JPS63217665A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPS63217665A
JPS63217665A JP5025587A JP5025587A JPS63217665A JP S63217665 A JPS63217665 A JP S63217665A JP 5025587 A JP5025587 A JP 5025587A JP 5025587 A JP5025587 A JP 5025587A JP S63217665 A JPS63217665 A JP S63217665A
Authority
JP
Japan
Prior art keywords
diffusion region
gate electrode
insulator
contact
side wall
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5025587A
Other languages
Japanese (ja)
Other versions
JPH0695526B2 (en
Inventor
Shizuo Sawada
沢田 静雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP62050255A priority Critical patent/JPH0695526B2/en
Publication of JPS63217665A publication Critical patent/JPS63217665A/en
Publication of JPH0695526B2 publication Critical patent/JPH0695526B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To obtain an LDD transistor resisting against high voltage stress by forming a section not shaped under an insulator in the side wall of a gate electrode into the second diffusion region of at least one of source and drain regions. CONSTITUTION:Source and drain regions formed by a second conductivity type first diffusion region arranged brought into contact with a channel section and a second conductivity type second diffusion region being disposed brought into contact with the first diffusion region and having concentration higher than the first diffusion region are shaped. A section where there is no second diffusion region of at least one of these regions under an insulator in the side wall of a gate electrode 5 is formed. That is, the width L' of a low- concentration diffusion region near a drain is made larger than that L of the insulator existing on the side wall of a gate. Accordingly, even when high voltage is applied to a drain electrode, a high electric field is difficult to be applied to the end sections of the gate electrode 5.

Description

【発明の詳細な説明】 〔発明の目的コ (産業上の利用分野) 本発明はLDD (Lightly Doped Dr
ain )構造のMOSトランソスタ全構成する半導体
装置に関するものである。
[Detailed Description of the Invention] [Object of the Invention (Industrial Application Field) The present invention is directed to an LDD (Lightly Doped Dr.
The present invention relates to a semiconductor device that entirely constitutes a MOS transistor with ain) structure.

(従来の技術) 近年LSIの高集積化と共に、MOS )ランソスタも
信頼性の点からLDD構造のトランジスタが広く便用さ
れるようになっている。第4図は従来のしDDトランソ
スタの断面図で、1はP型基板、2はゲート酸化膜、5
はゲート′4極、6はN−7m、7はゲート篭極側壁の
S r O2パターン、9はN+層である。
(Prior Art) In recent years, as LSIs have become highly integrated, LDD structure transistors have come into widespread use in MOS transistors due to their reliability. Figure 4 is a cross-sectional view of a conventional DD transistor, in which 1 is a P-type substrate, 2 is a gate oxide film, and 5 is a cross-sectional view of a conventional DD transistor.
is the gate '4 pole, 6 is N-7m, 7 is the S r O2 pattern on the side wall of the gate pole, and 9 is the N+ layer.

上記LDD l−ランノスタは、高信頼性を保証するた
めに、ゲート電極端部のドレイン部に表面濃度が約lX
l0 〜lXl0  庫 のリンによる低濃度拡散ノー
6を有することが大きな特徴になりている。また通常は
、/r”−)電極側壁にSiO□パターン7が自己整合
的に形成されている。
In order to guarantee high reliability, the above LDD l-Lannostar has a surface concentration of about 1X in the drain part at the end of the gate electrode.
A major feature is that it has a low concentration of diffusion due to phosphorus of 10 to 1X10. Further, normally, a SiO□ pattern 7 is formed on the side wall of the /r''-) electrode in a self-aligned manner.

(発明が解決しようとする問題点) 上記LL)D l−ランソスタは、通常の動作範囲の電
圧(0〜8V)に対しては、従来構造のトランジスタよ
りミ光駆動能力及び閾値電圧の変動が少ないということ
が分かっている。しかし高電圧ストレス例えば10V以
上の電圧ストレスで、健米構造トランノスタよりも容易
に破壊することが最近分かってきた。
(Problems to be Solved by the Invention) The above-mentioned LL)D l-lan soster has less optical drive ability and threshold voltage fluctuations than transistors of conventional structure for voltages in the normal operating range (0 to 8 V). I know that there are few. However, it has recently been found that high voltage stress, for example, voltage stress of 10 V or more, causes trannostars to break down more easily than solid structure trannostars.

本発明は上記実情に鑑みてなされたもので、高電圧スト
レスに対して強いLDD )ランノスタを提供しようと
するものである。
The present invention has been made in view of the above-mentioned circumstances, and aims to provide an LDD (LDD) lannostar that is resistant to high voltage stress.

[発明の構成コ (問題点を解決するための手段と作用)本発明は、第1
導電型半導体基体上にr−)電極の側壁に形成された絶
縁物を有するMOS )ランソスタにおいて、チャネル
部と接触して配置された1g2導電型の第1拡散領域及
びその領域と接して配置された前記第1拡散領域より高
4度の第2導電型の第2拡散領域より形成されるソース
及びドレイン領域を有し、これら領域の少くとも一方の
第2拡散領域が別記ゲート電極側壁の?3縁物°下に存
在しない個所があることを特徴とする。即ち本発明は、
ドレイン近傍の低濃度拡散領域の幅を、ゲート側壁に存
在する絶縁物の幅より犬さくし、ドレイン′F!を極に
高゛亀圧が印加されても、ケ゛−ト電極瑞部には高′#
L界が印加されに<<シたものである。
[Configuration of the Invention (Means and Actions for Solving Problems) The present invention consists of the first
In a MOS transistor having an insulator formed on the side wall of an r-) electrode on a conductivity type semiconductor substrate, a first diffusion region of 1g2 conductivity type disposed in contact with the channel part and a first diffusion region disposed in contact with the region. The source and drain regions are formed by second diffusion regions of a second conductivity type that are 4 degrees higher than the first diffusion region, and at least one of these regions is formed on the sidewall of the gate electrode. It is characterized by the fact that there are parts that do not exist below the 3 edges. That is, the present invention
The width of the low concentration diffusion region near the drain is made smaller than the width of the insulator existing on the gate sidewall, and the drain 'F! Even if a high tortoise pressure is applied to the electrode, high
The L field is applied.

(実施例) 以下図面を参照して不発明の一実施例を説明する。第1
図は同実施例の工程図であるが、これFi前記従来例の
ものと対応させた場合の例であるから、対応個所には同
一符号を用いる。まず第1図(&)に示すよりに、P型
基板IVC)y’−)醸化換2を200X形成した後、
多結晶シリコン3を4000又堆積する。その後POC
43で51p+を拡散し、写真蝕刻法でレノストパター
ン4を形成した後、41図(b)のようにダート部での
マスクによるエツチングでゲート電極5を形成する。次
にゲート電極5をマスクにして、5+p+をドーズjl
i 2 X l 015cm−2、加速4圧40 ke
Vでイオン注入し、N−)−6を形成する。次に第1図
(C)のようにCVD 法によりCVD −8+021
1J(を3000λ程度堆積する。K K 上Ae、 
C”/D−sto2iをRlE (Reactive 
Ion Etching )でエツチングする。その結
果r−)電極5の側壁に5itJ2パターン7を形成す
る。その後写真蝕刻法でレノストパターン8を形成し、
その恢 All  を第1図(d)のように50 ke
V 、 3 X I 015811(D条件ティオン注
入してN 層9を設けることにより、MOSトランノス
タが形成される。
(Embodiment) An embodiment of the invention will be described below with reference to the drawings. 1st
The figure is a process diagram of the same embodiment, but since this is an example in which Fi corresponds to that of the conventional example, the same reference numerals are used for corresponding parts. First, as shown in FIG.
4000 layers of polycrystalline silicon 3 are deposited. Then P.O.C.
After 51p+ is diffused in step 43 and a renost pattern 4 is formed by photolithography, a gate electrode 5 is formed in the dirt portion by etching using a mask as shown in FIG. 41(b). Next, using the gate electrode 5 as a mask, dose jl of 5+p+.
i 2 X l 015 cm-2, acceleration 4 pressure 40 ke
Ion implantation is performed at V to form N-)-6. Next, as shown in Figure 1 (C), CVD -8+021
1J (deposit about 3000λ. K K upper Ae,
C”/D-sto2i to RlE (Reactive
Etching with Ion Etching). As a result, a 5itJ2 pattern 7 is formed on the side wall of the r-) electrode 5. After that, a Lenost pattern 8 is formed by photolithography,
The result All is 50 ke as shown in Figure 1(d).
V , 3

通常第1図(d)のようにム(L、/となるようにN 
−/m6の幅は制御される。一方のN″″層(ドレイン
側)の幅L′の方はグラスの尚電圧ストレスを印〃口側
とする。これはトランジスタの駆動能力の低下をおさえ
るために望ましいからである。しかし電流駆動能力の低
下が問題とならない場合は、L(L’の関係にならなく
てもよい。また第1図では、ソース側N)yIi9はゲ
ート側壁に形成された8102換7をマスクに Aa 
’?イオン注入して形成したが、第2図のようにソース
側の75A、+によるN ノーは、側壁に形成されたS
10□パターン7をイオン注入のマスクとして使用する
必要は必ずしもなく、レノストパターンをマスクとして
便用することもciT能である。
Normally, as shown in Figure 1(d), N
-/m6 width is controlled. The width L' of one N'''' layer (drain side) is such that the voltage stress of the glass is on the inlet side. This is because this is desirable in order to suppress deterioration in the driving ability of the transistor. However, if a decrease in current drive capability is not a problem, the relationship L (L') may not be true. In FIG. Aa
'? It was formed by ion implantation, but as shown in Figure 2, the N no due to 75A and + on the source side is the S formed on the side wall.
It is not necessarily necessary to use the 10□ pattern 7 as a mask for ion implantation, and it is also possible to use the Renost pattern as a mask.

また実敵の応用例として、第3図のように一番寛界の強
いフィールドエッジ部(MOS )ランノスタ領域の周
囲つfリハッチング饋域とその周囲の境目)待に2イー
ルド−ツノとゲート胤億との交差部付近に本発明の構成
を適用し、他の部分のN層9はゲートvl極5側へ延出
させ、電流駆動能力を上げることが有効である。
In addition, as an application example of a real enemy, as shown in Figure 3, the area around the field edge part (MOS) where the field edge is the strongest (the border between the rehatching area and its surrounding area) is 2 yields - the horn and the gate. It is effective to apply the configuration of the present invention to the vicinity of the intersection with the gate electrode and extend the other portions of the N layer 9 toward the gate Vl pole 5 side to increase the current drive capability.

上記のようにすれば、ゲート電極側壁の絶縁物7下にN
+層が存在しない個所があるため、ドレイン側にN一層
6による抵抗を入れることが57能となり、そこを流れ
る電流IとN一層の抵抗Rの積で決定される電圧分疋は
電圧ストレスに対して強くなる。つまり高′亀圧を印加
してもこわれなくなる。
By doing the above, N
Since there is a part where the + layer does not exist, it becomes possible to insert a resistor of N layer 6 on the drain side, and the voltage division determined by the product of the current I flowing there and the resistance R of the N layer is the voltage stress. become stronger against In other words, it will not break even if high tortoise pressure is applied.

その結果、通常LDDトランノスタは高電圧ストレスに
弱いといわれていた欠点を除去できる。本発明において
は、 CVD −5in2膜7の側壁材が存在すること
が大事である。これは、必ずLDDトランノスタが形成
されるということと、最小N11i幅はCVD −8i
0□膜7により決定されるという大きなメリットがある
ためである。ちなみに側壁材下に5層が存在しない万の
N″″1−幅は、実験的には1g+以上あることが望ま
しいことが分かつている。
As a result, it is possible to eliminate the drawback that the LDD transnoster is said to be susceptible to high voltage stress. In the present invention, it is important that the side wall material of the CVD-5in2 film 7 is present. This means that an LDD transnostar is always formed and the minimum N11i width is CVD -8i
This is because it has the great advantage of being determined by the 0□ film 7. By the way, it has been experimentally found that it is desirable that the N''''1-width is 1 g+ or more when there are no 5 layers under the side wall material.

[発明の効果] 以上説明した如く本発明によれば、高電圧ストレスに対
して強い半導体装置(LDT) )ランゾスタ)が提供
できるものである。
[Effects of the Invention] As explained above, according to the present invention, a semiconductor device (LDT) resistant to high voltage stress can be provided.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を得る工程図、第2図は本発
明の異なる実施例の断面図、8g3図(a)は本発明の
異なる実施例のパターン平面図5第3図(b)は第3図
(a)のA −A’縁に沿う断面図、第3図(c)は第
3図(a)のB−B’、C−C’dに沿9M面図、第4
図は従来のLDD )ランノスタを示す断面図である。
Fig. 1 is a process diagram for obtaining one embodiment of the present invention, Fig. 2 is a sectional view of a different embodiment of the present invention, and Fig. 8g3 (a) is a plan view of a pattern of a different embodiment of the present invention. b) is a sectional view taken along the A-A' edge of FIG. 3(a), FIG. 3(c) is a 9M sectional view taken along B-B' and C-C'd of FIG. 3(a), Fourth
The figure is a sectional view showing a conventional LDD (Lannostar).

Claims (4)

【特許請求の範囲】[Claims] (1)第1導電型半導体基体上に、ゲート電極の側壁に
形成された絶縁物を有しているMOSトランジスタにお
いて、チャネル部と接触して配置された第2導電型の第
1拡散領域及び該第1拡散領域と接触して配置された前
記第1拡散領域より高濃度の第2導電型の第2拡散領域
より形成されるソース及びドレイン領域を有し、これら
領域の少なくとも一方の第2拡散領域が前記ゲート電極
側壁の絶縁物下に存在しない個所があることを特徴とす
る半導体装置。
(1) In a MOS transistor having an insulator formed on a sidewall of a gate electrode on a semiconductor substrate of a first conductivity type, a first diffusion region of a second conductivity type disposed in contact with a channel portion; source and drain regions formed of a second diffusion region of a second conductivity type with a higher concentration than the first diffusion region disposed in contact with the first diffusion region; A semiconductor device characterized in that there is a portion where the diffusion region does not exist under the insulator of the side wall of the gate electrode.
(2)一方の第1拡散領域の幅よりも他方の第1拡散領
域の幅が大きいことを特徴とする特許請求の範囲第1項
に記載の半導体装置。
(2) The semiconductor device according to claim 1, wherein the width of one first diffusion region is larger than the width of the other first diffusion region.
(3)フィールドエッジを含むチャネル領域に接してい
る低濃度の第1拡散領域及び該第1拡散領域に接してい
る高濃度の第2拡散領域でフィールドエッジ上のゲート
電極側壁の少くとも一方の絶縁物の下部には第1拡散領
域のみが存在していることを特徴とする特許請求の範囲
第1項に記載の半導体装置。
(3) At least one sidewall of the gate electrode on the field edge with a first diffusion region of low concentration in contact with the channel region including the field edge and a second diffusion region of high concentration in contact with the first diffusion region. 2. The semiconductor device according to claim 1, wherein only the first diffusion region exists under the insulator.
(4)フィールドエッジを含むチャネル領域に接してい
る低濃度の第1拡散領域及び該第1拡散領域に接してい
る高濃度の第2拡散領域でフィールドエッジ上のゲート
電極側壁の少くとも一方の絶縁物の下部には第1拡散領
域のみが存在しており、前記フィールドエッジとゲート
電極の交差部付近以外は、ゲート電極側壁の絶縁物下に
第2拡散領域が存在していることを特徴とする特許請求
の範囲第3項に記載の半導体装置。
(4) At least one sidewall of the gate electrode on the field edge with a first diffusion region of low concentration in contact with the channel region including the field edge and a second diffusion region of high concentration in contact with the first diffusion region. Only the first diffusion region exists under the insulator, and the second diffusion region exists under the insulator on the side wall of the gate electrode except near the intersection of the field edge and the gate electrode. A semiconductor device according to claim 3.
JP62050255A 1987-03-06 1987-03-06 Semiconductor device Expired - Lifetime JPH0695526B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62050255A JPH0695526B2 (en) 1987-03-06 1987-03-06 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62050255A JPH0695526B2 (en) 1987-03-06 1987-03-06 Semiconductor device

Publications (2)

Publication Number Publication Date
JPS63217665A true JPS63217665A (en) 1988-09-09
JPH0695526B2 JPH0695526B2 (en) 1994-11-24

Family

ID=12853869

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62050255A Expired - Lifetime JPH0695526B2 (en) 1987-03-06 1987-03-06 Semiconductor device

Country Status (1)

Country Link
JP (1) JPH0695526B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996005618A1 (en) * 1994-08-11 1996-02-22 National Semiconductor Corporation High-voltage ldd-mosfet with increased breakdown voltage and method of fabrication

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5882572A (en) * 1981-11-10 1983-05-18 Matsushita Electronics Corp Manufacture of semiconductor device
JPS6273771A (en) * 1985-09-27 1987-04-04 Toshiba Corp Mos transistor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5882572A (en) * 1981-11-10 1983-05-18 Matsushita Electronics Corp Manufacture of semiconductor device
JPS6273771A (en) * 1985-09-27 1987-04-04 Toshiba Corp Mos transistor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996005618A1 (en) * 1994-08-11 1996-02-22 National Semiconductor Corporation High-voltage ldd-mosfet with increased breakdown voltage and method of fabrication
US5721170A (en) * 1994-08-11 1998-02-24 National Semiconductor Corporation Method of making a high-voltage MOS transistor with increased breakdown voltage

Also Published As

Publication number Publication date
JPH0695526B2 (en) 1994-11-24

Similar Documents

Publication Publication Date Title
US5164803A (en) Cmos semiconductor device with an element isolating field shield
US4885618A (en) Insulated gate FET having a buried insulating barrier
JPH02191340A (en) Field effect semiconductor device and its manufacture
JP2677987B2 (en) Method for manufacturing semiconductor integrated circuit device
US5700728A (en) Method of forming an MNOS/MONOS by employing large tilt angle ion implantation underneath the field oxide
JPS63217665A (en) Semiconductor device
JPS62155565A (en) Insulated-gate field effect transistor and manufacture thereof
US6472712B1 (en) Semiconductor device with reduced transistor leakage current
JPH0548109A (en) Vertical type mos transistor and its manufacture
JP3431353B2 (en) Semiconductor device and manufacturing method thereof
JPH03175678A (en) Manufacture of semiconductor device
JPH01286367A (en) Vertical field effect transistor
JPS63215075A (en) Manufacture of semiconductor device
JPH0691250B2 (en) Semiconductor device
JP2003115585A (en) Method for manufacturing semiconductor device
JPH02102575A (en) Semiconductor device
JPS61226967A (en) Mis type semiconductor device
JPS63281470A (en) Semiconductor device
JPH0196962A (en) Vertical mos transistor and manufacture thereof
JPH01278777A (en) Manufacture of mosfet
JPH0653231A (en) Manufacture of mosfet
JPH08204189A (en) Manufacture of semiconductor device
JPH0547782A (en) Fabrication of semiconductor device
JPH0334468A (en) Insulated gate type field-effect semiconductor device and manufacture thereof
JPH0555576A (en) Thin film transistor

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term