JPS6322200B2 - - Google Patents

Info

Publication number
JPS6322200B2
JPS6322200B2 JP58026396A JP2639683A JPS6322200B2 JP S6322200 B2 JPS6322200 B2 JP S6322200B2 JP 58026396 A JP58026396 A JP 58026396A JP 2639683 A JP2639683 A JP 2639683A JP S6322200 B2 JPS6322200 B2 JP S6322200B2
Authority
JP
Japan
Prior art keywords
tank
denitrification
nitrification
reaeration
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58026396A
Other languages
Japanese (ja)
Other versions
JPS59154197A (en
Inventor
Koichi Takekura
Yasuo Yoshinaga
Kazuyoshi Pponda
Makoto Ueda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP2639683A priority Critical patent/JPS59154197A/en
Publication of JPS59154197A publication Critical patent/JPS59154197A/en
Publication of JPS6322200B2 publication Critical patent/JPS6322200B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、有機性汚水の生物学的脱窒法に関
し、更に詳しく述べるならばし尿系汚水、食品廃
液、特殊工場廃水等の有機性汚水の硝化液循環方
式による生物学的脱窒法に関する。 硝化液循環方式による有機性汚水の生物学的脱
窒法は、よく知られており、装置効率が高く、ラ
ンニングコストが低い等の利点から広く用いられ
ている。これは、供給される汚水を脱窒槽及び次
いで硝化槽に供給し、この硝化槽を経た硝化液を
大量に脱窒槽に循環し、処理する方法である。生
物学的脱窒法は、このように好気的条件下に行わ
れる硝化工程と嫌気的条件下に行われる脱窒工程
の2段階に分けられるもので、微生物の作用によ
りアンモニア性窒素(NH4 +−N)を亜硝酸性窒
素(NO2 -−N)及び硝酸性窒素(NO3 -−N)
を経て最終的に窒素ガスにまで還元分解する。 このような硝化液循環脱窒素処理方法におい
て、最近では、汚泥濃度を高くしたり、酸素供給
効率を増大させる等の工夫により、装置効率の改
善がなされているけれども、有機性汚水の生物学
的脱窒を高負荷で行うためにはMLSS濃度を高く
維持しなければならないが、従来の重力沈降によ
る固液分離では汚泥の沈降速度や濃縮濃度に限界
があること及びMLSS濃度を高く維持して高負荷
処理を行う場合、酸素源として空気を用いると、
必要空気量が莫大となり、消費エネルギーが著し
く増大すること等の欠点があつた。このため、本
発明者らは、先に、第1図に示す如きフローによ
り、硝化槽6及び再曝気槽9に高濃度(例えば、
少なくとも50容量%)の酸素を含むガス5,7を
供給し、そして再曝気槽からの混合液を遠心分離
機12を用いて濃縮汚泥3と分離液13に分離す
ることを試みた。このプロセスにより、高負荷処
理が可能となると同時に、硝化槽においては溶存
酸素の維持が可能で、またガス量も少なく発泡の
問題も生じないという利点が得られた。 しかしながら、この第1図に示す如きプロセス
においてもなお、下記のような問題は未解決であ
つた。 1 し尿中の有機物の生物分解(第1脱窒槽4)
により生成した炭酸ガスが液相に溶解し、密閉
式の硝化槽6及び再曝気槽9で液相の炭酸ガス
が気相に放散されるため、気相酸素濃度が低下
し、酸素利用効率が低下する。 2 遠心濃縮機12の分離液13中のSSは、濃
縮汚泥3中のSSに比較して軽く、かつフロツ
クが破砕されているので、そのまま沈澱分離し
ても高濃度の沈澱汚泥が得られず、かつ処理水
中のSSも多く、凝集沈澱を行うに際してはフ
ロツク形成のための凝集剤を必要とする。 3 遠心濃縮機12からの分離液13中のSSは
200mg/l以上、通常は約2000mg/lであるた
め、流入汚水1中のBODが約5000mg/l以下
である場合には、硝化槽6における所定の
MLSS濃度の保持が不可能となる。 本発明の主要な目的は、上記の如き有機性汚水
の生物学的脱窒において、酸素利用効率を高め、
高負荷処理を可能とし、また動力や凝集剤の消費
を節減して、効率のよい処理方法を実現すること
にある。 本発明によれば、即ち、硝化液循環方式による
有機性汚水の生物学的脱窒法が提供されるのであ
つて、この方法は、密閉された硝化槽に少なくと
も50容量%の酸素を含むガスを供給し、前記硝化
槽からの、又は前記硝化槽の後に第2脱窒槽が設
けられている場合には前記第2脱窒槽からの混合
液の全量を遠心濃縮機により濃縮汚泥と分離液に
分離し、前記濃縮汚泥の少なくとも一部を第1脱
窒槽に返送するとともに、前記分離液を再曝気槽
に導くことを特徴とする。 以下、添附図面を参照しながら、本発明の方法
を具体的に説明する。 第1図は、本発明に到る間に検討されたプロセ
スを摸式的に示すフローチヤートである。第2,
3及び4図は、それぞれ、本発明方法の一例を摸
式的に示すフローチヤートである。これらの例に
おいて、有機性汚水(例えば、し尿)1は、遠心
濃縮機12からの濃縮汚泥3及び所望により沈澱
槽18からの返送汚泥21と、並びに硝化槽6か
らの循環硝化液2とともに、嫌気的条件下にある
第1脱窒槽4に導入され、循環硝化液2中の
NO2 -、NO3 -は汚水1中のBOD成分によつてN2
ガスに還元分解される。一方、汚水1中のNH4 +
は第1脱窒槽4をそのまま通過し、好気的条件下
にある硝化槽6に導かれてNO2 -、NO3 -に硝化
され、この硝化混合液の一部は上記循環硝化液2
として第1脱窒槽4に循環され、また残部は次工
程である第2脱窒槽8へ送られる。 硝化槽6は密閉タイプであり、その入口部にお
いて少なくとも50容量%の酸素を含むガス5が供
給され、この硝化槽6からの排出ガス7は再曝気
槽9へ送られて、処理液の再曝気のために利用さ
れ、残留するBOD成分が除去される。しかし、
第3図に示す如く、少なくとも50容量%の酸素を
含むガス5′を再曝気槽9に供給し、この再曝気
槽9の排出ガスを硝化槽6に対して前記供給ガス
5として供給してもよい。ただし、この場合には
再曝気槽9からの排出ガス即ち硝化槽6への供給
ガスが少なくとも50容量%の酸素を含んでいなけ
ればならない。また、第4図に示す如く、硝化槽
6からの排出ガス7を、第3図の場合と同様に、
そのまま系外に放出してもよく、この場合再曝気
槽9には別途に少なくとも50容量%の酸素を含む
ガス5′が供給される。 しかして、第1図に示す如き、本発明者らが先
に開発した方法においては、第2脱窒槽8で更に
脱窒された処理液は次いで再曝気槽9に送られて
残留BODが除去され、そしてこの処理液11が
遠心濃縮機12へ送られる。そして、ここで分離
された濃縮汚泥3はその一部又は全部が第1脱窒
槽4へ返送され、分離液13は次工程の混合槽1
4へ送られる。しかるに、本発明に係る第2〜4
図に示す方法においては、第2脱窒槽8からの処
理液11′は先ず遠心濃縮機12に送られるので
ある。 この遠心濃縮機12で分離された濃縮汚泥3の
一部又は全部は第1脱窒槽4へ返送され、残部が
あればこれは系外に放出され、そして分離液13
は次工程の再曝気槽9へ送られる。再曝気槽9で
残留BODが除去された処理液22は次いで混合
槽14へ導かれ、ここで無機凝集剤16と混合さ
れ、次いで凝集槽15に導かれて高分子凝集剤1
7と混合され、次に沈澱槽18へ導かれる。ここ
で、上澄液は処理水19として放流され、沈澱し
た汚泥20は所望ならばその一部が返送汚泥21
として第1脱窒槽4へ返送され、残部が余剰汚泥
として除去される。 尚、本発明の方法においては、上記に説明した
工程のうち、第2脱窒槽8、混合槽14、凝集槽
15及び沈澱槽18の工程はそれぞれ所望工程で
あり、必要に応じて省略することができる。 以上に説明した如き構成を有する本発明の方法
によれば、以下に述べるような驚くべき利点が得
られる。 イ 再曝気槽の前に遠心濃縮機を使用することか
ら、再曝気槽に流入する分離液は炭酸ガスが放
散され、かつPHが上昇している。そのため、
硝化槽からの排出ガス中の炭酸ガスが再曝気槽
で液相に再溶解し、気相酸素濃度が回復する。
従つて、酸素利用効率が向上し、曝気動力も節
減される。 ロ 遠心濃縮機からの分離液を、再曝気槽におい
て好気性処理に付するため、フロツク形成が進
み、沈降性が向上する。従つて、凝集沈澱を行
う場合には、凝集剤の消費が削減される。 ハ 再曝気槽では、処理水が返送汚泥分を含まな
いこと及びSS濃度が低いことから、撹拌及び
曝気のための動力が節減される。 ニ 沈澱汚泥を高濃度にできるので、流水汚水中
のBOD濃度が低い場合は、これを返送するこ
とができ、硝化槽のMLSS濃度を維持すること
ができる。 以下、実施例により、本発明を更に説明する。 実施例 し尿を約1.5倍に稀釈し、下記の表に示す条件
下に生物学的硝化脱窒処理に付した。 表中、対比例は第1図に示すプロセスにより処
理した場合であり、実験1、実験2及び実験3は
それぞれ第2図、第3図及び第4図に示すプロセ
スにより処理した場合である。 得られた結果を表中に併記する。 これらの結果から、本発明の方法によれば、排
ガス中の酸素濃度及び酸素利用効率が向上し、凝
集剤添加率が低いにもかかわらず処理水質が向上
し、また沈澱汚泥濃度が高くなつていることが明
らかである。
The present invention relates to a biological denitrification method for organic wastewater, and more specifically, to a biological denitrification method for organic wastewater such as night soil wastewater, food wastewater, special factory wastewater, etc. using a nitrification solution circulation method. The biological denitrification method of organic wastewater using a nitrification liquid circulation method is well known and widely used because of its advantages such as high equipment efficiency and low running cost. This is a method in which wastewater is supplied to a denitrification tank and then to a nitrification tank, and a large amount of nitrified liquid that has passed through the nitrification tank is circulated to the denitrification tank for treatment. The biological denitrification method is divided into two stages: the nitrification process carried out under aerobic conditions and the denitrification process carried out under anaerobic conditions . + −N) to nitrite nitrogen (NO 2 −N) and nitrate nitrogen (NO 3 −N)
Finally, it is reduced and decomposed to nitrogen gas. Recently, in this nitrification solution circulation denitrification treatment method, the efficiency of the equipment has been improved by increasing the sludge concentration and increasing the oxygen supply efficiency, but the biological In order to perform denitrification at a high load, it is necessary to maintain a high MLSS concentration, but in conventional solid-liquid separation using gravity sedimentation, there are limits to the sedimentation rate and concentration of sludge, and it is difficult to maintain a high MLSS concentration. When performing high-load processing, if air is used as an oxygen source,
There were drawbacks such as a huge amount of air required and a significant increase in energy consumption. For this reason, the present inventors first applied a flow as shown in FIG. 1 to a high concentration (for example,
An attempt was made to supply gases 5 and 7 containing oxygen (at least 50% by volume) and to separate the mixed liquid from the reaeration tank into thickened sludge 3 and separated liquid 13 using a centrifugal separator 12. This process has the advantage that it is possible to perform high-load processing, and at the same time, it is possible to maintain dissolved oxygen in the nitrification tank, and the amount of gas is small and there is no problem of foaming. However, even with the process shown in FIG. 1, the following problems remain unsolved. 1 Biodegradation of organic matter in human waste (first denitrification tank 4)
The carbon dioxide gas generated is dissolved in the liquid phase, and the liquid phase carbon dioxide gas is diffused into the gas phase in the closed nitrification tank 6 and reaeration tank 9, so the gas phase oxygen concentration decreases and the oxygen utilization efficiency decreases. descend. 2 The SS in the separated liquid 13 of the centrifugal thickener 12 is lighter than the SS in the thickened sludge 3, and the flocs have been crushed, so even if the sediment is separated as it is, high-concentration precipitated sludge cannot be obtained. , and there is a large amount of SS in the treated water, so a flocculant is required to form flocs when performing coagulation and sedimentation. 3 SS in the separated liquid 13 from the centrifugal concentrator 12 is
200mg/l or more, usually about 2000mg/l, so if the BOD in the inflowing wastewater 1 is about 5000mg/l or less, the specified value in the nitrification tank 6
It becomes impossible to maintain the MLSS concentration. The main purpose of the present invention is to increase oxygen utilization efficiency in biological denitrification of organic wastewater as described above,
The objective is to realize an efficient processing method that enables high-load processing and reduces the consumption of power and coagulant. According to the present invention, there is provided a biological denitrification method for organic sewage using a nitrification solution circulation method, which method includes supplying a gas containing at least 50% by volume of oxygen to a sealed nitrification tank. The whole amount of the mixed liquid from the nitrification tank, or from the second denitrification tank if a second denitrification tank is provided after the nitrification tank, is separated into concentrated sludge and separated liquid by a centrifugal thickener. The method is characterized in that at least a portion of the thickened sludge is returned to the first denitrification tank, and the separated liquid is guided to the reaeration tank. Hereinafter, the method of the present invention will be specifically explained with reference to the accompanying drawings. FIG. 1 is a flowchart schematically showing the process considered in arriving at the present invention. Second,
3 and 4 are flowcharts schematically showing an example of the method of the present invention, respectively. In these examples, organic sewage (e.g. human waste) 1, together with thickened sludge 3 from centrifugal thickener 12 and optionally return sludge 21 from settling tank 18, and circulating nitrified liquid 2 from nitrification tank 6, It is introduced into the first denitrification tank 4 under anaerobic conditions, and the circulating nitrification liquid 2 is
NO 2 - and NO 3 - are N 2 due to the BOD component in wastewater 1.
It is reduced and decomposed into gas. On the other hand, NH 4 + in wastewater 1
passes through the first denitrification tank 4 as it is and is led to the nitrification tank 6 under aerobic conditions where it is nitrified to NO 2 - and NO 3 - , and a part of this nitrification mixture is transferred to the circulating nitrification solution 2.
The remaining part is sent to the second denitrification tank 8, which is the next step. The nitrification tank 6 is of a closed type, and a gas 5 containing at least 50% by volume of oxygen is supplied at its inlet, and the exhaust gas 7 from the nitrification tank 6 is sent to a re-aeration tank 9 to re-evaluate the treated liquid. Used for aeration to remove residual BOD components. but,
As shown in FIG. 3, a gas 5' containing at least 50% by volume of oxygen is supplied to the reaeration tank 9, and the exhaust gas from the reaeration tank 9 is supplied to the nitrification tank 6 as the supply gas 5. Good too. However, in this case, the exhaust gas from the reaeration tank 9, that is, the gas supplied to the nitrification tank 6, must contain at least 50% by volume of oxygen. Further, as shown in FIG. 4, the exhaust gas 7 from the nitrification tank 6 is
It may be discharged as it is outside the system; in this case, the reaeration tank 9 is separately supplied with a gas 5' containing at least 50% by volume of oxygen. As shown in FIG. 1, in the method previously developed by the present inventors, the treated liquid that has been further denitrified in the second denitrification tank 8 is then sent to the re-aeration tank 9 to remove residual BOD. Then, this treated liquid 11 is sent to a centrifugal concentrator 12. Part or all of the concentrated sludge 3 separated here is returned to the first denitrification tank 4, and the separated liquid 13 is sent to the mixing tank 1 for the next process.
Sent to 4. However, the second to fourth aspects of the present invention
In the method shown in the figure, the treated liquid 11' from the second denitrification tank 8 is first sent to the centrifugal concentrator 12. Part or all of the concentrated sludge 3 separated by the centrifugal concentrator 12 is returned to the first denitrification tank 4, and if there is a remainder, it is discharged outside the system, and the separated liquid 13
is sent to the next step, the reaeration tank 9. The treated liquid 22 from which residual BOD has been removed in the reaeration tank 9 is then led to a mixing tank 14, where it is mixed with an inorganic flocculant 16, and then led to a flocculation tank 15 where it is mixed with a polymer flocculant 1.
7 and then led to a settling tank 18. Here, the supernatant liquid is discharged as treated water 19, and if desired, part of the settled sludge 20 is returned to the sludge 21.
The sludge is returned to the first denitrification tank 4, and the remainder is removed as surplus sludge. In addition, in the method of the present invention, among the steps explained above, the steps of the second denitrification tank 8, mixing tank 14, flocculation tank 15, and settling tank 18 are each desired steps, and may be omitted if necessary. Can be done. According to the method of the present invention having the configuration as described above, the following surprising advantages can be obtained. B. Since a centrifugal concentrator is used before the reaeration tank, carbon dioxide gas is dissipated and the pH of the separated liquid flowing into the reaeration tank is increased. Therefore,
Carbon dioxide in the exhaust gas from the nitrification tank is redissolved in the liquid phase in the reaeration tank, and the gas phase oxygen concentration is restored.
Therefore, oxygen utilization efficiency is improved and aeration power is also saved. (b) Since the separated liquid from the centrifugal concentrator is subjected to aerobic treatment in the reaeration tank, floc formation progresses and sedimentation properties are improved. Therefore, when carrying out coagulation precipitation, the consumption of flocculant is reduced. C. In the reaeration tank, the treated water does not contain returned sludge and the SS concentration is low, so power for stirring and aeration can be saved. D. Since the precipitated sludge can be made to have a high concentration, if the BOD concentration in flowing wastewater is low, it can be returned, and the MLSS concentration in the nitrification tank can be maintained. The present invention will be further explained below with reference to Examples. Example Human waste was diluted approximately 1.5 times and subjected to biological nitrification and denitrification treatment under the conditions shown in the table below. In the table, the comparison example is a case where the process was performed as shown in FIG. 1, and Experiment 1, Experiment 2, and Experiment 3 were cases where the process was performed as shown in FIGS. 2, 3, and 4, respectively. The obtained results are also listed in the table. From these results, according to the method of the present invention, the oxygen concentration in exhaust gas and oxygen utilization efficiency are improved, the treated water quality is improved despite the low flocculant addition rate, and the settled sludge concentration is increased. It is clear that there are.

【表】【table】

【表】【table】 【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明に到達する間に本発明者らに
よつて検討されたプロセスを模式的に示すフロー
チヤートである。第2図、第3図及び第4図は、
それぞれ、本発明方法の一例を模式的に示すフロ
ーチヤートである。 1……供給汚水、2……循環硝化液、3……濃
縮汚泥、4……第1脱窒槽、5,5′……供給ガ
ス、6……硝化槽、8……第2脱窒槽、9……再
曝気槽、12……遠心濃縮機、14……混合槽、
15……凝集槽、18……沈澱槽。
FIG. 1 is a flowchart schematically showing the process considered by the inventors while arriving at the present invention. Figures 2, 3 and 4 are
Each is a flowchart schematically showing an example of the method of the present invention. 1... Supply sewage, 2... Circulating nitrification liquid, 3... Thickened sludge, 4... First denitrification tank, 5,5'... Supply gas, 6... Nitrification tank, 8... Second denitrification tank, 9...Reaeration tank, 12...Centrifugal concentrator, 14...Mixing tank,
15... flocculation tank, 18... sedimentation tank.

Claims (1)

【特許請求の範囲】 1 硝化液循環方式による有機性汚水の生物学的
脱窒法において、密閉された硝化槽に少なくとも
50容量%の酸素を含むガスを供給し、前記硝化槽
からの、又は前記硝化槽の後に第2脱窒槽が設け
られている場合には前記第2脱窒槽からの混合液
の全量を遠心濃縮機により濃縮汚泥と分離液に分
離し、前記濃縮汚泥の少なくとも一部を第1脱窒
槽に返送するとともに、前記分離液を再曝気槽に
導くことを特徴とする有機性汚水の生物学的脱窒
法。 2 前記硝化槽からの排出ガスが前記再曝気槽へ
供給される特許請求の範囲第1項記載の脱窒法。 3 前記再曝気槽へ少なくとも50容量%の酸素を
含むガスが別途に供給される特許請求の範囲第1
項記載の脱窒法。 4 前記硝化槽に供給されるガスが前記再曝気槽
からの排出ガスである特許請求の範囲第1項記載
の脱窒法。
[Claims] 1. In a biological denitrification method for organic wastewater using a nitrification solution circulation system, at least
A gas containing 50% by volume of oxygen is supplied, and the entire amount of the mixed liquid from the nitrification tank, or from the second denitrification tank if a second denitrification tank is provided after the nitrification tank, is centrifugally concentrated. Biological desorption of organic sewage characterized by separating thickened sludge and separated liquid by a machine, returning at least a part of the thickened sludge to a first denitrification tank, and guiding the separated liquid to a reaeration tank. Nitrogen method. 2. The denitrification method according to claim 1, wherein exhaust gas from the nitrification tank is supplied to the reaeration tank. 3. Claim 1, wherein a gas containing at least 50% by volume of oxygen is separately supplied to the reaeration tank.
Denitrification method described in section. 4. The denitrification method according to claim 1, wherein the gas supplied to the nitrification tank is exhaust gas from the reaeration tank.
JP2639683A 1983-02-21 1983-02-21 Biological denitrification method of organic waste Granted JPS59154197A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2639683A JPS59154197A (en) 1983-02-21 1983-02-21 Biological denitrification method of organic waste

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2639683A JPS59154197A (en) 1983-02-21 1983-02-21 Biological denitrification method of organic waste

Publications (2)

Publication Number Publication Date
JPS59154197A JPS59154197A (en) 1984-09-03
JPS6322200B2 true JPS6322200B2 (en) 1988-05-11

Family

ID=12192384

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2639683A Granted JPS59154197A (en) 1983-02-21 1983-02-21 Biological denitrification method of organic waste

Country Status (1)

Country Link
JP (1) JPS59154197A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61146396A (en) * 1984-12-18 1986-07-04 Osaka Gas Co Ltd Biological treatment of waste water
JP4532315B2 (en) * 2005-03-17 2010-08-25 新日鐵化学株式会社 Biological nitrification denitrification treatment system and denitrification treatment method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS596996A (en) * 1982-07-02 1984-01-14 Ebara Infilco Co Ltd Treatment of organic filthy water of high concentration

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS596996A (en) * 1982-07-02 1984-01-14 Ebara Infilco Co Ltd Treatment of organic filthy water of high concentration

Also Published As

Publication number Publication date
JPS59154197A (en) 1984-09-03

Similar Documents

Publication Publication Date Title
KR19980051067A (en) Simultaneous Biological and Nitrogen Eliminators
JPS6210720B2 (en)
JPH0722757B2 (en) Biological removal method of nitrogen and phosphorus and its treatment device
JPS6322200B2 (en)
JP3442204B2 (en) Organic wastewater phosphorus removal and recovery method
JPH08309366A (en) Removal of nitrogen and phosphorus from waste water
JPS645959B2 (en)
JP2002316191A (en) Method and apparatus for treating organic foul water
JPH0125633B2 (en)
JPH01215400A (en) Biological denitrifying and dephosphorizing method for waste water
JPH0218155B2 (en)
JPH0230320B2 (en)
KR200267140Y1 (en) equipment for advanced wastewater-treatment
JPS5851988A (en) Slightly-diluting double-stage active sludge process
JP3327979B2 (en) Septic tank sludge treatment method and equipment
JPS60153999A (en) Treatment of waste water
JPH0661552B2 (en) Organic wastewater treatment method
JPS6028894A (en) Treatment of night soil
JPS58104696A (en) Treatment of waste water
JPS6134879B2 (en)
JPS6244998B2 (en)
JPS61242698A (en) Treatment of organic sewage
KR200267142Y1 (en) equipment for advanced wastewater-treatment
JPH0317559B2 (en)
JPH038840B2 (en)