JPS6322066B2 - - Google Patents

Info

Publication number
JPS6322066B2
JPS6322066B2 JP55071184A JP7118480A JPS6322066B2 JP S6322066 B2 JPS6322066 B2 JP S6322066B2 JP 55071184 A JP55071184 A JP 55071184A JP 7118480 A JP7118480 A JP 7118480A JP S6322066 B2 JPS6322066 B2 JP S6322066B2
Authority
JP
Japan
Prior art keywords
conductivity type
regions
region
type
wiring layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55071184A
Other languages
Japanese (ja)
Other versions
JPS56167347A (en
Inventor
Kimimaro Yoshikawa
Kazuo Adachi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP7118480A priority Critical patent/JPS56167347A/en
Priority to GB8116291A priority patent/GB2080617B/en
Publication of JPS56167347A publication Critical patent/JPS56167347A/en
Publication of JPS6322066B2 publication Critical patent/JPS6322066B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0638Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for preventing surface leakage due to surface inversion layer, e.g. with channel stopper
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Element Separation (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Description

【発明の詳細な説明】 本発明は半導体装置、特に寄生MOS効果を防
止する構造に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a semiconductor device, and particularly to a structure for preventing parasitic MOS effects.

半導体集積回路において、N形基板中の逆バイ
アスされた2つ以上の隣接するP形領域間の上を
酸化膜を介してアルミ配線が置かれている場合、
アルミ配線に加わる電位によつてその下にチヤン
ネルが生じてP形領域相互間に電流が流れること
がある。この作用を積極的に利用したのがMOS
形電界効果トランジスタであるが、この作用が単
なる配線層の下で生じて絶縁されているべき領域
同志が導通する現象を寄生MOS効果という。通
常この寄生MOS効果を防止したい場合は、第1
図のように、N型基板に形成された所定のP形領
域の間にチヤンネルストツパーと呼ぶ高濃度のN
形領域を設けることがなされている。
In a semiconductor integrated circuit, when aluminum wiring is placed between two or more adjacent reverse-biased P-type regions in an N-type substrate via an oxide film,
The potential applied to the aluminum wiring may create a channel beneath it, allowing current to flow between the P-type regions. MOS actively utilized this effect.
Although it is a type field effect transistor, the phenomenon in which this effect occurs under a simple wiring layer and conducts between regions that should be insulated is called the parasitic MOS effect. Normally, if you want to prevent this parasitic MOS effect, the first
As shown in the figure, a high concentration of N, called a channel stopper, is placed between predetermined P-type regions formed on an N-type substrate.
A shape area is provided.

しかしながら酸化膜表面の汚れや水分等が付着
した場合は汚れや水分に電荷がたまり、これらが
新たなゲート電極として働くためアルミ配線のな
い所にも寄生MOS効果が生じ、このため、単に
アルミ配線の下にのみ高濃度N形領域を設けても
この寄生MOS効果を防ぐことができない。
However, if dirt or moisture adheres to the surface of the oxide film, charges accumulate on the dirt or moisture, and these act as new gate electrodes, creating a parasitic MOS effect even where there is no aluminum wiring. This parasitic MOS effect cannot be prevented even if a heavily doped N-type region is provided only under the MOS transistor.

また高濃度N型領域で一方のP型領域を囲んで
しまうと、このような場合の寄生MOS効果も防
止できるが、この高濃度N型領域の占有面積が増
すばかりでなく他のP型領域との間にも十分な間
隔を設けねばならないので高密度な集積回路が得
られないという欠点がある。
Furthermore, if one P-type region is surrounded by a highly doped N-type region, the parasitic MOS effect in such a case can be prevented, but not only does the area occupied by this highly doped N-type region increase, but also the other P-type region Since a sufficient space must also be provided between the two, there is a drawback that a high-density integrated circuit cannot be obtained.

本発明の目的はかかる従来のチヤンネルストツ
パーを改善し、小さい占有面積で効果のあるチヤ
ンネルストツパーを提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to improve such a conventional channel stopper and to provide an effective channel stopper that occupies a small area.

本発明によれば、一導電形の半導体基体に形成
された他の導電形の半導体領域を一導電形の高濃
度領域と前記の他の導電形の半導体領域又は一導
電形の高濃度領域に接続された配線層で取り囲
み、一導電形の高濃度領域上に他の配線層を配し
た半導体装置を得る。
According to the present invention, a semiconductor region of another conductivity type formed in a semiconductor substrate of one conductivity type is combined with a high concentration region of one conductivity type and the semiconductor region of the other conductivity type or a high concentration region of one conductivity type. A semiconductor device is obtained in which a high concentration region of one conductivity type is surrounded by connected wiring layers and another wiring layer is placed on top of the high concentration region.

以下、本発明を図面を参照してより詳細に説明
する。
Hereinafter, the present invention will be explained in more detail with reference to the drawings.

第1図において最高電位に印加されたN形エピ
タキシヤル領域7の中にP形領域1及び3があ
り、それらの上に低電位アルミ配線4が通つてお
り各P形領域1及び3には端子5,5′,6,
6′が接続されているとき、端子5とアルミ配線
4の間にこの部分のもつ閾値電圧を越える高い電
圧が印加されるとアルミ配線4直下のエピタキシ
ヤル層7の導電型が反転してP型領域1と3の間
にチヤンネルができ、このチヤンネルを通して電
流が流れる。そのために、チヤンネルストツパー
として高濃度のN形領域2を低電位アルミ配線4
の下に置けば通常の場合寄生MOS効果のチヤン
ネルを防止できる。
In FIG. 1, there are P-type regions 1 and 3 in the N-type epitaxial region 7 to which the highest potential is applied, and a low-potential aluminum wiring 4 runs above them. Terminals 5, 5', 6,
6' is connected, if a high voltage exceeding the threshold voltage of this part is applied between the terminal 5 and the aluminum wiring 4, the conductivity type of the epitaxial layer 7 directly under the aluminum wiring 4 is reversed and P A channel is created between mold regions 1 and 3, through which current flows. For this purpose, the high concentration N-type region 2 is used as a channel stopper for the low potential aluminum wiring 4.
Under normal circumstances, channels of parasitic MOS effects can be prevented.

しかしながら酸化膜表面が汚れたり水分が付着
した場合には、アルミ配線4から電荷が流出して
これら汚れや水分が帯電し、その下にチヤンネル
を形成することがあり、このため、低電位アルミ
配線4の下にのみチヤンネルストツパー2を置い
てもP形領域1,3の間の寄生MOS効果は防止
できない。
However, if the surface of the oxide film gets dirty or moisture adheres to it, the electric charge flows out from the aluminum wiring 4, and these dirt and moisture become charged and may form a channel underneath. Even if the channel stopper 2 is placed only under the P-type regions 1 and 3, the parasitic MOS effect between the P-type regions 1 and 3 cannot be prevented.

このとき第2図に示すように、P形領域1の全
周をチヤンネルストツパー2′でかこめばあらゆ
る場合についてP形領域1と3の間のリーク電流
を防止できる。
At this time, as shown in FIG. 2, if the entire circumference of P-type region 1 is surrounded by a channel stopper 2', leakage current between P-type regions 1 and 3 can be prevented in all cases.

しかしながら、この場合チヤンネルストツパー
2′の占有面積が大きく、またその周囲には製造
工程上の位置合せ余裕のために他のP形領域との
間に所定の間隔を維持しなければならないため高
集積化のさまたげとなつていた。
However, in this case, the area occupied by the channel stopper 2' is large, and a predetermined distance must be maintained between the channel stopper 2' and other P-shaped regions to allow for alignment margins in the manufacturing process, so the height of the channel stopper 2' is large. This had become a hindrance to agglomeration.

本発明の一実施例を第3図に示す。N形基板1
7の中に逆バイアスされた2つのP形領域11及
び13があり、それらの間に通常は低電位が与え
られるアルミ配線14が絶縁膜を介して置かれて
おり、これらP形領域11及び13には適当な電
極端子15,15′,16,16′が接続されてお
り、更にこのアルミ配線14の電位と端子電位1
5及び16の電位差がP形領域11,13とアル
ミ配線14で形成される寄生MOSトランジスタ
の閾値電圧を越える場合にチヤンネルストツパー
として作用するように、高濃度N形領域12をP
形領域11の両側に形成し、この高濃度N形領域
12の各両端端子15及び16を形成するアルミ
配線が位置するようにしてP形領域11をこれら
高濃度N形領域12と端子15,16で取り囲ん
でいる。
An embodiment of the present invention is shown in FIG. N type board 1
There are two reverse-biased P-type regions 11 and 13 in the P-type region 7, and an aluminum wiring 14 to which a low potential is usually applied is placed between them with an insulating film interposed therebetween. Appropriate electrode terminals 15, 15', 16, 16' are connected to 13, and the potential of this aluminum wiring 14 and the terminal potential 1
The heavily doped N-type region 12 is connected to a P-type so that it acts as a channel stopper when the potential difference between the P-type regions 11 and 16 exceeds the threshold voltage of the parasitic MOS transistor formed by the P-type regions 11 and 13 and the aluminum wiring 14.
The P-type region 11 is connected to the high-concentration N-type region 12 and the terminals 15 and 16 in such a way that the aluminum wires formed on both sides of the high-concentration N-type region 12 and forming the terminals 15 and 16 at both ends of the high-concentration N-type region 12 are located. It is surrounded by 16.

このようにすると、2つのP形領域11及び1
3の間のリーク電流はたとえ帯電した水分や汚れ
があつても完全に防止できる。
In this way, two P-type regions 11 and 1
Leakage current between 3 and 3 can be completely prevented even if there is charged moisture or dirt.

本発明によれば、チヤンネルストツパーのため
の高濃度N形領域12をいたずらにひろげる必要
はなく、小さい占有面積で絶大なチヤンネルスト
ツプ効果が得られ、より高い集積密度の集積回路
が得られる。
According to the present invention, there is no need to unnecessarily expand the highly doped N-type region 12 for channel stopper, and a tremendous channel stop effect can be obtained with a small occupied area, resulting in an integrated circuit with higher integration density. .

上記実施例ではチヤンネルストツパーとしての
基体と同一導電形の高濃度層とともに他の導電形
領域を囲む配線層を他の導電形の領域と接続した
が、他に同一導電形の高濃度層と接続して他の導
電形の領域とは分離せしめておいても同様の効果
が得られる。
In the above embodiment, a high concentration layer of the same conductivity type as the substrate as a channel stopper and a wiring layer surrounding another conductivity type region are connected to another conductivity type region, but there is also a high concentration layer of the same conductivity type. A similar effect can be obtained even if the region is connected and separated from regions of other conductivity types.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のチヤンネルストツパーの構造を
示す平面図、第2図は酸化膜表面の汚れや水分の
存在にも耐える他の従来のチヤンネルストツパー
の構造を示す平面図、第3図は本発明の一実施例
にかかるチヤンネルストツパーの構造を示す平面
図である。 1,3,11,13……P型領域、2,12…
…高濃度N形領域、4,14……アルミ配線、
5,5′,6,6′,15,16……端子、7……
N形基板。
Fig. 1 is a plan view showing the structure of a conventional channel stopper, Fig. 2 is a plan view showing the structure of another conventional channel stopper that can withstand the presence of dirt and moisture on the oxide film surface, and Fig. 3 is a plan view showing the structure of a conventional channel stopper. FIG. 2 is a plan view showing the structure of a channel stopper according to an embodiment of the present invention. 1, 3, 11, 13...P type region, 2, 12...
...High concentration N-type region, 4,14...Aluminum wiring,
5, 5', 6, 6', 15, 16... terminal, 7...
N type board.

Claims (1)

【特許請求の範囲】[Claims] 1 一導電型の半導体基板に形成された少くとも
2つの他の導電型の領域と、該少くとも2つの他
の導電型の領域と交叉して該少くとも2つの他の
導電型の領域間の前記半導体基板上に絶縁膜を介
して形成された第1の配線層と、前記少くとも2
つの他の導電型の領域間の前記半導体基板表面領
域で前記第1の配線層下に形成された前記一導電
型の第1の高不純物濃度領域と、前記少くとも2
つの他の導電型の領域の一方の周辺に形成された
第2の配線層および前記一導電型の第2の高不純
物濃度領域とを有し、前記第2の配線層および前
記第1と第2の高不純物濃度領域は平面的に前記
一方の他の導電型の領域をとり囲むように配置さ
れており、さらに前記第2の配線層は前記一方の
他の導電型の領域に接続されており、かつ前記第
2の配線層と前記第1および第2の高不純物濃度
領域とは接触することなく部分的に重なり合つて
いることを特徴とする半導体装置。
1 At least two regions of another conductivity type formed on a semiconductor substrate of one conductivity type, and between the at least two regions of other conductivity type that intersect with the at least two regions of other conductivity type. a first wiring layer formed on the semiconductor substrate with an insulating film interposed therebetween;
the first high impurity concentration region of one conductivity type formed under the first wiring layer in the semiconductor substrate surface region between the two other conductivity type regions;
a second wiring layer formed around one of the two other conductivity type regions and the second high impurity concentration region of the one conductivity type; The second high impurity concentration region is arranged so as to surround the one region of the other conductivity type in a plan view, and the second wiring layer is connected to the one region of the other conductivity type. and the second wiring layer and the first and second high impurity concentration regions partially overlap each other without contacting each other.
JP7118480A 1980-05-28 1980-05-28 Semiconductor device Granted JPS56167347A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP7118480A JPS56167347A (en) 1980-05-28 1980-05-28 Semiconductor device
GB8116291A GB2080617B (en) 1980-05-28 1981-05-28 Semiconductor integrated circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7118480A JPS56167347A (en) 1980-05-28 1980-05-28 Semiconductor device

Publications (2)

Publication Number Publication Date
JPS56167347A JPS56167347A (en) 1981-12-23
JPS6322066B2 true JPS6322066B2 (en) 1988-05-10

Family

ID=13453307

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7118480A Granted JPS56167347A (en) 1980-05-28 1980-05-28 Semiconductor device

Country Status (2)

Country Link
JP (1) JPS56167347A (en)
GB (1) GB2080617B (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5023791A (en) * 1973-06-30 1975-03-14

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5023791A (en) * 1973-06-30 1975-03-14

Also Published As

Publication number Publication date
JPS56167347A (en) 1981-12-23
GB2080617A (en) 1982-02-03
GB2080617B (en) 1984-09-26

Similar Documents

Publication Publication Date Title
US4686551A (en) MOS transistor
JP3041043B2 (en) Power MOSFET transistor circuit
US4990976A (en) Semiconductor device including a field effect transistor having a protective diode between source and drain thereof
JPH09283716A (en) Semiconductor device
JPH051626B2 (en)
JP2991489B2 (en) Semiconductor device
US5156992A (en) Process for forming poly-sheet pillar transistor DRAM cell
US4520382A (en) Semiconductor integrated circuit with inversion preventing electrode
JP2867948B2 (en) Semiconductor memory device and manufacturing method thereof
JP2825038B2 (en) Semiconductor device
JPS6322066B2 (en)
JPH09162399A (en) Semiconductor device
JPH0691212B2 (en) Semiconductor memory
JP2629426B2 (en) Semiconductor device having double diffusion type MISFET and method of manufacturing the same
US6175132B1 (en) Semiconductor memory device and method of fabricating the same
JP2973450B2 (en) Semiconductor device
JPH0837299A (en) Protective circuit of semiconductor integrated circuit
JPH0527996B2 (en)
JPS632154B2 (en)
JP2624373B2 (en) Semiconductor device
JP2680846B2 (en) Semiconductor memory device
JPH0622236B2 (en) Semiconductor device
JPS641943B2 (en)
JPS6320382B2 (en)
JPH0475668B2 (en)