JPS63218293A - Treatment of waste water containing trichloroethylene - Google Patents

Treatment of waste water containing trichloroethylene

Info

Publication number
JPS63218293A
JPS63218293A JP5010487A JP5010487A JPS63218293A JP S63218293 A JPS63218293 A JP S63218293A JP 5010487 A JP5010487 A JP 5010487A JP 5010487 A JP5010487 A JP 5010487A JP S63218293 A JPS63218293 A JP S63218293A
Authority
JP
Japan
Prior art keywords
waste water
trichlorethylene
trichloroethylene
ultraviolet rays
contg
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5010487A
Other languages
Japanese (ja)
Inventor
Katsunobu Motoi
元井 勝信
Yoshiaki Takai
高井 義明
Katsuji Isaka
井阪 勝二
Takao Nakazawa
中澤 孝夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HARUNA KK
Nisso Engineering KK
Original Assignee
HARUNA KK
Nisso Engineering KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HARUNA KK, Nisso Engineering KK filed Critical HARUNA KK
Priority to JP5010487A priority Critical patent/JPS63218293A/en
Publication of JPS63218293A publication Critical patent/JPS63218293A/en
Pending legal-status Critical Current

Links

Landscapes

  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Water Treatment By Sorption (AREA)
  • Physical Water Treatments (AREA)

Abstract

PURPOSE:To decompose trichloroethylene to harmless substances, by adding H2O2 to waste water contg. trichloroethylene, irradiating the waste water with ultraviolet rays, and passing the waste water through an adsorption bed contg. active carbon fiber while irradiating the waste water further with ultraviolet rays. CONSTITUTION:H2O2 is added to waste water contg. trichloroethylene in satd. state in a decomposition tank 2 from a tank 4. The trichloroethylene is decomposed by irradiating the waste water with ultraviolet rays using a lamp 3. Then, the waste water treated in the above described stage is further irradiated in a decomposition adsorption apparatus 10 with ultraviolet rays using a lamp 12 in the presence of residual H2O2 from the above described stage. While continuing the irradiation, trichloroethylene is decomposed by passing the waste water through an adsorption pipe 11 contg. active carbon fiber. As the result, waste water contg. trichloroethylene in so high concn. as 1,000ppm (saturation concn.) before treatment is treated in a short time to treated waste water contg. extremely small concn. of residual trichloroethylene so small as expressed in terms of ppm after treatment. No secondary by product requiring trouble some post-treatment is generated.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 最近、有機塩素化合物による環境汚染が問題となってき
ており、特にトリクロロエチレンをはじめとしてテトラ
クロロエチレン等は汚染物質として水質基準が定められ
ている。なかでもトリクロロエチレンは水に常温で約1
1000pp溶解し、分解しに(いため河川や地下水の
厄介な汚染物質となっており、機械金属工業、電気機器
関連工業、ドライクリ−・二°ング業等で多量に排出さ
れるが、排水基準値は30ppb以下という厳しい規制
となっている。
[Detailed Description of the Invention] [Industrial Application Field] Recently, environmental pollution due to organic chlorine compounds has become a problem, and water quality standards have been established for trichlorethylene and tetrachlorethylene as pollutants. Among them, trichlorethylene is about 1% in water at room temperature.
It is a troublesome pollutant in rivers and underground water, and is discharged in large quantities by machinery and metal industries, electrical equipment-related industries, dry cleaning and recycling industries, etc., but the wastewater standard value There is a strict regulation of 30 ppb or less.

この発明は、トリクロロエチレンが厳しい飽和状態に溶
解している排水を処理して、トリクロロエチレンを無害
の物質にまで分解し、残存トリクロロエチレン濃度を超
微量に低減し無害にする方法に関する。
The present invention relates to a method for treating wastewater in which trichlorethylene is dissolved in a severely saturated state, decomposing the trichlorethylene into harmless substances, and reducing the concentration of residual trichlorethylene to an ultra-trace amount, rendering it harmless.

〔従来の技術〕[Conventional technology]

トリクロロエチレン含有排水の処理は、従来、ストリッ
ピング処理をして水中の溶解トリクロロエチレンを大気
中へ放出する方法があるが、この方法ではトリクロロエ
チレンを単に大気中に移行させるだけで二次公害の原因
にもなり根本的解決となり得す、処理時間も非常に長時
間に及ぶという欠点がある。また、トリクロロエチレン
を活性炭により吸着して除去する方法も一般的に用いら
れているが、この方法は、トリクロロエチレンの吸着・
脱着を繰り返す方法であるため得られたトリクロロエチ
レンあるいはトリクロロエチレン含有凝縮液の後処理が
問題となり、また活性炭の再生にも熱的コスト、手間が
かかるという欠点がある。また他の方法として、過酸化
水素等の酸化荊林 を加えて、トリクロロエチレンを分唇する方法があるが
、処理後のトリクロロエチレンをppmオーダーに低減
することは容易なことではない、また、さらにこれら酸
化剤を使用すると共に紫外線を照射することも試みられ
ているが、処理前の排水中のトリクロロエチレン飽和濃
度約1000pp−のものを処理後ρpbのオーダーに
まで低減することは困難である。
The conventional method for treating trichlorethylene-containing wastewater is to perform a stripping process and release the dissolved trichlorethylene in the water into the atmosphere, but this method simply transfers trichlorethylene into the atmosphere and can cause secondary pollution. However, it has the drawback that the processing time is extremely long, which could be a fundamental solution. Additionally, a method of removing trichlorethylene by adsorption with activated carbon is also commonly used;
Since this is a method of repeated desorption, post-treatment of the trichlorethylene or trichlorethylene-containing condensate obtained is a problem, and the regeneration of activated carbon also requires thermal costs and labor. Another method is to add oxides such as hydrogen peroxide to split the trichlorethylene, but it is not easy to reduce the trichlorethylene after treatment to the order of ppm. Attempts have been made to use an oxidizing agent and irradiate ultraviolet rays, but it is difficult to reduce the trichlorethylene saturation concentration in the wastewater before treatment, which is about 1000 pp-, to the order of ρpb after treatment.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

この発明の目的は、これら従来のもののもたらす問題点
を解消し、処理前の排水中のトリクロロエチレン飽和濃
度1000pp−という高い濃度のものでも処理後1)
I)bオーダーという超微量の残存トリクロロエチレン
にまで短時間で低減でき、かつ後処理の厄介は二次副生
物を産出せずまた二次公害のない排水処理方法を提供す
ることに与る。
The purpose of this invention is to solve the problems caused by these conventional methods, and even after treatment with trichlorethylene saturation concentration as high as 1000 pp- in wastewater before treatment (1)
I) It is important to provide a wastewater treatment method that can reduce the amount of residual trichlorethylene to an ultra-trace amount of b order in a short time and does not produce secondary by-products or cause secondary pollution due to the troublesome post-treatment.

〔問題を解決するための手段〕[Means to solve the problem]

前記の目的・を達成するために、この発明は、トリクロ
ロエチレン含有排水に過酸化水素を添加し紫外線を照射
し、トリクロロエチレンをまず数尊 pp−にまで分儲処理した後、次にこの排水を活性に残
存トリクロロエチレンを活性炭素繊維で吸着することを
特徴とするものである。
In order to achieve the above objects, this invention adds hydrogen peroxide to trichlorethylene-containing wastewater and irradiates it with ultraviolet rays, first fractionates the trichlorethylene to a few pp-, and then activates this wastewater. It is characterized by adsorbing residual trichlorethylene with activated carbon fibers.

以下、この発明の手段を容易に理解するため、実施態様
の例を図面にもとづいて説明する。
Hereinafter, in order to easily understand the means of the present invention, examples of embodiments will be described based on the drawings.

第1図は、この発明の好適な1例のフローであり、まづ
第1工程であるが、トリクロロエチレンを飽和状態すな
わち、約11000pp+を含有する原排水は、排水流
入管lより分解槽2に入り(バッチ)、この排水中に浸
せきされた第1紫外線ランプ3により紫外線を照射しな
がら、過酸化水素水を過酸化水素水タンク4より排水中
に含有されるトリクロロエチレン1.0モルに対し3.
2〜3.5モル程度を加え、撹拌機5により混合しトリ
クロロエチレンを分解させる。このときの分解は、次の
反応式によると考えられ、トリクロロエチレン1モルに
対する過酸化水素の理論等量は3モルであるが、過酸化
水素は若干過剰に加えて反応を促進させると共に、後述
する第2工程での残存トリクロロエチレンの分解に寄与
させる。
FIG. 1 is a flowchart of a preferred example of the present invention. First, in the first step, raw wastewater containing trichlorethylene in a saturated state, that is, approximately 11,000 pp+, is transferred from the wastewater inflow pipe 1 to the decomposition tank 2. While irradiating ultraviolet rays with the first ultraviolet lamp 3 immersed in this wastewater, hydrogen peroxide solution is added from the hydrogen peroxide tank 4 to 1.0 mole of trichlorethylene contained in the wastewater. ..
About 2 to 3.5 moles are added and mixed using the stirrer 5 to decompose trichlorethylene. The decomposition at this time is thought to be based on the following reaction formula, and the theoretical equivalent amount of hydrogen peroxide to 1 mole of trichlorethylene is 3 moles, but hydrogen peroxide is added in slight excess to accelerate the reaction and as described below. This contributes to the decomposition of residual trichlorethylene in the second step.

CgHC12+ 311xO□→ 2COg + 3H
C+ + 2HtO分解反応が進行すると共に炭酸ガス
が発生するので、炭酸ガス排出管6から外部へ排出させ
、また生成した塩酸により分解槽2内の排水のpHはp
H計9でみて徐々に低下してくるので、アルカリ水溶液
をアルカリタンク7よりpH用電磁弁8を介して少量ず
つ添加してpHを概略7前後に調節する0分解は通常2
〜3時間でトリクロロエチレン数pρ蒙迄低下する。
CgHC12+ 311xO□→ 2COg + 3H
As the C+ + 2HtO decomposition reaction progresses, carbon dioxide gas is generated, which is discharged to the outside from the carbon dioxide gas discharge pipe 6, and the pH of the waste water in the decomposition tank 2 is adjusted to pH by the generated hydrochloric acid.
Since the H total 9 gradually decreases, 0 decomposition is usually done by adding an alkaline aqueous solution little by little from the alkali tank 7 via the pH solenoid valve 8 to adjust the pH to around 7.
In ~3 hours, the trichlorethylene count decreases to ppm.

トリクロロエチレンの分解反応は、過酸化水素のみでは
長時間かけても僅かしか進行せず、また紫外線だけでも
その効果は不充分であり、トリクロロエチレンをpp−
オーダーにまで低下させることを目的とする場合には工
業的にほとんど意味がな(、この発明の方法のようにト
リクロロエチレンを紫外線により励起させたところで酸
化剤により分子間結合を攻撃し分解させることによって
ト。
The decomposition reaction of trichlorethylene progresses only slightly with hydrogen peroxide alone even over a long period of time, and the effect is insufficient even with ultraviolet rays alone.
There is almost no industrial meaning when the purpose is to reduce the amount of trichlorethylene to a level on the order of to.

リクロロエチレン濃度を急速に低減させることができる
Lichlorethylene concentration can be reduced rapidly.

ここで使用、される紫外線ランプは通常使用されるもの
でよく、主波長254nsをもつ水銀ランプでよい、紫
外線の照射強度は、分解槽2中の紫外線の通過液の厚み
にもよるが、紫外線ランプの外面の接液部で1〜2X1
0’ μW/cd程度でよい。
The ultraviolet lamp used here may be a commonly used one, and may be a mercury lamp with a dominant wavelength of 254 ns. 1~2X1 at the liquid contact part on the outside of the lamp
It may be about 0' μW/cd.

また、分解槽2内の液温は常温でよいが、この分解反応
は温度依存性が比較的大きいので、廃蒸気のような適当
な熱源があれば利用するのもよい。
Further, the temperature of the liquid in the decomposition tank 2 may be room temperature, but since this decomposition reaction has a relatively large temperature dependence, it is better to use an appropriate heat source such as waste steam if available.

次に第2工程であるが、上記の第1工程で得られた過酸
化水素が残存するトリクロロエチレン含有量数ppmと
なった排水を分解吸収装置10の活性炭素繊維吸着管1
1に通しながら第2紫外線ランプ12により紫外線を照
射する。この活性炭素繊維吸着管11には1500〜2
000ポ/gといった吸着表面積の大きな活性炭素繊維
を、例えばブロック状として、交換可能に充填して活性
炭素繊維吸着層13を形成している。紫外線ランプおよ
び紫外線の照射強度は第1工程の場合と同等でよく、ま
た、紫外線ランプは第1工程でも同じであるが紫外線の
照射量によって複数個に分割して使用しても差支えない
、また、分解吸着装置lO内での紫外線を有効に利用す
るため、第2紫外線ランプと活性炭素繊維吸着管11と
の距離は出来るだけ小さくし、また紫外線の反射をよく
し活性炭素繊維吸着管11の全面から紫外線が照射され
るように、第2紫外線ランプおよび活性炭素繊維吸着管
11を囲むように゛反射壁14を設けることが望ましい
、第2図は、第1図の分解吸着装置10の平面断面図で
あり、紫外線を有効に利用するため、紫外線ランプ12
を中心としてその周囲に活性炭素繊維吸着管11を複数
個、同心円的に配置したもので、排水はこれら活性炭素
繊維吸着管を直列あるいは並列に通すことが可能である
Next, in the second step, the wastewater with hydrogen peroxide remaining in the trichlorethylene content of several ppm obtained in the first step is removed from the activated carbon fiber adsorption tube of the decomposition and absorption device 10.
1, the second ultraviolet lamp 12 irradiates the ultraviolet rays. This activated carbon fiber adsorption tube 11 has 1500 to 2
Activated carbon fibers having a large adsorption surface area of 0.000 po/g are packed in, for example, a block shape and replaceable to form the activated carbon fiber adsorption layer 13. The irradiation intensity of the ultraviolet lamp and ultraviolet rays may be the same as in the first step, and the ultraviolet lamp is the same in the first step, but it may be divided into multiple units depending on the amount of ultraviolet irradiation. In order to effectively utilize the ultraviolet rays in the decomposition and adsorption device 1O, the distance between the second ultraviolet lamp and the activated carbon fiber adsorption tube 11 should be as small as possible, and the distance between the second ultraviolet lamp and the activated carbon fiber adsorption tube 11 should be kept as small as possible to improve the reflection of the ultraviolet rays. It is desirable to provide a reflective wall 14 to surround the second ultraviolet lamp and the activated carbon fiber adsorption tube 11 so that the entire surface is irradiated with ultraviolet rays. This is a cross-sectional view of the ultraviolet lamp 12 in order to effectively utilize ultraviolet light.
A plurality of activated carbon fiber adsorption tubes 11 are arranged concentrically around the center, and waste water can be passed through these activated carbon fiber adsorption tubes in series or in parallel.

このようにして、構成された分解吸着装置lO内で、ト
リクロロエチレンは再度紫外線により励起されると同時
に活性炭素繊維の表面で過酸化水素により酸化分゛解さ
れ、掻く僅かの未分解トリクロロエチレンは活性炭素繊
維に吸着され、排水中のトリクロロエチレン濃度はPI
)bオーダーとなり放流管15を通り系外に排出される
。活性炭素繊維に吸着されたトリクロロエチレンは、過
酸化水素と紫外線とにより引続き分解が進行するので、
活性炭素繊維の吸着能力が再生され活性炭素繊維の寿命
は持続される。
In this way, in the decomposition and adsorption device 10 constructed, trichlorethylene is excited again by ultraviolet rays and at the same time is oxidized and decomposed by hydrogen peroxide on the surface of the activated carbon fiber, and a small amount of undecomposed trichlorethylene is absorbed into the activated carbon. It is adsorbed on fibers, and the concentration of trichlorethylene in wastewater is PI
)b order and is discharged to the outside of the system through the discharge pipe 15. Trichlorethylene adsorbed on activated carbon fibers continues to decompose due to hydrogen peroxide and ultraviolet rays.
The adsorption capacity of the activated carbon fibers is regenerated and the life of the activated carbon fibers is maintained.

実施例 蒸留水3000mにトリクロロエチレン3.0gを混合
溶解し、はぼ飽和トリクロロエチレン水(1000pp
m濃度)として供試液とした。この水溶液を技付密閉フ
ラスコに入れ、温度30℃で出力10Wの外部照射型低
圧・水銀ランプにより照射強度1.5X10’uW/c
j、主波長254n−の紫外線を照射しながら、35%
過酸化水素水をトリクロロエチレン1モルに対して過酸
化水素3.5モルの比で加え、スタラーで撹拌した。途
中、pFi計で監視しながら5%苛性ソーダをビューレ
フトから滴下しほぼpl+7に保持した。10分毎にサ
ンプリングを行い、液体クロマトグラフィーで分析した
。この第1工程での分解反応結果を次の第1表に示す。
Example 3.0g of trichlorethylene was mixed and dissolved in 3000ml of distilled water, and then saturated trichlorethylene water (1000pp
The sample solution was determined as m concentration). This aqueous solution was placed in a sealed flask and irradiated with an external irradiation type low pressure mercury lamp with an output of 10W at a temperature of 30°C at an intensity of 1.5 x 10'uW/c.
j, 35% while irradiating ultraviolet rays with a main wavelength of 254n-
Hydrogen peroxide solution was added at a ratio of 3.5 moles of hydrogen peroxide to 1 mole of trichlorethylene, and the mixture was stirred with a stirrer. During the course of the reaction, 5% caustic soda was added dropwise from the view left while monitoring with a pFi meter to maintain the pl at approximately pl+7. Sampling was performed every 10 minutes and analyzed by liquid chromatography. The results of the decomposition reaction in this first step are shown in Table 1 below.

第  1  表 次に第2工程として、直径20■、長さ400閣の肉厚
が極薄の紫外線透過性良好な弗素樹脂製U字管の中に活
性炭素繊維を充填したものに、第1工程で得られたトリ
クロロエチレン含をittppmの水溶液をSV −5
0/hr、の流速で通し、このU字管の垂直部の管の間
に第1工程で使用したものと同じ水銀ランプをおき紫外
線を照射した。
Table 1 Next, as a second step, activated carbon fibers were filled in a fluororesin U-shaped tube with an ultra-thin wall thickness of 20 mm in diameter and 400 cm in length and good UV transmission. The aqueous solution containing ittppm of trichlorethylene obtained in the step was heated to SV -5.
A mercury lamp, the same as that used in the first step, was placed between the vertical portions of this U-shaped tube and irradiated with ultraviolet rays.

U字管から出た水溶液中のトリクロロエチレンをヘッド
スペース法にてガスクロマトグラフィーで分析したとこ
ろ20ppbであり、排水規制値30pHb以下であつ
た。
Trichlorethylene in the aqueous solution discharged from the U-shaped tube was analyzed by gas chromatography using the headspace method and found to be 20 ppb, which was below the wastewater regulation value of 30 pHb.

〔発明の効果〕〔Effect of the invention〕

この発明に゛よ゛れば、以上説明したように、トリクロ
ロエチレンを飽和溶液という高い濃度で含有する排水を
、紫外線、過酸化水素により大部分のトリクロロエチレ
ンを酸化分解しppwrオーダーまで低下させ、次に残
存する微量トリクロロエチレンを活性炭素繊維の表面で
再度、紫外線、過酸化水素により酸化分解させることに
よりPPbオーダーという超微量濃度にまで低下させる
ことができ、厳しい排水基準値を達成することができる
。また、この方法によれば、処理時間も短かくて済み、
高価な活性炭素繊維吸着材も再生、賦活しながら持続し
て使用できるという便利さがあり、さらに、トリクロロ
エチレンの酸化分解生成物は無害で二次公害のおそれが
なく、後処理の手数もかからず公害対策上も優れた方法
である。
According to this invention, as explained above, wastewater containing trichlorethylene at a high concentration in the form of a saturated solution is oxidized and decomposed by ultraviolet rays and hydrogen peroxide to reduce the trichlorethylene to ppwr order, and then By oxidatively decomposing the remaining trace amount of trichlorethylene on the surface of the activated carbon fiber using ultraviolet rays and hydrogen peroxide, it is possible to reduce the concentration to an ultra-trace amount on the order of PPb, thereby achieving strict wastewater standard values. Also, according to this method, the processing time is short,
It is convenient because expensive activated carbon fiber adsorbents can be used continuously while being regenerated and activated.Furthermore, the oxidative decomposition products of trichlorethylene are harmless, there is no risk of secondary pollution, and there is no need for post-processing. It is also an excellent method for preventing pollution.

なお、この発明は、トリクロロエチレンのみならず、こ
れに類似のハロゲン化炭化水素化合物の酸化分解につい
ても適用できることは勿論である。
It goes without saying that the present invention is applicable not only to trichlorethylene but also to the oxidative decomposition of similar halogenated hydrocarbon compounds.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の1態様を示すフローシートを示し、
また、第2図は第1図の分解吸着装置の平面断面図であ
る。 1・・・排水流入管 2・・・分解槽 3・・・第1紫外線ランプ 4・・・過酸化水素水タンク 5・・・撹拌機 6・・・炭酸ガス排出管 7・・・アルカリタンク 8・・・pH用電磁弁 9・・・pH計 lO・・・分解吸着装置 11・・・活性炭素繊維吸着管 12・・・第2紫外線ランプ 13・・・活性炭素繊維吸着層 14・・・反射壁 15・・・放流管
FIG. 1 shows a flow sheet showing one embodiment of this invention,
Further, FIG. 2 is a plan sectional view of the decomposition and adsorption device shown in FIG. 1. 1... Waste water inflow pipe 2... Decomposition tank 3... First ultraviolet lamp 4... Hydrogen peroxide tank 5... Stirrer 6... Carbon dioxide gas discharge pipe 7... Alkali tank 8... pH solenoid valve 9... pH meter lO... decomposition adsorption device 11... activated carbon fiber adsorption tube 12... second ultraviolet lamp 13... activated carbon fiber adsorption layer 14...・Reflection wall 15...discharge pipe

Claims (1)

【特許請求の範囲】[Claims] トリクロロエチレンを飽和状態で含有する排水の処理に
おいて、この排水に過酸化水素を添加し、紫外線を照射
することによってトリクロロエチレンを分解する第1工
程と、前記工程で処理された排水をさらに、第1工程か
らの残存過酸化水素のもとに紫外線を照射しながら活性
炭素繊維吸着層を通すことによってトリクロロエチレン
を分解する第2工程とならなることを特徴とするトリク
ロロエチレン含有排水の処理方法。
In the treatment of wastewater containing trichlorethylene in a saturated state, the first step is to add hydrogen peroxide to the wastewater and decompose the trichlorethylene by irradiating it with ultraviolet light, and the wastewater treated in the above step is further processed in the first step. A method for treating trichlorethylene-containing wastewater, characterized in that the second step is to decompose trichlorethylene by passing it through an activated carbon fiber adsorption layer while irradiating ultraviolet rays under residual hydrogen peroxide.
JP5010487A 1987-03-06 1987-03-06 Treatment of waste water containing trichloroethylene Pending JPS63218293A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5010487A JPS63218293A (en) 1987-03-06 1987-03-06 Treatment of waste water containing trichloroethylene

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5010487A JPS63218293A (en) 1987-03-06 1987-03-06 Treatment of waste water containing trichloroethylene

Publications (1)

Publication Number Publication Date
JPS63218293A true JPS63218293A (en) 1988-09-12

Family

ID=12849770

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5010487A Pending JPS63218293A (en) 1987-03-06 1987-03-06 Treatment of waste water containing trichloroethylene

Country Status (1)

Country Link
JP (1) JPS63218293A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4005488A1 (en) * 1990-02-21 1991-08-22 Wabner Dietrich METHOD AND DEVICE FOR WATER DETOXIFICATION
JPH07124550A (en) * 1993-11-02 1995-05-16 Kazutoyo Sugihara Purifying apparatus
JPH07124551A (en) * 1993-11-02 1995-05-16 Kazutoyo Sugihara Purifying apparatus
JPH07144137A (en) * 1993-06-01 1995-06-06 Natl Res Inst For Metals Method for decomposing halogenated hydrocarbon
JP2002011485A (en) * 2000-04-26 2002-01-15 Sumitomo Precision Prod Co Ltd Device and method for treating water
US6497795B1 (en) 1998-12-16 2002-12-24 Canon Kabushiki Kaisha Method and apparatus for decomposing gaseous aliphatic hydrocarbon halide compound
US6616815B2 (en) 1998-06-22 2003-09-09 Canon Kabushiki Kaisha Method of decomposing halogenated aliphatic hydrocarbon compounds or aromatic compounds and apparatus to be used for the same as well as method of clarifying exhaust gas and apparatus to be used for the same
US6699370B2 (en) 2000-06-16 2004-03-02 Canon Kabushiki Kaisha Process and system for decomposing pollutants
JP2006026460A (en) * 2004-07-12 2006-02-02 Dowa Mining Co Ltd Method of detoxifying polluted substance
US7018514B2 (en) 2001-11-12 2006-03-28 Canon Kabushiki Kaisha Method and apparatus for processing substances to be decomposed
US7163615B2 (en) 2001-11-12 2007-01-16 Canon Kabushiki Kaisha Method of treating substance to be degraded and its apparatus
JP2019136844A (en) * 2018-02-14 2019-08-22 株式会社ディスコ Processing device

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4005488A1 (en) * 1990-02-21 1991-08-22 Wabner Dietrich METHOD AND DEVICE FOR WATER DETOXIFICATION
JPH07144137A (en) * 1993-06-01 1995-06-06 Natl Res Inst For Metals Method for decomposing halogenated hydrocarbon
JPH07124550A (en) * 1993-11-02 1995-05-16 Kazutoyo Sugihara Purifying apparatus
JPH07124551A (en) * 1993-11-02 1995-05-16 Kazutoyo Sugihara Purifying apparatus
US6616815B2 (en) 1998-06-22 2003-09-09 Canon Kabushiki Kaisha Method of decomposing halogenated aliphatic hydrocarbon compounds or aromatic compounds and apparatus to be used for the same as well as method of clarifying exhaust gas and apparatus to be used for the same
US6497795B1 (en) 1998-12-16 2002-12-24 Canon Kabushiki Kaisha Method and apparatus for decomposing gaseous aliphatic hydrocarbon halide compound
US7163665B2 (en) 1998-12-16 2007-01-16 Canon Kabushiki Kaisha Apparatus for decomposing gaseous aliphatic hydrocarbon halide compounds
JP2002011485A (en) * 2000-04-26 2002-01-15 Sumitomo Precision Prod Co Ltd Device and method for treating water
US6699370B2 (en) 2000-06-16 2004-03-02 Canon Kabushiki Kaisha Process and system for decomposing pollutants
US7018514B2 (en) 2001-11-12 2006-03-28 Canon Kabushiki Kaisha Method and apparatus for processing substances to be decomposed
US7163615B2 (en) 2001-11-12 2007-01-16 Canon Kabushiki Kaisha Method of treating substance to be degraded and its apparatus
JP2006026460A (en) * 2004-07-12 2006-02-02 Dowa Mining Co Ltd Method of detoxifying polluted substance
JP2019136844A (en) * 2018-02-14 2019-08-22 株式会社ディスコ Processing device

Similar Documents

Publication Publication Date Title
US5234606A (en) Method and system for recovering wastewater
JP3399530B2 (en) Contaminated water treatment method
EP0671363B1 (en) Method and system for treating polluted water
JPS63218293A (en) Treatment of waste water containing trichloroethylene
JPH1199395A (en) Treatment of organic matter containing water
CA2281392C (en) Method for decomposing bromic acid by photocatalyst and apparatus therefor
JPH09271788A (en) Ultraviolet decomposition treatment of organic matter containing waste water and device therefor
JPH0889975A (en) Treatment of organic halogen compound-containing aqueous solution
JPS62163730A (en) Treatment of exhaust gas
JPS6028883A (en) Process and apparatus for treating waste water
EP0242941B1 (en) Process and apparatus for the deodorization of air
JPH1199394A (en) Method for removing organic matter in water
JPH09234338A (en) Photolysis of organochlorine compound
JP2541800B2 (en) Method for treating water containing organic matter
JPS625646B2 (en)
JPH0255117B2 (en)
JPS6051876B2 (en) Water treatment method
JPH07155543A (en) Treatment for volatile organic chlorine compound and device therefor
JP3300852B2 (en) Method and apparatus for treating contaminated water
JP2003053359A (en) Method for cleaning liquid polluted with pcb
LORAINE Short wavelength ultraviolet photolysis of aqueous carbon tetrachloride
JP2001259621A (en) Water treating device
JP3739169B2 (en) Organochlorine compound decomposition equipment
JPH0153439B2 (en)
JP2537586B2 (en) Advanced treatment method of organic matter and its equipment