JPS6321718B2 - - Google Patents

Info

Publication number
JPS6321718B2
JPS6321718B2 JP20885281A JP20885281A JPS6321718B2 JP S6321718 B2 JPS6321718 B2 JP S6321718B2 JP 20885281 A JP20885281 A JP 20885281A JP 20885281 A JP20885281 A JP 20885281A JP S6321718 B2 JPS6321718 B2 JP S6321718B2
Authority
JP
Japan
Prior art keywords
less
heat
resistant steel
tube
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP20885281A
Other languages
Japanese (ja)
Other versions
JPS58109589A (en
Inventor
Keizo Konogi
Takayori Shinohara
Ikuyoshi Kochi
Toshio Anzai
Hisakatsu Nishihara
Akio Kuhara
Junichi Sugitani
Takeshi Torigoe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KUBOTA TETSUKO KK
TOYO ENJINIARINGU KK
Original Assignee
KUBOTA TETSUKO KK
TOYO ENJINIARINGU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KUBOTA TETSUKO KK, TOYO ENJINIARINGU KK filed Critical KUBOTA TETSUKO KK
Priority to JP20885281A priority Critical patent/JPS58109589A/en
Priority to GB08236419A priority patent/GB2116209B/en
Priority to DE19823247568 priority patent/DE3247568A1/en
Priority to FR8221597A priority patent/FR2518565B1/en
Publication of JPS58109589A publication Critical patent/JPS58109589A/en
Publication of JPS6321718B2 publication Critical patent/JPS6321718B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 この発明は、炭化水素類の熱分解・改質反応に
使用される反応用管、特に炭化水素類の化学反応
に伴う折出固形炭素の反応管の表面への付着蓄積
を防止し得る反応用管に関する。
DETAILED DESCRIPTION OF THE INVENTION This invention relates to reaction tubes used for thermal decomposition and reforming reactions of hydrocarbons, and in particular to the prevention of adhesion of precipitated solid carbon to the surface of reaction tubes during chemical reactions of hydrocarbons. This invention relates to a reaction tube that can prevent accumulation.

炭化水素類の熱分解・改質用反応器は管状であ
り、液状もしくはガス状の炭化水素を、高温、高
圧下に管内を通過させ、触媒層を存在させもしく
は存在させず熱分解または改質させるものであ
り、その反応器を構成する反応管の材料として
は、従来高温装置材料として一般的な、Niおよ
びCrを多量に含有するFe―Cr―Ni系オーステナ
イト型耐熱鋼が使用され、操業条件が高温化する
ほど、そのNi含有量を更に増大させたものを使
用するのが通常である。
The reactor for thermal decomposition and reforming of hydrocarbons is tubular in shape, and liquid or gaseous hydrocarbons are passed through the tube under high temperature and high pressure to perform thermal decomposition or reformation with or without the presence of a catalyst layer. The material for the reaction tubes constituting the reactor is Fe-Cr-Ni austenitic heat-resistant steel containing large amounts of Ni and Cr, which is commonly used as a material for high-temperature equipment. The higher the temperature is, the higher the Ni content is usually used.

この炭化水素の熱分解・改質反応には、固形炭
素の折出現象を伴うが、上記Fe―Cr―Ni系オー
ステナイト型耐熱鋼製反応管を使用してこれらの
反応を継続させれば、反応管の内側壁面(化学反
応が生起する空間に対する表面。但し、反応管の
使用条件により反応管の外側壁面あるいは内外両
側壁面の場合もある。)に、不可避的に上記の析
出固形炭素の付着蓄積を生じる。この固形炭素の
析出沈積を放置すれば、炭化水素を含有する流体
の管内の流通を妨害するのみでなく、反応遂行の
ために管外から反応熱を供給もしくは除去する際
の総括伝熱係数の著しい低下をきたし、反応器の
操業の継続が困難となる。このため、長期の連続
操業を常態とする反応装置も、一時的な操業中断
と、各種の方法による沈積炭素の除去作業、いわ
ゆるデコーキング(decoking)の定期的実施を
余儀なくされている。
This thermal decomposition and reforming reaction of hydrocarbons involves precipitation of solid carbon, but if these reactions are continued using the Fe-Cr-Ni austenitic heat-resistant steel reaction tube, The above precipitated solid carbon inevitably adheres to the inner wall surface of the reaction tube (the surface facing the space where chemical reactions occur. However, depending on the usage conditions of the reaction tube, it may be the outer wall surface or both inner and outer walls of the reaction tube). causes accumulation. If this solid carbon precipitation is left untreated, it will not only obstruct the flow of fluid containing hydrocarbons inside the pipe, but also reduce the overall heat transfer coefficient when supplying or removing reaction heat from outside the pipe to carry out the reaction. This results in a significant drop in the concentration, making it difficult to continue operating the reactor. For this reason, even reactors that normally operate continuously for long periods of time are forced to temporarily suspend operations and periodically perform so-called decoking, which is the removal of deposited carbon using various methods.

発明者らは、上記問題に対処して、管壁面上に
おける固形炭素の析出現象について鋭意研究を継
続した結果、従来のFe―Cr―Ni系耐熱鋼製反応
管に固形炭素の著しい沈積を生じるのは、該管材
に含有されるNiが、その管表面において、これ
に接する炭化水素からの炭素析出を促進する触媒
として作用しているからであり、固形炭素の析出
沈積量と管材料中のNi含有量との間に一定の相
関々係が存在し、このNi含有量を減少させるこ
とにより、管表面への固形炭素析出沈積を抑制防
止し得るとの知見を得た。
In order to address the above-mentioned problem, the inventors continued intensive research on the precipitation phenomenon of solid carbon on the tube wall surface, and as a result, they found that a significant amount of solid carbon was deposited in the conventional Fe-Cr-Ni heat-resistant steel reaction tube. This is because the Ni contained in the tube material acts as a catalyst to promote carbon precipitation from hydrocarbons in contact with the tube surface, and the amount of solid carbon deposited and the amount of solid carbon in the tube material are It was found that there is a certain correlation between the Ni content and the Ni content, and that by reducing the Ni content, solid carbon precipitation on the tube surface can be suppressed and prevented.

この発明は上記の知見に基づいて完成されたも
のであり、管内が反応域として使用される場合に
あつては、反応用管の炭化水素類と接触する内側
壁面(内側層)がNiを含有しないFe―Cr系耐熱
鋼、またはNi含有量が前記固形炭素析出の触媒
作用を実質的に呈しない範囲内に制限されるFe
―Cr―Ni系耐熱鋼にて形成されるとともに、こ
の内側層が高温装置材料、例えば従来からの管材
料であつたFe―Cr―Ni系オーステナイト型耐熱
鋼からなる積層された外側層によつて被覆された
反応用管を提供するものであり、このような二重
積層構造とされることにより、高温・高圧下に使
用される反応用管としての必要特性を保持しつ
つ、反応に伴う固形炭素の析出沈積を可及的に抑
制防止し、長期間にわたりデコーキングを必要と
しない安定操業を保証することに成功した。
This invention was completed based on the above knowledge, and when the inside of the tube is used as a reaction zone, the inner wall surface (inner layer) of the reaction tube that comes into contact with hydrocarbons contains Ni. Fe-Cr heat-resistant steel that does not contain Fe-Cr, or Fe whose Ni content is limited to a range that does not substantially exhibit the catalytic effect of solid carbon precipitation.
- Made of Cr-Ni heat-resistant steel, and this inner layer is made of high-temperature equipment material, such as a laminated outer layer made of Fe-Cr-Ni austenitic heat-resistant steel, which is the conventional pipe material. This product provides a reaction tube coated with a double layered structure, which maintains the necessary characteristics as a reaction tube used under high temperature and high pressure, while also providing a reaction tube that is coated with We succeeded in suppressing and preventing the precipitation of solid carbon as much as possible and guaranteeing stable operation over a long period of time without the need for decoking.

以下、この発明について詳細に説明する。 This invention will be explained in detail below.

この発明の反応用管は、炭化水素と接触する内
層が、Fe―Cr系フエライト型もしくはマルテン
サイト型耐熱鋼、またはNi含有量が約10%以下
のFe―Cr―Ni系フエライト、フエライト―オー
ステナイト型もしくはマルテンサイト型耐熱鋼に
て形成される。
In the reaction tube of the present invention, the inner layer in contact with hydrocarbons is made of Fe-Cr ferrite type or martensitic heat-resistant steel, or Fe-Cr-Ni ferrite or ferrite-austenite with a Ni content of about 10% or less. Made of mold or martensitic heat-resistant steel.

上記Fe―Cr系耐熱鋼の具体的例として、Cr13
〜30%(重量%、以下同じ)、C0.01%以上、1.5
%未満、Si2.5%以下、Mn2.0%以下、N0.15%以
下、残部がFeからなるもの、あるいは材料特性
を更に改善する目的を以て、Feの一部が5.0%以
下のMo,W、またはNbの1種以上の元素で置換
され、前記成分元素と共にMo,WまたはNbの1
種以上を5.0%以下含有する成分組成を有する耐
熱鋼などが挙げられる。なお、炭化水素類と接触
する内側層の合金のC含有量が増大するにつれ
て、その表面への炭素析出沈積量が増加する傾向
があり、また、高温の使用状態において内側層合
金から外側層合金への炭素分の拡散移行によつて
外側層合金材質が劣化する。これらの不都合を回
避するには、内側層合金のC含有量は少ない方が
有利である。従つてこの発明においては内側層合
金のC含有量を1.5%未満とする。
As a specific example of the above Fe-Cr heat-resistant steel, Cr13
~30% (weight%, same below), C0.01% or more, 1.5
%, Si 2.5% or less, Mn 2.0% or less, N 0.15% or less, the balance being Fe, or Mo, W with a part of Fe being 5.0% or less for the purpose of further improving material properties. , or Nb, and one or more elements of Mo, W or Nb are substituted with the above component elements.
Examples include heat-resistant steel having a composition containing 5.0% or less of carbon dioxide. It should be noted that as the C content of the inner layer alloy that comes into contact with hydrocarbons increases, the amount of carbon deposited on its surface tends to increase. The outer layer alloy material deteriorates due to diffusion of carbon into the outer layer. In order to avoid these disadvantages, it is advantageous for the inner layer alloy to have a lower C content. Therefore, in this invention, the C content of the inner layer alloy is set to less than 1.5%.

前記のFe―Cr系耐熱鋼に代えてNiを含有する
Fe―Cr―Ni系耐熱鋼を以て管内側層を形成させ
る場合は、具体的には、上記Fe―Cr系鋼組成に
おけるFeの一部がNiで置換された成分組成のも
のを使用すればよいが、そのNi含有量は約10%
以下の範囲にあることを必要とする。第1図は、
Fe―Cr―Ni系耐熱鋼(Cr18%、C0.8%、Si1.5
%、Mn1.1%、N0.05%、Ni0〜35%、Fe43.5〜
78.55%)を使用した反応用管における固形炭素
の析出沈積量(mg/cm2)とNi含有量(%)の関
係を示す。(実験条件:エタン供給量400c.c./
min、S/C1.5、温度900℃)。
Contains Ni instead of the Fe-Cr heat-resistant steel mentioned above
When forming the tube inner layer using Fe-Cr-Ni heat-resistant steel, specifically, it is sufficient to use a steel with a composition in which part of the Fe in the above Fe-Cr steel composition is replaced with Ni. However, its Ni content is about 10%
It must be within the following range. Figure 1 shows
Fe-Cr-Ni heat-resistant steel (Cr18%, C0.8%, Si1.5
%, Mn1.1%, N0.05%, Ni0~35%, Fe43.5~
78.55%) and the Ni content (%) in a reaction tube. (Experimental conditions: Ethane supply amount 400c.c./
min, S/C1.5, temperature 900℃).

図示のように、管材のNi含有量の増加ととも
に析出沈積量が増加する。ちなみに、従来反応管
材料として使用されているFe―Cr―Ni系耐熱鋼
のNi含有量は約35%であり、固形炭素の著しい
蓄積が避けられなかつた事実と符号する。これ
は、前記したように、管壁表面のNiが固形炭素
析出の触媒作用を呈するからにほかならない。こ
の発明において、実験的に確認されたこの事実に
より、固形炭素析出沈積を可及的に抑制防止する
ため、Ni含有量の上限を約10.0%とし、より好ま
しくは、約5.0%以下に規定する。
As shown in the figure, the amount of precipitation increases as the Ni content of the pipe material increases. By the way, the Ni content of the Fe-Cr-Ni heat-resistant steel conventionally used as reaction tube material is approximately 35%, which coincides with the fact that a significant accumulation of solid carbon was unavoidable. This is because, as mentioned above, Ni on the surface of the tube wall exhibits a catalytic effect on the precipitation of solid carbon. In this invention, based on this experimentally confirmed fact, in order to suppress and prevent solid carbon precipitation as much as possible, the upper limit of the Ni content is set at about 10.0%, and more preferably at about 5.0% or less. .

上記Fe―Cr系およびFe―Cr―Ni系耐熱鋼の化
学成分組成は、炭化水素の化学反応器用材料とし
て必要な特性を考慮して規定されたものであるこ
とは言うまでもないが、前記成分組成は例示であ
つて、この発明の目的を逸失しない限り、上記組
成範囲をこえる各成分元素量の若干の増減、他成
分元素の少量添加および削除など、適宜の修正・
変更も同様に有用である。
It goes without saying that the chemical compositions of the Fe-Cr series and Fe-Cr-Ni series heat-resistant steels are specified in consideration of the characteristics required as materials for hydrocarbon chemical reactors; These are examples, and as long as the purpose of the present invention is not lost, appropriate modifications and changes may be made, such as slight increase or decrease in the amount of each component element exceeding the above composition range, addition or deletion of other component elements in small amounts, etc.
Modifications are useful as well.

この発明の反応用管は、上記Fe―Cr系または
Ni10.0%以下のFe―Cr―Ni系耐熱鋼からなる内
側層を、高温特性の優れた高Ni含有量のFe―Cr
―Ni系耐熱鋼を以て被覆した二重積層構造を有
する。この外側層を形成する耐熱鋼としては、従
来この用途の管材料として汎用されているFe―
Cr―Ni系オーステナイト型耐熱鋼を使用するこ
とができる。その具体例として、Cr20〜30%、
Ni18〜40%、C0.1〜0.6%、Si2.5%以下、Mn2.0
%以下、N0.15%以下、残部がFeからなる鋼組
成、あるいはこのFeの一部を5.0%以下のMo,
W、またはNbの1種以上の元素で置換して、上
記成分元素と共に、Mo,W、またはNbの1種以
上を5.0%以下含有する鋼組成などが挙げられる。
むろん、この発明の目的を逸失しない限り、これ
以外に、各元素量を若干増減しあるいは新たに添
加あるいは削除してなる各種成分組成のものも同
様に有用である。
The reaction tube of this invention is based on the above Fe-Cr system or
The inner layer is made of Fe-Cr-Ni heat-resistant steel with Ni10.0% or less.
-Has a double laminated structure coated with Ni-based heat-resistant steel. The heat-resistant steel that forms this outer layer is Fe--
Cr—Ni austenitic heat-resistant steel can be used. As a specific example, Cr20~30%,
Ni18~40%, C0.1~0.6%, Si2.5% or less, Mn2.0
% or less, N0.15% or less, the balance is Fe, or a part of this Fe is mixed with Mo, 5.0% or less,
Examples include steel compositions containing 5.0% or less of one or more of Mo, W, or Nb together with the above-mentioned component elements by substitution with one or more of W or Nb.
Of course, as long as the purpose of the present invention is not lost, various component compositions in which the amount of each element is slightly increased or decreased, new additions or deletions are made are similarly useful.

このような二重積層管とすることにより、反応
用管の内側壁面における固形炭素の析出沈積が有
効に抑制されると同様に、外側層のFe―Cr―Ni
系オーステナイト型耐熱鋼が有する高温強度およ
び高温クリープ破断強度などの機械的特性が付加
され、高温、高圧下に使用される反応用管として
一層好ましいものとなる。
By forming such a double-laminated tube, precipitation of solid carbon on the inner wall surface of the reaction tube is effectively suppressed, as well as Fe-Cr-Ni in the outer layer.
The mechanical properties such as high-temperature strength and high-temperature creep rupture strength possessed by the austenitic heat-resistant steel are added, making it even more preferable as a reaction tube used at high temperatures and high pressures.

上記二重積層構造を有するこの発明の反応用管
は、好ましくは遠心力鋳造法に製造される。内側
層および外側層用合金としてそれぞれ前記化学成
分を有する耐熱鋼を使用し、遠心力鋳造にて反応
用管を鋳造するには、まず外側層用合金(高Ni
含有量のFe―Cr―Ni系耐熱鋼)の溶湯を注入し
て所望厚さの外側層を形成し、その内壁面まで固
体化した直後に、上記内側層用合金(Fe―Cr系
またはNi10.0%以下のFe―Cr―Ni系耐熱鋼)の
溶湯を鋳込み所望厚さの内側層を形成すればよ
く、これによつて内側・外側層がその境界部で冶
金学的に一体結合した二重積層管を得ることがで
きる(この場合内側層合金が外側層合金より低い
溶融点をもつように、各層合金の成分(主とし
て、C量)を前記規定の範囲内で調節したものを
用いるのが好ましい)。その他の鋳造条件に特別
の制限はなく、例えば各層溶湯鋳造温度は、常法
どおり、それぞれの溶融点より、例えば約150℃
高い温度に調節されればよく、また必要に応じ、
外側層の内表面を空気酸化から保護するために常
法に従つて適当な造滓剤を投与してもよい。
The reaction tube of the present invention having the double-layered structure is preferably manufactured by centrifugal casting. In order to cast a reaction tube by centrifugal force casting using heat-resistant steels having the chemical compositions described above as alloys for the inner and outer layers, first, the alloy for the outer layer (high Ni
Immediately after injecting the molten metal of the inner layer alloy (Fe-Cr-Ni heat-resistant steel) to form the desired thickness and solidifying up to the inner wall surface, It is sufficient to form an inner layer of the desired thickness by casting a molten metal of heat-resistant steel containing less than .0% Fe-Cr-Ni, thereby metallurgically bonding the inner and outer layers together at the boundary. A double-laminated tube can be obtained (in this case, the composition of each layer alloy (mainly the amount of C) is adjusted within the specified range so that the inner layer alloy has a lower melting point than the outer layer alloy. ). There are no special restrictions on other casting conditions; for example, the molten metal casting temperature for each layer is, as usual, approximately 150°C below its respective melting point.
It is only necessary to adjust the temperature to a high temperature, and if necessary,
A suitable slagging agent may be administered in a conventional manner to protect the inner surface of the outer layer from atmospheric oxidation.

遠心力鋳造により得られる二重積層管にその特
徴を十分に発揮させるには、鋳造において、各層
の合金が相互に混合せず、所定の層厚が確保され
るべきことは言うまでもなく、さらには各層が境
界部で冶金学的に完全に密着し、強固に結合して
いること、またその境界部の融合層は強固な結合
状態を得るに必要な最少限の厚さであることが望
まれる。このような観点から、従来二重積層管の
遠心力鋳造においては、外側層の内表面まで固化
させた後に内側層合金溶湯を注入すれば、両層境
界部での融合が不十分となることを懸念し、内表
面が未凝固状態にある時点で内側層を鋳造するの
が一般的である。その場合、両層の密着性は十分
となるが、その反面両層合金溶湯が過度に混合す
る欠点があり、良好な二重積層構造の形成は困難
である。しかるに、この発明の遠心力鋳造二重積
層管においては、外側層内表面の固化後に内側層
を鋳造するにもかかわらず、両層の密着性に優れ
る。この理由は、内側層合金の溶融点が外側層合
金のそれよりも低いならば、外側層の凝固内表面
と接する内側層溶湯が直ちに固化してしまうこと
はなく、その境界面に適度の厚さの融合層を形成
し得ることによる。しかも、その際、外側層は不
必要に再溶融することがないので、両層間の合金
の混合を生じることはなく、上記融合層厚も強固
な結合を得るに必要は最少限の厚さにとどまり、
理想的な二重積層構造を形成する。
In order for the double-laminated tube obtained by centrifugal casting to fully exhibit its characteristics, it goes without saying that the alloys in each layer should not mix with each other and a predetermined layer thickness should be ensured during casting. It is desirable that each layer is metallurgically completely adhered and strongly bonded at the boundary, and that the fused layer at the boundary has the minimum thickness necessary to obtain a strong bond. . From this point of view, in conventional centrifugal casting of double-laminated pipes, if the inner layer alloy is injected after solidifying up to the inner surface of the outer layer, fusion at the boundary between the two layers will be insufficient. Because of this concern, it is common practice to cast the inner layer while the inner surface is still in an unsolidified state. In that case, the adhesion between both layers is sufficient, but on the other hand, there is a drawback that the molten alloys of both layers mix excessively, making it difficult to form a good double-layered structure. However, in the centrifugally cast double-laminate tube of the present invention, although the inner layer is cast after the inner surface of the outer layer is solidified, the adhesion between both layers is excellent. The reason for this is that if the melting point of the inner layer alloy is lower than that of the outer layer alloy, the inner layer molten metal in contact with the solidified inner surface of the outer layer will not solidify immediately, and the interface will have an appropriate thickness. This is due to the fact that it can form a fusion layer. Moreover, at this time, the outer layer is not unnecessarily remelted, so there is no mixing of the alloy between the two layers, and the thickness of the fused layer is kept to the minimum necessary to obtain a strong bond. Stay,
Forms an ideal double laminated structure.

なお、二重積層構造の形成は、このほかに、例
えば、鋳造と溶射を併用し、所定の合金からなる
鋳造管を製造してその表面に所定の合金を溶射被
覆する方法を使用することも可能であるが、遠心
力鋳造法を使用すれば、前記のごとく両層間の一
体結合が確実に得られるのみならず、各層の層厚
を所望により厚薄任意に制御でき、また使用する
合金の化学成分組成についても所望の材料特性に
応じて自由に選択できる利点がある。
In addition, the double laminated structure can also be formed by, for example, using a combination of casting and thermal spraying to produce a cast pipe made of a predetermined alloy, and then thermally spraying the surface of the pipe with the predetermined alloy. Yes, it is possible, but if centrifugal casting is used, it not only ensures the integral bonding between both layers as described above, but also allows the thickness of each layer to be controlled as desired, and also allows for control over the chemistry of the alloy used. There is also an advantage that the component composition can be freely selected depending on the desired material properties.

上記遠心力鋳造による二重積層構造を有する反
応用管の実施例を挙げると、高周波誘導溶解炉に
て、外側層用合金としてFe―Cr―Ni系耐熱鋼溶
湯(C0.45%、Si1.2%、Mn1.1%、Cr26.5%、
Ni35.5%、N0.06%、残部Fe)、また内側層用合
金としてFe―Cr系耐熱鋼溶湯(C1.2%、Si1.2%、
Mn1.0%、Cr18.5%、残部Fe)をそれぞれ溶製
し、遠心力鋳造により、上記外側層用合金溶湯35
Kgを鋳込み、外径134mm、肉厚25mm、長さ500mmの
外側層を形成させ、その内表面が固化した直後
に、内側層用合金溶湯10Kgを鋳込み、肉厚10mmの
内側層を形成させることにより、内外層合金の混
合がなく、かつ両層が冶金学的に一体結合された
同心円状二層からなる反応用管を得た。
To give an example of the above-mentioned reaction tube having a double-layered structure formed by centrifugal casting, in a high-frequency induction melting furnace, Fe-Cr-Ni heat-resistant steel molten metal (C0.45%, Si1. 2%, Mn1.1%, Cr26.5%,
Ni35.5%, N0.06%, balance Fe), and Fe-Cr heat-resistant steel molten metal (C1.2%, Si1.2%,
The molten alloy for the outer layer 35
Kg to form an outer layer with an outer diameter of 134 mm, a wall thickness of 25 mm, and a length of 500 mm. Immediately after the inner surface has solidified, 10 Kg of molten alloy for the inner layer is cast to form an inner layer with a wall thickness of 10 mm. As a result, a reaction tube consisting of two concentric layers in which the inner and outer layer alloys were not mixed and both layers were metallurgically bonded together was obtained.

更に、他の実施例を挙げれば、外側層用合金と
して前記例のそれとほゞ同様の化学成分組成を有
するFe―Cr―Ni系耐熱鋼溶湯(C0.43%、Si1.3
%、Mn1.1%、Cr26.0%、Ni35.8%、N0.04%、
残部Fe)35Kg、および内側層用合金としては、
Ni10.0%以下に規定されるFe―Cr―Ni系耐熱鋼
溶湯(C0.8%、Si1.2%、Mn1.1%、Cr24.5%、
Ni7.5%、残部Fe)10Kgをそれぞれ使用し、遠心
力鋳造にて、前記例と同一寸法の外側層を形成さ
せ、その内表面が固化した直後に内側層を鋳造す
ることにより、内外層合金の混合がなく、かつ両
層が冶金学的に一体結合した反応用管を得た。
Furthermore, to give another example, as an alloy for the outer layer, a Fe-Cr-Ni heat-resistant steel molten metal (C0.43%, Si1.3
%, Mn1.1%, Cr26.0%, Ni35.8%, N0.04%,
The balance Fe) 35Kg, and the alloy for the inner layer is:
Fe-Cr-Ni heat-resistant steel molten metal specified as Ni10.0% or less (C0.8%, Si1.2%, Mn1.1%, Cr24.5%,
Using 7.5% Ni and 10 kg (balance Fe), centrifugal force casting was used to form an outer layer with the same dimensions as in the previous example, and immediately after the inner surface had solidified, the inner layer was cast. A reaction tube was obtained in which there was no mixing of alloys and both layers were metallurgically bonded together.

なお、上記説明では、反応用管の内壁面が炭化
水素と接触する条件下に使用される反応用管を例
に挙げたが、管の外壁面が炭化水素と接触する反
応用管の場合には、上記の例とは逆に、外側層に
Fe―Cr系またはNi10.0%以下のFe―Cr―Ni系耐
熱鋼を適用すべきであることは言うまでもなく、
また管の内・外両表面が炭化水素類と接触する条
件で使用されるものである場合には、外側層と内
側層とに上記鋼材を使用するとともに、両層の中
間に従来のFe―Cr―Ni系オーステナイト型耐熱
鋼を介在させた三重積層構造とすればよい。いず
れの場合にも、遠心力鋳造により製造することが
できる。
In addition, in the above explanation, a reaction tube used under conditions where the inner wall surface of the reaction tube comes into contact with hydrocarbons was taken as an example, but in the case of a reaction tube where the outer wall surface of the tube comes into contact with hydrocarbons, is in the outer layer, contrary to the example above.
It goes without saying that Fe-Cr type or Fe-Cr-Ni type heat-resistant steel with Ni10.0% or less should be applied.
In addition, when the pipe is used under conditions where both the inner and outer surfaces come into contact with hydrocarbons, the above steel materials are used for the outer and inner layers, and a conventional Fe- A triple laminated structure with Cr-Ni austenitic heat-resistant steel interposed therebetween may be used. In either case, it can be manufactured by centrifugal casting.

以上のように、この発明の反応用管は、炭化水
素類と接する側の表面が、Fe―Cr系もしくはNi
量を制限したFe―Cr―Ni系耐熱鋼で形成されて
いるため、炭化水素の化学反応に伴う固形炭素の
析出沈積を有効に抑制防止することができる。し
かも、このFe―Cr系もしくはFe―Cr―Ni系耐熱
鋼層が、これと一体結合した高Ni含有量のFe―
Cr―Ni系耐熱鋼の層によつて強化されているた
め、500℃以上の高温、大気圧以上の圧力下の使
用に十分耐え得る高温特性を具備する。
As described above, the reaction tube of the present invention has a surface in contact with hydrocarbons made of Fe-Cr or Ni.
Since it is made of Fe-Cr-Ni heat-resistant steel with a limited amount, it can effectively suppress and prevent the precipitation of solid carbon that accompanies the chemical reaction of hydrocarbons. Moreover, this Fe-Cr system or Fe-Cr-Ni system heat-resistant steel layer has a high Ni content that is integrally bonded to it.
Because it is reinforced with a layer of Cr-Ni heat-resistant steel, it has high-temperature properties that can withstand use at temperatures above 500°C and pressures above atmospheric pressure.

従つて、この発明の反応用管は、上記の高温・
高圧下で、炭化水素単独もしくはこれと水蒸気、
酸素含有ガスなどと混合した行われる低分子量炭
化物などへの熱分解、あるいは水素、酸化炭素な
どを含むガス状混合物の製造に使用されて、長期
にわたり固形炭素の析出沈積が抑制され安定した
操業が維持され得る。
Therefore, the reaction tube of the present invention is suitable for the above-mentioned high temperature and
Under high pressure, hydrocarbons alone or together with water vapor,
It is used for thermal decomposition into low-molecular-weight carbides mixed with oxygen-containing gas, etc., or for the production of gaseous mixtures containing hydrogen, carbon oxide, etc., and suppresses the precipitation of solid carbon over a long period of time, ensuring stable operation. can be maintained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は反応用管材料のNi含有量と管表面の
固形炭素析出沈積量との関係を示すグラフであ
る。
FIG. 1 is a graph showing the relationship between the Ni content of the reaction tube material and the amount of solid carbon deposited on the tube surface.

Claims (1)

【特許請求の範囲】 1 管壁の内側層が、C0.01〜1.5%(重量%、以
下同じ)、Si2.5%以下、Mn2.0%以下、Cr13〜30
%、N0.15%以下の組成範囲にあり、残部がFe、
または、Feの一部が5.0%以下のMo,Wまたは
Nbの1種以上の元素を以て置換されているFe―
Cr系フエライト型もしくはマルテンサイト型耐
熱鋼、またはC0.01〜1.5%、Si2.5%以下、Mn2.0
%以下、Cr13〜30%、Ni10.0%以下、N0.15%以
下の組成範囲内にあり、残部がFe、またはFeの
一部が5.0%以下のMo,WまたはNbの1種以上
の元素を以て置換されているFe―Cr―Ni系フエ
ライト型、フエライト―オーステナイト型もしく
はマルテンサイト型耐熱鋼からなり、管壁の外側
層が、C0.1〜0.6%、Si2.5%以下、Mn2.0%以下、
Cr20〜30%、Ni18〜40%、N0.15%以下の組成範
囲内にあり、残部がFe、またはFeの一部が、5.0
%以下のMo,WまたはNbの1種以上の元素を以
て置換されているFe―Cr―Ni系オーステナイト
型耐熱鋼からなることを特徴とする炭化水素類の
熱分解・改質反応用管。 2 管壁の外側層および内側層が遠心力鋳造法に
よつて形成される特許請求の範囲第1項に記載の
炭化水素類の熱分解・改質反応用管。
[Claims] 1. The inner layer of the tube wall contains 0.01 to 1.5% C (weight%, same hereinafter), 2.5% or less Si, 2.0% or less Mn, 13 to 30% Cr.
%, N0.15% or less, with the balance being Fe,
Or Mo, W or with a part of Fe less than 5.0%
Fe substituted with one or more elements of Nb
Cr-based ferrite type or martensitic type heat-resistant steel, or C0.01~1.5%, Si2.5% or less, Mn2.0
% or less, Cr13~30%, Ni10.0% or less, N0.15% or less, and the balance is Fe, or one or more of Mo, W, or Nb with a part of Fe being 5.0% or less. It is made of Fe-Cr-Ni type ferritic type, ferrite-austenitic type or martensitic type heat-resistant steel substituted with elements, and the outer layer of the tube wall is C0.1~0.6%, Si2.5% or less, Mn2. 0% or less,
The composition is within the range of Cr20~30%, Ni18~40%, N0.15% or less, and the balance is Fe or a part of Fe is 5.0%.
1. A tube for thermal decomposition and reforming reactions of hydrocarbons, characterized in that it is made of Fe--Cr--Ni austenitic heat-resistant steel substituted with one or more elements of Mo, W, or Nb in an amount of up to %. 2. The tube for pyrolysis/reforming reaction of hydrocarbons according to claim 1, wherein the outer layer and the inner layer of the tube wall are formed by centrifugal casting.
JP20885281A 1981-12-23 1981-12-23 Reaction tube for thermal cracking/reforming of hydrocarbon Granted JPS58109589A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP20885281A JPS58109589A (en) 1981-12-23 1981-12-23 Reaction tube for thermal cracking/reforming of hydrocarbon
GB08236419A GB2116209B (en) 1981-12-23 1982-12-22 Composite steel tube for thermally cracking or reforming hydrocarbons
DE19823247568 DE3247568A1 (en) 1981-12-23 1982-12-22 REACTOR TUBE FOR THERMAL CRACKING OR REFORMING HYDROCARBONS
FR8221597A FR2518565B1 (en) 1981-12-23 1982-12-22 TUBE FOR THERMAL CRACKING OR HYDROCARBON REFORMING

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20885281A JPS58109589A (en) 1981-12-23 1981-12-23 Reaction tube for thermal cracking/reforming of hydrocarbon

Publications (2)

Publication Number Publication Date
JPS58109589A JPS58109589A (en) 1983-06-29
JPS6321718B2 true JPS6321718B2 (en) 1988-05-09

Family

ID=16563172

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20885281A Granted JPS58109589A (en) 1981-12-23 1981-12-23 Reaction tube for thermal cracking/reforming of hydrocarbon

Country Status (1)

Country Link
JP (1) JPS58109589A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3066514B2 (en) * 1992-09-29 2000-07-17 三菱自動車工業株式会社 Exhaust gas purification device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6331535A (en) * 1986-07-23 1988-02-10 Jgc Corp Apparatus for treating carbon-containing compound having carbon precipitation suppressing property

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3066514B2 (en) * 1992-09-29 2000-07-17 三菱自動車工業株式会社 Exhaust gas purification device

Also Published As

Publication number Publication date
JPS58109589A (en) 1983-06-29

Similar Documents

Publication Publication Date Title
JPS6313474B2 (en)
TWI396680B (en) Process for continuous heterogeneously catalyzed partial dehydrogenation of at least one hydrocarbon to be dehydrogenated
CA1140162A (en) High-temperature treatment of hydrocarbon-containing materials
JPS6237077B2 (en)
TWI461398B (en) Process for continuous heterogeneously catalyzed partial dehydrogenation of at least one hydrocarbon to be dehydrogenated
JPS6365057A (en) Tube for thermal decomposition or reforming reaction of hydrocarbons
RU2300493C2 (en) Method of production of gas containing hydrogen and carbon oxide
JPH0593239A (en) Tube for thermal cracking and reforming reaction for hydrocarbons
CN109906129B (en) Alloy for build-up welding, powder for welding, and reaction tube
US4510988A (en) Tube for thermal cracking or reforming hydrocarbon and manufacturing method thereof
JPS6321718B2 (en)
GB2116209A (en) Composite steel tube for thermally cracking or reforming hydrocarbons
KR102005207B1 (en) Fluid bed reactor and method of producing nitrile compound using same
JP6372086B2 (en) Fluidized bed reactor and method for producing nitrile compound using the same
JP3422803B2 (en) Cr-Ni heat-resistant steel
JPS5832688A (en) Production of coated tube for reactor used in pyrolysis and formation of hydrocarbons
JP4499219B2 (en) Method for producing ethylene oxide
JP2007016027A (en) Method for producing styrene
JPH0146221B2 (en)
JPS6365421B2 (en)
JPS5832687A (en) Production of coated tube for reactor used in pyrolysis and reformation of hydrocarbons
JPH03285048A (en) Carbon deposition inhibited tube for hydrocarbon decomposition work
JPS58104989A (en) Suppression of carbon deposition in heating or pyrolysis of hydrocarbon
JPS58104992A (en) Suppression of carbon deposition in heating or pyrolysis of hydrocarbon
JPS5925916A (en) Refining method of chromium containing alloy pig