JPS63219156A - Semiconductor device memory - Google Patents

Semiconductor device memory

Info

Publication number
JPS63219156A
JPS63219156A JP62052806A JP5280687A JPS63219156A JP S63219156 A JPS63219156 A JP S63219156A JP 62052806 A JP62052806 A JP 62052806A JP 5280687 A JP5280687 A JP 5280687A JP S63219156 A JPS63219156 A JP S63219156A
Authority
JP
Japan
Prior art keywords
memory cell
memory
isolation region
word line
bit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62052806A
Other languages
Japanese (ja)
Inventor
Kiyohiro Furuya
清広 古谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP62052806A priority Critical patent/JPS63219156A/en
Publication of JPS63219156A publication Critical patent/JPS63219156A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/30DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells
    • H10B12/37DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells the capacitor being at least partially in a trench in the substrate

Abstract

PURPOSE:To effectively use the periphery of a memory cell for capacity forming regions and to contrive to improve the yield and the reliability of a memory by a method wherein the memory is constituted in a structure, wherein one word line and two bit lines are passed through the region of the one-bit memory cell. CONSTITUTION:When a word line 7a is given a high potential, a back-to-back bit lines are composed of Al circuits 6c and 6b and so on. By such the constitution of a memory, a memory cell becomes long in the direction of the word line and an allowance for forming isolation oxide films 2 between transfer gates 11 and the periphery of the memory cell is generated. Therefore, even though a capacity for information charge storage is formed on the side surfaces of the memory cell using all the periphery of the memory cell as grooved isolation regions 12, there is no need to etch a polySi layer 3 on the bottoms of grooves. Accordingly, the periphery of the memory cell can be effectively utilized in an easy production process, the capacity for information charge storage is secured even in the shallow grooves and the yield and the reliability of the memory can be improved.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、半導体記憶装置に関し、特に高集積化に適
するメモリセル構成に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a semiconductor memory device, and particularly to a memory cell configuration suitable for high integration.

〔従来の技術〕[Conventional technology]

第3図(aL (b)は例えば、1985年の国際固体
回路会議(ISSCC85)の講演番号FAM17.4
において提案された高集積ダイナミック半導体記憶装置
の平面図およびX−Xに沿った断面図である。図におい
て、1はP型基板、2はフィールド酸化膜、3は第1層
目の多結晶シリコン、4はキャパシタ絶縁膜、5はP型
基板1に設けられたN+拡散層、6は第1層目のAl配
線、7は第2層目の多結晶シリコン、8は第2層目のA
l配線であり、一定間隔で多結晶シリコンと電気的接続
をとる乙とによって、ワード線9の低抵抗化を図ってい
る。10はピッl−線を形成するAl配線6とN“拡散
層5とを電気的に接続するコンタクト孔、CPば溝堀り
分離部の側面を利用して形成されたN+拡散層5と多結
晶シリコン3とキャパシタ絶縁膜4とから成る情報電荷
蓄積容量である。
Figure 3 (aL (b) is, for example, the lecture number FAM17.4 of the 1985 International Solid State Circuits Conference (ISSCC85).
FIG. 1 is a plan view and a cross-sectional view taken along the line XX of a highly integrated dynamic semiconductor memory device proposed in . In the figure, 1 is a P-type substrate, 2 is a field oxide film, 3 is a first layer of polycrystalline silicon, 4 is a capacitor insulating film, 5 is an N+ diffusion layer provided on the P-type substrate 1, and 6 is a first layer of polycrystalline silicon. 7 is the second layer of polycrystalline silicon, 8 is the second layer of A
The resistance of the word line 9 is lowered by the L wiring, which is electrically connected to the polycrystalline silicon at regular intervals. 10 is a contact hole that electrically connects the Al wiring 6 forming the pick line and the N'' diffusion layer 5; This is an information charge storage capacitor composed of crystalline silicon 3 and a capacitor insulating film 4.

このように構成された半導体記憶装置においては、メモ
リセル外周部の溝堀り分離部を情報電荷蓄積容量として
活用することから、容量CFを形成する平坦部面積を減
少させて、チップ面積を縮小させても、溝を深くしてC
pを増やすことにより情報電荷蓄積容量を確保すること
ができる。従ってメモリセルの平面積を小さく +、で
も、動作マージンを大きくかつソフトエラー率を低く維
持できろというのがこの従来技術の骨子である。つまり
、第3図(a)に示すように、メモリセルの周辺長を長
く利用すればするほど、同量のCFを得るのに必要な溝
の深さ寸法は小さくなる。
In a semiconductor memory device configured in this way, since the grooved isolation portion on the outer periphery of the memory cell is utilized as an information charge storage capacitor, the area of the flat portion that forms the capacitor CF is reduced and the chip area is reduced. Even if the groove is deepened, C
Information charge storage capacity can be ensured by increasing p. Therefore, the gist of this prior art is to keep the area of the memory cell small, but with a large operating margin and a low soft error rate. In other words, as shown in FIG. 3(a), the longer the peripheral length of the memory cell is utilized, the smaller the depth of the trench required to obtain the same amount of CF.

一方、例えば、特開昭51.−74535号(こ示され
る折り返し型ピッ(・線構成とこのメモリセル構造を組
み合わせた場合、第3図(a)のY−Yに沿う断面図は
第4図の様になる。
On the other hand, for example, JP-A-51. When this memory cell structure is combined with the folded pin configuration shown in No. 74535, the cross-sectional view taken along Y--Y in FIG. 3(a) becomes as shown in FIG.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来の、溝堀り分離領域の側面にも情報電荷蓄積容量を
形成した構造のメモリセルを、折り返し型ピッI−線構
成に適用した高集積ダイナミック型半導体記憶装置は、
その断面が第4図のJ:うな構造となる。この構造では
、 (i)第1層目の多結晶シリコン3を溝堀り分離領域内
でパターンニングしなければならず、溝堀り分離領域を
最小パターン幅にしてその溝の底で多結晶シリコンをエ
ツチングするのは困難であること。
A highly integrated dynamic semiconductor memory device in which a conventional memory cell having a structure in which an information charge storage capacitor is also formed on the side surface of a trench isolation region is applied to a folded pin I-line configuration is as follows:
Its cross section has a structure like J in Fig. 4. In this structure, (i) the first layer of polycrystalline silicon 3 must be patterned within the trench isolation region, with the trench isolation region having the minimum pattern width and the polycrystalline silicon 3 at the bottom of the trench; It is difficult to etch silicon.

(11)ワード線となる第2層目の多結晶シリコン配線
7(こより制御されるトランスフアゲ−1−のチャネル
領域の両側が溝堀り分離領域となるが、この溝の側面に
リーク電流が流れるためトランジスタを完全に非導通状
態にできないこと。
(11) Both sides of the channel region of the second layer polycrystalline silicon wiring 7 (which is controlled by this) which becomes the word line become trench isolation regions, and leakage current is generated on the sides of this trench. The transistor cannot be made completely non-conductive due to current flow.

という問題があった。そこでメモリセルのトランスフア
ゲ−1・の両側の溝堀りをやめると、溝の側面に形成す
る容+1cC1・が減ろため、」−分な情報電荷蓄積容
量を確保するには、溝堀り分離領域の溝を深くする必要
があった、。
There was a problem. Therefore, if we stop trenching on both sides of transfer gate 1 of the memory cell, the capacitance formed on the sides of the trench will be reduced by +1cC1. It was necessary to deepen the groove in the separation area.

この発明は上記のような問題点を解消するためになされ
たもので、1−ランスフアゲ−1・の両側に溝堀り分離
領域を形成しなくても、溝堀り分離領域における溝の長
さを長くすることができ、この溝の側面に容量を形成す
ることにより、浅い溝堀りで所要の容量が確保できる構
造のメモリセルからなる折り返しビット綿構成の高集積
ダイナミック半導体記憶装置を得ることを目的する。
This invention was made to solve the above-mentioned problems, and the length of the groove in the grooved separation area can be adjusted without forming the grooved separation area on both sides of the 1-transfer game 1. To obtain a highly integrated dynamic semiconductor memory device having a folded bit structure consisting of memory cells having a structure in which the required capacity can be ensured by digging a shallow trench by forming a capacitor on the side surface of the trench. The purpose is

C問題点をH法するための手段〕 乙の発明に係る半導体記憶装置は、まず、従来の折り返
しピット綿構成では、1ビットのメモリセル外周部にワ
ード綿2本とビット線1本とが通過しており、メモリセ
ルはワード線方向に短かかったが、1ビットのメモリセ
ル領域にワード線り本と、ピッ1〜線が2水通過する」
:うな折り返しビット線構成とすることにより、メモリ
セルの平面積を一定に保ったままメモリセルをワード線
方向に長くしたものである。
Means for solving problem C using method H] First, in the semiconductor memory device according to the invention of B, in the conventional folded pit structure, two word lines and one bit line are placed on the outer periphery of a 1-bit memory cell. The memory cell was short in the word line direction, but the word line and the bit 1 to 2 lines pass through the 1-bit memory cell area.
: By adopting a folded bit line configuration, the memory cell is made longer in the word line direction while keeping the planar area of the memory cell constant.

〔作 用〕[For production]

このように構成された半導体記憶装置においては、メモ
リセルがワード線方向に長くなったので、メモリセルの
トランスフアゲ−1・とメモリセルの周囲との間に分離
酸化膜を形成する余裕が生しる。
In a semiconductor memory device configured in this way, since the memory cells are longer in the word line direction, there is more room to form an isolation oxide film between the transfer gate 1 of the memory cell and the periphery of the memory cell. Sign.

従って、メモリセルの周囲をすべて溝堀り分離領域とし
て側面に情報電荷蓄積用の容量を形成しても、トランス
フアゲ−1・の両側には平坦な分離酸化膜があるため、
第1層目の多結晶シリコン層を溝の底でエツチングする
必要がなくなり、1−ランジスタにおけるチャネルのリ
ーク電流を通常のLocos程度に抑えられる。従って
、メモリセルの周囲を有効に容量形成領域に使用するこ
とができるので、浅い溝でも情報電荷蓄積容量の確保が
容易になる。
Therefore, even if a capacitor for information charge storage is formed on the side surface by trenching an isolation region around the memory cell, there is a flat isolation oxide film on both sides of the transfer gate 1.
It is no longer necessary to etch the first polycrystalline silicon layer at the bottom of the trench, and the leakage current of the channel in the 1-transistor can be suppressed to about the normal Locos level. Therefore, since the area around the memory cell can be effectively used as a capacitor formation region, information charge storage capacity can be easily secured even in a shallow trench.

〔発明の実施例〕[Embodiments of the invention]

以下、乙の発明の一実施例を図について説明する。第1
図において、(a)は平面図、(b)は(a)のX−x
に沿った断面図、(C)はコンタクトを共有する2ビッ
ト分を第1図(a)の矢印方向から見た斜視図である。
Hereinafter, one embodiment of the invention of B will be described with reference to the drawings. 1st
In the figures, (a) is a plan view, and (b) is X-x in (a).
1(C) is a perspective view of two bits sharing a contact, viewed from the direction of the arrow in FIG. 1(a).

同図において、■はP型シリコン基板、2は素子間分離
用酸化膜、2aは溝の側面に形成した基板と同じ導電型
の不純物を拡散した素子間分離用拡散層、3は情報電荷
蓄積容量の一方の極板を形成する第1層目の多結晶シリ
コン層、4はギャパシタ絶縁膜、5はN+拡散層、6(
コビソト線を形成する第1層目のAI配線、7はワー 
ド線を形成する第2層目の多結晶シリコン層、10ばA
I配純綿6N+拡散層5との電気的接続をとるコンタク
ト孔、11はワード線7により制御されるトランジスタ
のチャネル、12は溝堀り分離部、CPは溝堀り分離領
域の斜面に形成されたN+拡散層5と多結晶シリコン3
との間の容量であり、情報電荷蓄積容量の一部をなす。
In the figure, ■ is a P-type silicon substrate, 2 is an oxide film for element isolation, 2a is a diffusion layer for element isolation in which impurities of the same conductivity type as the substrate formed on the side surface of the groove are diffused, and 3 is information charge storage. A first polycrystalline silicon layer forming one electrode plate of the capacitor, 4 a gapacitor insulating film, 5 an N+ diffusion layer, 6 (
The first layer of AI wiring forming the cobisoto line, 7 is the word
Second layer of polycrystalline silicon layer forming the lead wire, 10% A
11 is a channel of a transistor controlled by the word line 7, 12 is a trench isolation region, and CP is formed on the slope of the trench isolation region. N+ diffusion layer 5 and polycrystalline silicon 3
This is the capacitance between the two and forms part of the information charge storage capacity.

C「は平坦部のN+拡散層と多結晶シリコン3の間に形
成された容量であり、やはり情報電荷M積賽量の一部を
なす。
C' is a capacitance formed between the N+ diffusion layer in the flat part and the polycrystalline silicon 3, and also forms part of the information charge M accumulation amount.

第1図(a)の平面図から明らかなように、メモリセル
の1ビット領域にピット線2本とワード線1本とが通る
ように構成したので、例えばワード線7aを高電位にし
た時、AII線6cがピッ1、線となり、/M配線6b
ピット線となって折り返しピッl−線構成となっている
。また、このメモリセル構造では、多結晶シリコン3を
溝堀り分離領域12内でパターンニングする必要がなく
なることから、製造プロセスが容易となる。また、溝堀
り分離領域]2とトランジスタのチャネル領域11とが
接しなくなるため、ワード線7に制御されるトランジス
タのリーク電流制御が容易となり、情報電荷の保持特性
の悪化がなくなる。また、メモリセルの外周はすべて溝
堀り分離領域12となり、このうち、コンタクトを共有
する2つのメモリセルを分離するために、溝堀り分離領
域の側壁に形成した分離拡散層2a以外の部分には、情
報電荷蓄積容量CPが形成されるので、浅い溝堀りでも
大きな容量CPが得られる。例えば第1図(a)は、0
8μmルールで設計したメモリセルであり、セル面積2
.6μX4.2μm10.92p2テ、5ofFの情報
電荷蓄積容量を得るのに、キャパシタ絶縁膜100大の
時、溝堀り分離領域の深さは1.94μでよく、従来発
表されている4 Mbit D RAM用のメモリセル
よりも浅い溝堀りて良いことになる。
As is clear from the plan view of FIG. 1(a), since the configuration is such that two pit lines and one word line pass through one bit area of the memory cell, for example, when the word line 7a is set to a high potential, , the AII wire 6c becomes the pin 1 wire, and the /M wire 6b
It becomes a pit line and has a folded pit line configuration. Furthermore, in this memory cell structure, there is no need to pattern the polycrystalline silicon 3 within the trench isolation region 12, which facilitates the manufacturing process. Further, since the trench isolation region 2 and the channel region 11 of the transistor are no longer in contact with each other, leakage current control of the transistor controlled by the word line 7 is facilitated, and information charge retention characteristics are not deteriorated. Further, the entire outer periphery of the memory cell becomes a trench isolation region 12, except for the isolation diffusion layer 2a formed on the side wall of the trench isolation region in order to isolate two memory cells that share a contact. Since an information charge storage capacitor CP is formed in , a large capacitance CP can be obtained even with a shallow trench. For example, in FIG. 1(a), 0
The memory cell is designed according to the 8μm rule, and the cell area is 2
.. To obtain an information charge storage capacity of 6μ x 4.2μm 10.92p2, 5ofF, when the capacitor insulating film is 100m thick, the depth of the trench isolation region is only 1.94μ, compared to the conventionally announced 4 Mbit D RAM. This means that it is possible to dig a trench shallower than the memory cell used for the purpose.

なお、上記実施例では、コンタクト孔を共有して隣接す
る2ピッ1〜分のメモリセルの全周囲に溝堀り分離領域
を形成したが、上記実施例(第1図)で側面に形成した
分離拡散層で挟まれた部分には、溝堀り分離領域を形成
する乙とをやめて、第2図(a)、(b)に示すように
、溝を掘らないことによって生した平面部2bには分離
酸化膜を、その側面部2bには基板と同じ導電型をもつ
不純物を拡散した分離拡散層または分離酸化膜を形成し
ても上記実施例と同様の効果を有する。
Note that in the above embodiment, a trench isolation region was formed all around the memory cells of 1 to 2 adjacent pins sharing a contact hole, but in the above embodiment (Fig. 1), a trench isolation region was formed on the side surface. In the area sandwiched between the separation and diffusion layers, there is a flat part 2b created by not digging a trench, as shown in FIGS. Even if an isolation oxide film is formed on the side surface portion 2b, and an isolation diffusion layer or an isolation oxide film in which impurities having the same conductivity type as the substrate are diffused is formed on the side surface portion 2b, the same effect as in the above embodiment can be obtained.

なお、上記第1、第2の実施例では、P型半導体基板に
、n型チャネルのトランスフアゲ−1・を有するメモリ
セルについて説明したが、n型半導体基板にP型チャネ
ルのトランスフアゲ−1・を有するメモリセルであって
もよく、この場合に側壁に形成する分離拡散層は、n型
の導電型の拡散層とすれば上記実施例と同様の効果を有
する。
In the first and second embodiments described above, a memory cell having an n-type channel transfer gate 1 on a P-type semiconductor substrate has been described. In this case, if the isolation diffusion layer formed on the sidewall is an n-type conductivity type diffusion layer, the same effect as in the above embodiment can be obtained.

〔発明の効果〕〔Effect of the invention〕

以上のように、乙の発明によれば折り返しビット線構成
のメモリセルアレイの溝堀り分離領域をトランジスタの
チャネル領域に接することなく、できるだけ溝の長さが
長くなるように形成したので、第1層目の多結晶シリコ
ンを溝堀り分離領域内でエンチングすることが不必要と
なる。また、トランジスタのチャネルのリーク電流も通
常のLocos程度に低減され、さらに、浅い溝堀りで
も十分な情報電荷蓄積容量が確保できる。従って、半導
体記憶装置の歩留りや、信頼性が改善される効果がある
As described above, according to the invention of B, the trench isolation region of the memory cell array with the folded bit line configuration is formed so that the trench length is as long as possible without contacting the channel region of the transistor. It is unnecessary to etch the polycrystalline silicon layer in the trench isolation region. In addition, the leakage current of the transistor channel is reduced to about the level of ordinary Locos, and furthermore, sufficient information charge storage capacity can be ensured even with a shallow trench. Therefore, the yield and reliability of semiconductor memory devices are improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(、)は、この発明の一実施例による半導体記憶
装置のメモリセルアレイを示す平面図、同(b)は断面
図、(c)は斜視図、第2図(、)はこの発明の他の実
施例による半導体記憶装置の平面図、(b)は斜視図、
第3図および第4図は従来の半導体記憶装置を示す平面
図および断面図である。 2は分離酸化膜、2aは分離拡散層、5はN+拡散層、
6はAJ配線、7はワード線、10はコンタクト孔、1
2は溝堀り分離領域。 なお、図中同一符号は同一または相当部分を示す。 代理人 大 岩 増 雄(外2名) 第2図 (aラ ム  76    %      7d6ユ 2−・ 
 ■ − 、、−(−、5 2 “ 56C−・             パ≧/l   
                         
(’′“■ ′( 6、/ 1       、( 第3図
FIG. 1(,) is a plan view showing a memory cell array of a semiconductor memory device according to an embodiment of the present invention, FIG. 1(b) is a sectional view, FIG. 1(c) is a perspective view, and FIG. A plan view of a semiconductor memory device according to another embodiment, (b) a perspective view,
FIGS. 3 and 4 are a plan view and a sectional view showing a conventional semiconductor memory device. 2 is an isolation oxide film, 2a is an isolation diffusion layer, 5 is an N+ diffusion layer,
6 is the AJ wiring, 7 is the word line, 10 is the contact hole, 1
2 is the trench isolation area. Note that the same reference numerals in the figures indicate the same or corresponding parts. Agent: Masuo Oiwa (2 others) Figure 2 (A Ram 76% 7d6 Yu 2-・
■ − ,, −(−, 5 2 “ 56C−・Pa≧/l

('′“■ ′( 6, / 1, (Fig. 3

Claims (2)

【特許請求の範囲】[Claims] (1)メモリセル1ビット分の領域にワード線が1本と
ビット線が2本通過し、ビット線とのコンタクトを共有
して隣接する2ビット分のメモリセルの全周囲に、溝堀
り分離領域を形成してこの溝堀り分離領域の側面のうち
、前記2ビットのメモリセルを分離するために、基板と
同じ導電型の基板より濃い濃度の拡散層を形成した部分
以外に、情報電荷蓄積用の容量を形成したメモリセルか
らなる折り返し型ビット線構成のメモリセルアレイを備
えたことを特徴とする半導体記憶装置。
(1) One word line and two bit lines pass through an area corresponding to one bit of memory cell, and a trench is dug around the entire periphery of the adjacent two bits of memory cell, sharing contact with the bit line. An isolation region is formed, and in order to isolate the 2-bit memory cells from the sides of the grooved isolation region, there is no information other than the portion where a diffusion layer with a concentration higher than that of the substrate of the same conductivity type as the substrate is formed. 1. A semiconductor memory device comprising a memory cell array having a folded bit line configuration consisting of memory cells in which a capacitor for charge storage is formed.
(2)情報電荷蓄積用の容量を得るための第1の電極と
なる溝堀り分離領域の側面に形成した基板と逆の導電型
の拡散層に、絶縁膜を挟んで対向する第2の電極を形成
するポリシリコン層は、溝堀り分離領域内のみに形成し
たことを特徴する特許請求の範囲第1項記載の半導体記
憶装置。
(2) A second diffusion layer, which is opposite to the first electrode with an insulating film in between, is formed on the side surface of the trench isolation region and has a conductivity type opposite to that of the substrate. 2. The semiconductor memory device according to claim 1, wherein the polysilicon layer forming the electrode is formed only within the trench isolation region.
JP62052806A 1987-03-06 1987-03-06 Semiconductor device memory Pending JPS63219156A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62052806A JPS63219156A (en) 1987-03-06 1987-03-06 Semiconductor device memory

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62052806A JPS63219156A (en) 1987-03-06 1987-03-06 Semiconductor device memory

Publications (1)

Publication Number Publication Date
JPS63219156A true JPS63219156A (en) 1988-09-12

Family

ID=12925087

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62052806A Pending JPS63219156A (en) 1987-03-06 1987-03-06 Semiconductor device memory

Country Status (1)

Country Link
JP (1) JPS63219156A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02154462A (en) * 1988-12-06 1990-06-13 Mitsubishi Electric Corp Semiconductor storage device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02154462A (en) * 1988-12-06 1990-06-13 Mitsubishi Electric Corp Semiconductor storage device

Similar Documents

Publication Publication Date Title
US4873560A (en) Dynamic random access memory having buried word lines
US4894695A (en) Semiconductor device with no stress generated at the trench corner portion and the method for making the same
US5428236A (en) Semiconductor memory device having trenched capicitor
US4921815A (en) Method of producing a semiconductor memory device having trench capacitors
JPH03173174A (en) Semiconductor storage device
JPS62229872A (en) Semiconductor memory device
US5027173A (en) Semiconductor memory device with two separate gates per block
KR100319623B1 (en) Dram cell array and fabrication method thereof
EP0266572B1 (en) Semiconductor memory device having a plurality of memory cells of single transistor type
JPS6058663A (en) Memory device for temporary storage of charge
JPH0365664B2 (en)
JPS63219156A (en) Semiconductor device memory
KR900000065B1 (en) Semiconductor manufacturing method and memory device
JPS62150879A (en) Semiconductor memory
JP3288371B2 (en) Random access memory or electronic device and method of manufacturing the same
JPS60236260A (en) Semiconductor memory device
JP3902731B2 (en) Electronic element or electronic device.
JPS61140171A (en) Semiconductor memory device
WO1992011658A1 (en) Random access memory
JPH07109875B2 (en) Dynamic memory
JPH05190801A (en) Semiconductor storage device
JPH0319280A (en) Semiconductor device
JPH08250679A (en) Electronic device or electronic apparatus
JPS6254954A (en) Semiconductor memory
JPH01204462A (en) Semiconductor storage device