高粘度炭化水素系ポリオール(A)に配
合する部分的に脱水又はアシル化したヒマシ油(B)
としては、次のようなものがあげられる。 まず部分的に脱水したヒマシ油は、通常の脱水
ヒマシ油の製造と同様に、一般にはヒマシ油を硫
酸、リン酸、p−トルエンスルホン酸、酸性硫酸
塩などの酸性触媒の存在下に加熱することにより
得られる。脱水の程度が余りに小さすぎるとヒマ
シ油そのものと余り差はないので、相溶性改善効
果や粘度低下効果が乏しく、一方脱水の程度が余
りに大きいと水酸基価が小さくなりすぎて硬化物
物性を弱め、ウレタン素材としては不適当にな
る。そこで本発明の目的を達するには、水酸基価
が150〜20、さらに好ましくは140〜35の範囲内に
なるように脱水の程度をコントロールすることが
望ましい。即ちヒマシ油の水酸基価は160、粘度
は約700cps(25℃)であるが、脱水反応を進める
と、反応進行に伴ない水酸基価と粘度が低下して
いく。触媒量の少ない場合は、反応を追いこんで
いくと水酸基価が20以上のまま熱重合がはじまつ
て増粘していく。一方触媒量が多い場合には、反
応を追いこんでいくと水酸基価が75〜5、粘度が
110〜140cps(25℃で)位にまで低下し、さらに加
熱を続けるとそれ以後は水酸基価の低下は余り進
まず、熱重合がはじまつて粘度が増加しはじめ
る。従つて脱水反応の調節は、触媒量、加熱温度
及び反応時間の組合せで行うことができ、反応物
の水酸基価が上述の範囲内になるように条件を設
定すべきである。なお初期重合のはじまつたもの
でも、ヒマシ油より十分に粘度が低く、かつ水酸
基価が上述の範囲に入るものは、本発明の目的に
使用することができる。 部分的にアシル化したヒマシ油は、通常のアシ
ル化手段により製造される。アシル化の中ではア
セチル化が最も重要であり、工業的にはこのアセ
チル化に事実上限られる。アセチル化方法として
は、ケテンを反応させる方法、氷酢酸を反応させ
る方法も採用できるが、工業的には無水酢酸によ
るアセチル化が最も有利である。アシル化の度合
は、上記脱水ヒマシ油の場合と同様に、それが余
りに小さいと相溶性改善効果や粘度低下効果が乏
しく、一方アシル化の度合が余りに大きいと水酸
基価が小さくなりすぎて硬化物物性の低下を招く
ので、アシル化反応物の水酸基価が150〜20、さ
らに好ましくは140〜35の範囲内になるようにア
シル化の程度をコントロールすることが望まし
い。 上記の高粘度炭化水素系ポリオール(A)と部分的
に脱水又はアシル化したヒマシ油(B)との配合割合
は任意に選択しうるが、(A)90〜20重量%、(B)10〜
80重量%の範囲から選ぶことが望ましい。特に好
ましい範囲は、(A)85〜35重量%、(B)15〜65重量%
である。 上記の高粘度炭化水素系ポリオール(A)と部分的
に脱水又はアシル化したヒマシ油(B)とよりなるポ
リオール組成物(なお、この組成物に他の水酸基
含有化合物(たとえばヒマシ油)や可塑剤を配合
してもよい。)は、ウレタンポリオールとして有
用である。即ちこのポリオール組成物にポリイソ
シアネートを反応させることにより、すぐれた物
性を有する硬化物が得られる。 このようなポリイソシアネートとしては、トリ
レンジイソシアネート、ジフエニルメタンジイソ
シアネート、ナフタレンジイソシアネート、キシ
リレンジイソシアネート、ジフエニルスルホンジ
イソシアネート、トリフエニルメタンジイソシア
ネート、ヘキサメチレンジイソシアネート、3−
イソシアネートメチル−3,5,5−トリメチル
シクロヘキシルイソシアネート、3−イソシアネ
ートエチル−3,5,5−トリメチルシクロヘキ
シルイソシアネート、3−イソシアネートエチル
−3,5,5−トリエチルシクロヘキシルイソシ
アネート、ジフエニルプロパンジイソシアネー
ト、フエニレンジイソシアネート、シクロヘキシ
リレンジイソシアネート、3,3′−ジイソシアネ
ートジプロピルエーテル、トリフエニルメタント
リイソシアネート、ジフエニルエーテル−4,
4′−ジイソシアネートなどのポリイソシアネート
或いはそのイソシアネートをフエノール類、オキ
シム類、イミド類、メルカプタン類、アルコール
類、ε−カプロラクタム、エチレンイミン、α−
ピロリドン、マロン酸ジエチル、亜硫酸水素ナト
リウム、ホウ酸等でブロツク化したものがあげら
れる。 上記ポリオール組成物とポリイソシアネートと
の配合割合は、ポリイソシアネート中のイソシア
ネート基がポリオール組成物中の水酸基の総量に
対し0.8〜1.4当量となるようにするのが、十分な
硬化が図られるので好ましい。 硬化は低温でゆつくり行つてもよく、加熱によ
り促進させてもよい。 上記配合物には、タルク、クレー、炭酸カルシ
ウム、バライタ粉、シリカ粉、アルミナ、カーボ
ンブラツク、酸化チタン、酸化鉄をはじめとする
充填剤又は顔料、リン化合物、ハロゲン化合物、
酸化アンチモン等の難燃剤、酸化防止剤、老化防
止剤、紫外線吸収剤など各種の添加剤を必要に応
じ配合してもよい。 本発明のポリオール組成物は、これにポリイソ
シアネートを配合することにより、注型用組成
物、含浸用組成物、コーテイング剤、接着剤、塗
料、コーキング材、ポツテイング材、シーラン
ト、発泡体、エンカプシユレイテイング材、ライ
ニング材、パツキング材、工業用ゴム資材、ロケ
ツト燃料バインダーなどの用途に有用である。 次に実施例をあげて、本発明をさらに説明す
る。 部分脱水ヒマシ油の合成 合成例 1〜4 ヒマシ油(水酸基価160、粘度700cps/25℃)
300gと酸性硫酸ソーダ0.15gを温度計及びかき
まぜ器を備えた三ツ口フラスコに仕込み、減圧下
に加熱した。脱水反応は165〜190℃ではじまり、
その後は徐々に昇温した。190〜250℃、1時間で
反応を終了し、冷却後150℃で酸性白土を加えて
漏過精製した。この脱水反応により、水酸基価
118、粘度400cps/25℃の部分脱水ヒマシ油が得
られた。 又次表のように反応条件を変えて、同様にして
部分脱水ヒマシ油を得た。 以上の脱水反応条件及び生成物の特性を第1表
に示す。
The present invention relates to a polyol composition, particularly a polyol composition used for producing a cured polyurethane product. Among hydrocarbon compounds, those having hydroxyl groups can be used as materials for two-component polyurethane systems. Among them, hydrocarbon polyols with large hydroxyl equivalents are widely used because they have excellent properties such as elasticity, rubber adhesion, oil spreadability, waterproofness, and electrical insulation properties.In particular, polybutadiene polyols Paint pitting-resistant primer (Japanese Patent Application Laid-Open No. 1983
68176 Publication) Used for various purposes in a wide range of fields, including adhesive rubber (Japanese Patent Application Laid-Open No. 56-72066) Resin for sealing electronic components (Electronic Technology Research Institute Waraho 44 (3) p. 209) This is being considered. On the other hand, however, hydrocarbon polyols with a large hydroxyl equivalent have a high viscosity, and therefore have a serious drawback of extremely poor workability when handling them. In order to lower the viscosity, efforts have been made to use a considerable amount of solvent, or to use plasticizers and process oil in combination.
In the former case, there are problems such as deterioration of the working environment, danger of fire, and increase in cost, and in the case of the latter, there is a problem in that the physical properties of the cured product deteriorate. Therefore, a low viscosity hydroxyl group-containing compound is added to the above-mentioned high viscosity hydrocarbon polyol with a large hydroxyl equivalent.
For example, it is possible to mix polyether polyols and polyester polyols as reactive diluents, but hydrocarbon polyols with large hydroxyl equivalents have poor compatibility with general polyether polyols and polyester polyols, making it difficult to achieve the intended purpose. Unreachable. It has also been proposed to blend castor oil into a high viscosity hydrocarbon polyol (Japanese Patent Laid-Open No. 58-93717), but this also has limited solubility (depending on the type of hydrocarbon polymer). The viscosity of castor oil itself is about 10%, or at most 25% even if it dissolves at room temperature, although it varies depending on the
Partly because it is relatively high at 700 cps at 25°C, sufficient dilution and viscosity reduction effects cannot be obtained. Further, when a high viscosity hydrocarbon polyol is used alone as a urethane polyol, the mechanical properties (especially elongation) of the cured product are not sufficient.
Therefore, proposals have been made to improve elongation by blending polytetramethylene glycol with polybutadiene polyol (Japanese Unexamined Patent Application Publication No. 1985-1999).
No. 98220), in this case no viscosity reducing effect can be expected. From the above-mentioned background, it is well compatible with high viscosity hydrocarbon polyols with a large hydroxyl equivalent, lowers the viscosity, improves the elongation of the cured product, and does not impair other physical properties of the cured product. There is a strong desire to find substance. The present invention meets these demands. The polyol composition of the present invention comprises a high viscosity hydrocarbon polyol (A) and partially dehydrated or acylated castor oil (B). Partially dehydrated or acylated castor oil (B) is
It is extremely compatible with high-viscosity hydrocarbon polyol (A) and can greatly reduce its viscosity, which not only significantly improves workability when handling, but also greatly reduces the elongation of cured urethane products. can be improved. Particularly when using partially dehydrated castor oil, in addition to reducing viscosity and improving elongation,
Various physical properties such as tensile strength and tear strength of the cured product can also be improved. High viscosity hydrocarbon polyol (A) in the present invention
Examples include hydrocarbon polyols with a large hydroxyl equivalent (particularly hydrocarbon polyols with a hydroxyl value of 70 or less). Commercially available products include "PB R-45HT" manufactured by Idemitsu Petrochemical Co., Ltd., which is a polybutadiene-based polyol, "G-1000" manufactured by Nippon Soda Co., Ltd., which is a polybutadiene-based polyol,
An example is "Polytail HA" manufactured by Mitsubishi Chemical Industries, Ltd., which is a polyolefin polyol. Partially dehydrated or acylated castor oil (B) to be blended with such high viscosity hydrocarbon polyol (A)
Examples include the following: Partially dehydrated castor oil is first prepared by heating castor oil in the presence of an acidic catalyst such as sulfuric acid, phosphoric acid, p-toluenesulfonic acid, or acidic sulfate, similar to the production of conventional dehydrated castor oil. It can be obtained by If the degree of dehydration is too small, there is not much difference from castor oil itself, so the compatibility improvement effect and viscosity reduction effect will be poor. On the other hand, if the degree of dehydration is too large, the hydroxyl value will be too small, weakening the physical properties of the cured product. It is unsuitable as a urethane material. Therefore, in order to achieve the object of the present invention, it is desirable to control the degree of dehydration so that the hydroxyl value is within the range of 150 to 20, more preferably 140 to 35. That is, castor oil has a hydroxyl value of 160 and a viscosity of about 700 cps (25°C), but as the dehydration reaction progresses, the hydroxyl value and viscosity decrease as the reaction progresses. If the amount of catalyst is small, as the reaction is allowed to proceed, thermal polymerization will begin while the hydroxyl value remains above 20, and the viscosity will increase. On the other hand, when the amount of catalyst is large, the hydroxyl value increases to 75 to 5 and the viscosity decreases as the reaction progresses.
When the hydroxyl value decreases to about 110 to 140 cps (at 25°C) and heating is continued, the hydroxyl value does not decrease much after that, thermal polymerization begins, and the viscosity begins to increase. Therefore, the dehydration reaction can be controlled by a combination of the amount of catalyst, heating temperature and reaction time, and the conditions should be set so that the hydroxyl value of the reactant falls within the above range. Even if initial polymerization has begun, those having a sufficiently lower viscosity than castor oil and having a hydroxyl value within the above-mentioned range can be used for the purpose of the present invention. Partially acylated castor oil is produced by conventional acylation procedures. Among the acylations, acetylation is the most important, and the industrial limit is actually limited to this acetylation. As the acetylation method, a method of reacting with ketene or a method of reacting with glacial acetic acid can be adopted, but acetylation with acetic anhydride is industrially most advantageous. As in the case of dehydrated castor oil, if the degree of acylation is too small, the effect of improving compatibility and reducing the viscosity will be poor; on the other hand, if the degree of acylation is too large, the hydroxyl value will be too small, resulting in a cured product. It is desirable to control the degree of acylation so that the hydroxyl value of the acylated reaction product is within the range of 150 to 20, more preferably 140 to 35, since this may lead to a decrease in physical properties. The blending ratio of the above-mentioned high viscosity hydrocarbon polyol (A) and partially dehydrated or acylated castor oil (B) can be selected arbitrarily, but (A) 90 to 20% by weight, (B) 10% by weight, ~
It is desirable to choose from a range of 80% by weight. Particularly preferred ranges are (A) 85-35% by weight, (B) 15-65% by weight
It is. A polyol composition consisting of the above-mentioned high viscosity hydrocarbon polyol (A) and partially dehydrated or acylated castor oil (B) (in addition, this composition may contain other hydroxyl group-containing compounds (for example, castor oil) and plasticizers). ) is useful as a urethane polyol. That is, by reacting this polyol composition with a polyisocyanate, a cured product having excellent physical properties can be obtained. Such polyisocyanates include tolylene diisocyanate, diphenylmethane diisocyanate, naphthalene diisocyanate, xylylene diisocyanate, diphenylsulfone diisocyanate, triphenylmethane diisocyanate, hexamethylene diisocyanate, 3-
Methyl isocyanate-3,5,5-trimethylcyclohexyl isocyanate, ethyl 3-isocyanate-3,5,5-trimethylcyclohexyl isocyanate, ethyl 3-isocyanate-3,5,5-triethylcyclohexyl isocyanate, diphenylpropane diisocyanate, phenylene Diisocyanate, cyclohexylylene diisocyanate, 3,3'-diisocyanate dipropyl ether, triphenylmethane triisocyanate, diphenyl ether-4,
Polyisocyanates such as 4'-diisocyanate or their isocyanates are combined with phenols, oximes, imides, mercaptans, alcohols, ε-caprolactam, ethyleneimine, α-
Examples include those blocked with pyrrolidone, diethyl malonate, sodium bisulfite, boric acid, etc. The blending ratio of the polyol composition and polyisocyanate is preferably such that the isocyanate groups in the polyisocyanate are 0.8 to 1.4 equivalents relative to the total amount of hydroxyl groups in the polyol composition, since sufficient curing can be achieved. . Curing may be carried out slowly at low temperatures or may be accelerated by heating. The above formulations include fillers or pigments including talc, clay, calcium carbonate, baryta powder, silica powder, alumina, carbon black, titanium oxide, iron oxide, phosphorus compounds, halogen compounds,
Various additives such as flame retardants such as antimony oxide, antioxidants, anti-aging agents, and ultraviolet absorbers may be added as necessary. The polyol composition of the present invention can be used in casting compositions, impregnating compositions, coating agents, adhesives, paints, caulking materials, potting materials, sealants, foams, encapsulants, etc. by blending polyisocyanates therewith. It is useful for applications such as syringing materials, lining materials, packing materials, industrial rubber materials, and rocket fuel binders. Next, the present invention will be further explained with reference to Examples. Synthesis example of partially dehydrated castor oil 1-4 Castor oil (hydroxyl value 160, viscosity 700cps/25℃)
300 g and 0.15 g of acidic sodium sulfate were placed in a three-necked flask equipped with a thermometer and a stirrer, and heated under reduced pressure. The dehydration reaction begins at 165-190℃,
After that, the temperature gradually increased. The reaction was completed in 1 hour at 190 to 250°C, and after cooling, acid clay was added at 150°C for filter purification. Due to this dehydration reaction, the hydroxyl value
118, partially dehydrated castor oil with a viscosity of 400 cps/25°C was obtained. Partially dehydrated castor oil was also obtained in the same manner by changing the reaction conditions as shown in the following table. The above dehydration reaction conditions and properties of the product are shown in Table 1.

【表】 部分アセチル化ヒマシ油の合成 合成例 5〜7 ヒマシ油(水酸基価160、粘度700cps/25℃)
310gと無水酢酸11gを温度計、かきまぜ器及び
還流コンデンサーを備えたフラスコに仕込み、
120〜150℃に加熱し、約2時間継続させた。つい
で還流コンデンサーを蒸留コンデンサーに代えて
徐々に昇温し、副生した酢酸と未反応無水酢酸を
蒸留回収した。この間アスピレーターでしだいに
減圧度を高めた。系の温度は約1時間後には200
℃に達したので、この温度に15分継続後、冷却し
た。このアセチル化反応により、水酸基価140、
粘度550cps/25℃、酸価0.3の部分アセチル化ヒ
マシ油が得られた。 又次表のように無水酢酸の量を変え、同様にし
て部分アセチル化ヒマシ油を得た。 以上の仕込条件及び生成物の特性を第2表に示
す。
[Table] Synthesis example of partially acetylated castor oil 5-7 Castor oil (hydroxyl value 160, viscosity 700cps/25℃)
310 g and 11 g of acetic anhydride were placed in a flask equipped with a thermometer, stirrer, and reflux condenser.
Heating was continued to 120-150°C for approximately 2 hours. Then, the reflux condenser was replaced with a distillation condenser, and the temperature was gradually raised to recover by-product acetic acid and unreacted acetic anhydride by distillation. During this time, the degree of decompression was gradually increased using an aspirator. The temperature of the system is 200 after about 1 hour.
℃ was reached, this temperature was continued for 15 minutes and then cooled. This acetylation reaction results in a hydroxyl value of 140,
Partially acetylated castor oil with a viscosity of 550 cps/25°C and an acid value of 0.3 was obtained. Also, partially acetylated castor oil was obtained in the same manner by changing the amount of acetic anhydride as shown in the following table. Table 2 shows the above preparation conditions and product characteristics.

【表】【table】

【表】 高粘度炭化水素系ポリオールとの相溶性試験 実施例1〜5,対照例1 高粘度炭化水素系ポリオールの一つである出光
石油化学株式会社製「PBR−45HT」(A)に、25℃
又は0℃の条件下に上記合成例1,2,5,6又
は7で得た部分的に脱水又はアセチル化したヒマ
シ油(B)を種々の比率で混合後、同温度に一昼夜静
置して相溶性を調べた。ここで「PBR−45HT」
とは、数平均分子量2800、官能基数2.2〜2.4、水
酸基価46、ヨウ素価398の特性値を有するポリブ
タジエン系ポリオールである。 結果を第3表に示す。なお、実施例1,2,
3,4,5はこの順の合成例1,2,5,6,7
で得た部分脱水又はアセチル化ヒマシ油を混合し
た場合、対照例1はヒマシ油を混合した場合であ
る。
[Table] Compatibility test examples 1 to 5 with high viscosity hydrocarbon polyols, comparative example 1 "PBR-45HT" (A) manufactured by Idemitsu Petrochemical Co., Ltd., which is one of the high viscosity hydrocarbon polyols, 25℃
Or, after mixing the partially dehydrated or acetylated castor oil (B) obtained in Synthesis Examples 1, 2, 5, 6, or 7 above at 0°C in various ratios, leave it at the same temperature overnight. The compatibility was investigated. Here "PBR-45HT"
is a polybutadiene polyol having a number average molecular weight of 2800, a functional group number of 2.2 to 2.4, a hydroxyl value of 46, and an iodine value of 398. The results are shown in Table 3. In addition, Examples 1, 2,
3, 4, 5 are synthesis examples 1, 2, 5, 6, 7 in this order
When the partially dehydrated or acetylated castor oil obtained in 1 was mixed, Control Example 1 was a case where castor oil was mixed.

【表】 ポリオール組成物とポリイソシアネートとの反応 実施例 6 出光石油化学株式会社製のポリブタジエン系ポ
リオール「PBR−45HT」(A)と合成例1で得た部
分脱水ヒマシ油(B)とを重量比7:3の割合で混合
し、ついでこの混合物に対しカルボジイミド変性
4,4′−ジフエニルメタンジイソシアネート(日
本ポリウレタン工業株式会社製「ミリオネート
MTL」)をNCO/OH当量比が1.05になるように
配合し、2分間撹拌後直ちに鋳型に流し込み、温
度120℃で1時間硬化し、厚み3mmの硬化シート
を得た。 上記(A)及び(B)の混合物の粘度と上記で得られた
硬化シートの物性を第4表に示す。 実施例 7 ポリブタジエン系ポリオール「PBR−45HT」
(A)、合成例2で得た部分脱水ヒマシ油(B)及びヒマ
シ油を重量比で6:2:2の割合で混合したほか
は実施例6と同様にして硬化シートを得た。結果
を第4表に示す。 実施例 8 ポリブタジエン系ポリオール「PBR−45HT」
(A)と合成例3で得た部分脱水ヒマシ油(B)とを重量
比で8:2の割合で混合したほかは実施例6と同
様にして硬化シートを得た。結果を第4表に示
す。 実施例 9 ポリブタジエン系ポリオール「PBR−45HT」
(A)と合成例4で得た部分脱水ヒマシ油(B)とを重量
比で8:2の割合で混合したほかは実施例6と同
様にして硬化シートを得た。結果を第4表に示
す。 対照例 2 ポリブタジエン系ポリオール「PBR−45HT」
(A)を単独でウレタンポリオールとして用い、以下
実施例6と同様にして「ミリオネートMTL」の
配合、流し込み、硬化を行い、硬化シートを得
た。結果を第4表に示す。
[Table] Example of reaction between polyol composition and polyisocyanate 6 The weight of polybutadiene polyol "PBR-45HT" manufactured by Idemitsu Petrochemical Co., Ltd. (A) and partially dehydrated castor oil obtained in Synthesis Example 1 (B) The mixture was mixed at a ratio of 7:3, and then carbodiimide-modified 4,4'-diphenylmethane diisocyanate ("Millionate" manufactured by Nippon Polyurethane Industries, Ltd.) was added to the mixture.
MTL") was blended so that the NCO/OH equivalent ratio was 1.05, and after stirring for 2 minutes, it was immediately poured into a mold and cured at a temperature of 120°C for 1 hour to obtain a cured sheet with a thickness of 3 mm. Table 4 shows the viscosity of the mixture of (A) and (B) above and the physical properties of the cured sheet obtained above. Example 7 Polybutadiene polyol “PBR-45HT”
A cured sheet was obtained in the same manner as in Example 6, except that (A), the partially dehydrated castor oil obtained in Synthesis Example 2 (B), and castor oil were mixed in a weight ratio of 6:2:2. The results are shown in Table 4. Example 8 Polybutadiene polyol “PBR-45HT”
A cured sheet was obtained in the same manner as in Example 6, except that (A) and the partially dehydrated castor oil (B) obtained in Synthesis Example 3 were mixed at a weight ratio of 8:2. The results are shown in Table 4. Example 9 Polybutadiene polyol “PBR-45HT”
A cured sheet was obtained in the same manner as in Example 6, except that (A) and the partially dehydrated castor oil (B) obtained in Synthesis Example 4 were mixed at a weight ratio of 8:2. The results are shown in Table 4. Control example 2 Polybutadiene polyol “PBR-45HT”
Using (A) alone as the urethane polyol, "Millionate MTL" was blended, poured, and cured in the same manner as in Example 6 to obtain a cured sheet. The results are shown in Table 4.

【表】 実施例 10 ポリブタジエン系ポリオール「PBR−45HT」
(A)と合成例5で得た部分アセチル化ヒマシ油(B)と
を重量比で7:3の割合で混合したほかは実施例
6と同様にして硬化シートを得た。 実施例 11 ポリブタジエン系ポリオール「PBR−45HT」
(A)と合成例5で得た部分アセチル化ヒマシ油(B)と
を重量比で5:5の割合で混合したほかは実施例
6と同様にして硬化シートを得た。 実施例 12 ポリブタジエン系ポリオール「PBR−45HT」
(A)と合成例6で得た部分アセチル化ヒマシ油(B)と
を重量比で7:3の割合で混合したほかは実施例
6と同様にして硬化シートを得た。 以上実施例10〜12の結果を第6表に示す。なお
先に述べた対照例2の結果も再度この第6表に示
す。
[Table] Example 10 Polybutadiene polyol “PBR-45HT”
A cured sheet was obtained in the same manner as in Example 6, except that (A) and the partially acetylated castor oil (B) obtained in Synthesis Example 5 were mixed at a weight ratio of 7:3. Example 11 Polybutadiene polyol “PBR-45HT”
A cured sheet was obtained in the same manner as in Example 6, except that (A) and the partially acetylated castor oil (B) obtained in Synthesis Example 5 were mixed at a weight ratio of 5:5. Example 12 Polybutadiene polyol “PBR-45HT”
A cured sheet was obtained in the same manner as in Example 6, except that (A) and the partially acetylated castor oil (B) obtained in Synthesis Example 6 were mixed at a weight ratio of 7:3. The results of Examples 10 to 12 are shown in Table 6. Furthermore, the results of Comparative Example 2 mentioned above are also shown in this Table 6.

【表】 上表において、ポリブタジエン系ポリオールに
部分アセチル化ヒマシ油を混合した実施例10〜12
の硬度と引張強度は、ポリブタジエン系ポリオー
ル単独使用の場合に比し若干低下しているが、部
分アセチル化ヒマシ油併用の場合の粘度低下効果
及び硬化物の伸びの向上効果が大きいので、硬度
及び引張強度の不利を補つて余りがある。
[Table] In the above table, Examples 10 to 12 in which partially acetylated castor oil was mixed with polybutadiene polyol
Although the hardness and tensile strength of polybutadiene-based polyol are slightly lower than when polybutadiene-based polyol is used alone, the combined use of partially acetylated castor oil has a large effect of reducing viscosity and improving the elongation of the cured product, so the hardness and tensile strength of This more than makes up for the disadvantage in tensile strength.

Claims (1)

【特許請求の範囲】 1 高粘度炭化水素系ポリオール(A)及び部分的に
脱水又はアシル化したヒマシ油(B)よりなるポリオ
ール組成物。 2 高粘度炭化水素系ポリオール(A)と部分的に脱
水又はアシル化したヒマシ油(B)との配合割合が、
(A)90〜20重量%、(B)10〜80重量%である特許請求
の範囲第1項記載の組成物。 3 部分的に脱水又はアシル化したヒマシ油(B)の
水酸基価が、150〜20である特許請求の範囲第1
項記載の組成物。
[Claims] 1. A polyol composition comprising a high viscosity hydrocarbon polyol (A) and partially dehydrated or acylated castor oil (B). 2 The blending ratio of high viscosity hydrocarbon polyol (A) and partially dehydrated or acylated castor oil (B) is
The composition according to claim 1, wherein (A) is 90 to 20% by weight and (B) is 10 to 80% by weight. 3. Claim 1, wherein the partially dehydrated or acylated castor oil (B) has a hydroxyl value of 150 to 20.
Compositions as described in Section.
JP58162195A 1983-09-02 1983-09-02 Polyol composition Granted JPS6053522A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58162195A JPS6053522A (en) 1983-09-02 1983-09-02 Polyol composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58162195A JPS6053522A (en) 1983-09-02 1983-09-02 Polyol composition

Publications (2)

Publication Number Publication Date
JPS6053522A JPS6053522A (en) 1985-03-27
JPH0334766B2 true JPH0334766B2 (en) 1991-05-23

Family

ID=15749800

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58162195A Granted JPS6053522A (en) 1983-09-02 1983-09-02 Polyol composition

Country Status (1)

Country Link
JP (1) JPS6053522A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62100513A (en) * 1985-10-28 1987-05-11 Ito Seiyu Kk Curable composition
DE4017444A1 (en) * 1990-05-30 1991-12-12 Henkel Kgaa BREAD SIZE FOR SEALING CABLE SLEEVES
DE4438351A1 (en) * 1994-10-27 1996-05-02 Boley Alberingk Gmbh Use of partially dehydrated castor oils for the preparation of aqueous polyurethane dispersions and coatings produced using these aqueous polyurethane dispersions
DE10063431C1 (en) * 2000-12-20 2001-11-08 Henkel Ecolab Gmbh & Co Ohg Aqueous, polymeric floor coating composition, contains polyurethane with a polyol component containing partly dehydrated castor oil and film-forming emulsion polymer with amino or acid and crosslinking groups
JP5745971B2 (en) * 2011-08-18 2015-07-08 東邦瓦斯株式会社 Urethane resin composition for lining

Also Published As

Publication number Publication date
JPS6053522A (en) 1985-03-27

Similar Documents

Publication Publication Date Title
KR100218208B1 (en) Moisture-curable urethane-based sealing composition
FI80059B (en) DOUBLE COMPONENTS WITHOUT FREQUENCY FOR FRAMSTAELLNING.
WO2014136800A1 (en) One-component moisture-curable composition
JPH06507437A (en) One package polyurethane/thermoplastic plastisol composition
US3941855A (en) Shaped polyurethane articles and a method for making them
US4602071A (en) Process for the production of oligourethanes containing mercapto groups and their use as binders for coating and sealing compositions hardenable by oxidation and as additives for epoxide resins
JP5227561B2 (en) Urea resin composition
JPH0334766B2 (en)
JP2006077049A (en) Liquid polymer composition
JPH0581624B2 (en)
CN111117549B (en) Single-component polyurethane sealant prepared by using PAPI (polymethylacrylate polyimide)
JP3772385B2 (en) Two-component curable polyurethane resin composition and method for producing the same
CN113136162B (en) High-temperature-resistant high-humidity-resistant double-component polyurethane flame-retardant pouring sealant and preparation method thereof
US5004794A (en) Isocyanate prepolymers
JPH0370731B2 (en)
US5360871A (en) Vinyl chloride resin-based composition and packings made therefrom
JP3415947B2 (en) Thermosetting flexible polyurethane elastomer composition
CN114144490A (en) Urethane adhesive composition
JPH032887B2 (en)
JPH0218684B2 (en)
JPH09169828A (en) Polyurethane elastomer composition for casting and product of casting thereof
JP2668505B2 (en) Flame retardant elastomer
JPH0420582A (en) Solventless adhesive
JPS6248988B2 (en)
JP2003113217A (en) Two-pack curable polyurethane resin composition