JPS58109589A - Reaction tube for thermal cracking/reforming of hydrocarbon - Google Patents

Reaction tube for thermal cracking/reforming of hydrocarbon

Info

Publication number
JPS58109589A
JPS58109589A JP20885281A JP20885281A JPS58109589A JP S58109589 A JPS58109589 A JP S58109589A JP 20885281 A JP20885281 A JP 20885281A JP 20885281 A JP20885281 A JP 20885281A JP S58109589 A JPS58109589 A JP S58109589A
Authority
JP
Japan
Prior art keywords
less
reaction tube
layer
resistant steel
outer layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP20885281A
Other languages
Japanese (ja)
Other versions
JPS6321718B2 (en
Inventor
Keizo Konogi
此木 恵三
Takayori Shinohara
篠原 孝順
Nariyoshi Kouchi
生好 幸地
Toshio Anzai
安斉 利男
Hisakatsu Nishihara
西原 久尅
Akio Kuhara
久原 昭夫
Junichi Sugitani
杉谷 純一
Takeshi Torigoe
鳥越 猛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Toyo Engineering Corp
Original Assignee
Kubota Corp
Toyo Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp, Toyo Engineering Corp filed Critical Kubota Corp
Priority to JP20885281A priority Critical patent/JPS58109589A/en
Priority to FR8221597A priority patent/FR2518565B1/en
Priority to DE19823247568 priority patent/DE3247568A1/en
Priority to GB08236419A priority patent/GB2116209B/en
Publication of JPS58109589A publication Critical patent/JPS58109589A/en
Publication of JPS6321718B2 publication Critical patent/JPS6321718B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

PURPOSE:To prevent separated solid carbon from depositing on the surface of a reaction tube and to give excellent high-temp. characteristics, by forming the inner layer of the tube wall from Fe/Cr-base heat-resistant steel, etc. and the outer layer from high-Ni Fe/Cr/Ni-base heat-resistant steel. CONSTITUTION:The inner layer of a tube wall is formed from Fe/Cr-base heat- resistant steel composed of 0.01-1.5wt% C, not more than 2.5wt% Si, not more than 2wt% Mn, 13-30wt% Cr, not more than 0.15wt% N and the balance of Fe, or of Fe partially replaced by not more than 5wt% Mo, W, Nb, etc., or of Fe/Cr/Ni-base heat-resistant steel contg. not more than 10wt% Ni, and the outer layer is formed from Fe/Cr/Ni-base heat-resistant steel composed of 0.1- 0.6wt% C, not more than 2.5wt% Si, not more than 2wt% Mn, 20-30wt% Cr, 18-40wt% Ni, not more than 0.15wt% N and the balance of Fe, or of Fe partially replaced by not more than 5wt% Mo, W, Nb, etc., to form the titled reaction tube.

Description

【発明の詳細な説明】 この発明【は、炭化水素類の熱分解e改質反応(で使用
される反応用管、特に炭化水素類の化学反応に伴う析出
固形炭素の反応管の表面への(=J着蓄積を防止し得る
反応用管に関する。
DETAILED DESCRIPTION OF THE INVENTION This invention [is a reaction tube used in a thermal decomposition e-reforming reaction of hydrocarbons, in particular, a reaction tube in which precipitated solid carbon accompanying a chemical reaction of hydrocarbons is deposited on the surface of the reaction tube. (=Regarding a reaction tube that can prevent J deposition accumulation.

炭化水素類の熱分解・改質用反応器は管状であり、液状
もしくはガス状の炭化水素を、高温、11″1□圧下に
管内を通過させ、触媒層を存在させもしくeま存在させ
ず熱分解または改質させるものであり、その反E3器を
構成する反応管の材料としては、従来高温装置材料とし
て一般的な、NlおよびCrを多量に含有するFe−C
r −Ni系オーステナイト型劇熱鋼が使用され、操業
条件が高温化するほど、そのN1含有量を更に増大させ
たものを丈用するのが通常である。
The reactor for thermal decomposition and reforming of hydrocarbons is tubular, and liquid or gaseous hydrocarbons are passed through the tube at high temperature and under pressure, and a catalyst layer is or is not allowed to exist. The material for the reaction tube constituting the reactor E3 is Fe-C, which contains a large amount of Nl and Cr and is commonly used as a material for high-temperature equipment.
r-Ni-based austenitic high-temperature steel is used, and as the operating conditions become higher in temperature, it is common to use steel with a further increased N1 content.

この炭化水素の熱分解・改質反応には、固形炭素の析出
現象を伴うが、上記Fe −Cr −Ni系オーステナ
イト型1副熱鋼製反応管を使用してこれらの反応をla
続させれば、反応管の内側壁i1 (化学反シト9が生
起する空回に対する表面。(l」L 、反応管の使用条
件により反応管の外側壁面あるいは内外両側壁面の場合
もある。)に、不可避的に上記の析出固形炭素の1q着
蓄積を生じる。この固形炭素の析出沈積を放置すり、ば
、炭化水素を含有する流体の管内の流通を妨害するのみ
でlく、反j5遂行のために管外から反応熱を供給もし
くは除去する1県の総括伝p、(、l+係数の著しい低
Fをきたし、反応器の操業の継続が困難となる。1この
ため、長期の連続操業金常悪とする反応装部も、一時的
な操業中断と、6種の方法による沈積炭素の除去作業、
いわゆるデコーキング(decoking )の定期的
実施を余儀なくされている。
This thermal decomposition and reforming reaction of hydrocarbons is accompanied by the precipitation phenomenon of solid carbon, but these reactions can be carried out using the Fe-Cr-Ni austenitic type 1 secondary heating steel reaction tube described above.
If this is continued, the inner wall i1 of the reaction tube (the surface against which chemical reaction 9 occurs). In this case, the above-mentioned precipitated solid carbon inevitably accumulates.If this solid carbon precipitate is left unattended, it will only obstruct the flow of the fluid containing hydrocarbons in the pipe. This results in a significantly low F of the l+ coefficient, making it difficult to continue operating the reactor.1 For this reason, long-term continuous operation is difficult. The reactor unit, which is in trouble with Kim, has also temporarily suspended operations and removed carbon deposits using six different methods.
It is necessary to periodically carry out so-called decoking.

発明昔らは、上記間頴に対娠して、竹室面ヒにおける固
形炭素の析出現象について鋭意研究を継続した結果、従
来のFe−Cr−Ni系]廁熱鋼製反応管に固形炭素の
著しい沈積を生じるのは、該管制に含有されるNi が
、その管表面において、これに接する炭化水素からの炭
素析出を健進す′S融媒として作用しているからであり
、固形炭素の析出沈積用と管制相中のNi含有量との間
に一定の相関々係が存在し、とのNi 含有量を減少さ
せることにより、危;表面への固形炭素析出沈積を抑制
防止し寿るとの知見を街だ。
In the past, in response to the above-mentioned problems, we continued intensive research on the precipitation phenomenon of solid carbon in Takemuro surface. The reason for this significant deposition is that the Ni contained in the pipe acts as a 'S melting medium on the pipe surface that promotes carbon precipitation from the hydrocarbons in contact with it, and solid carbon There is a certain correlation between the precipitation of carbon and the Ni content in the control phase, and by reducing the Ni content of The knowledge of the city.

この発明は」二重の知見に基づいて完[戎されたもので
あり、管内か反応域として使用される喝合Cτあっては
、反応用管の炭化水素類と接触する内側壁面(内側層)
がNiを含有しないFe−Cr 糸面、j熱鋼、捷ンヒ
はNi′倫有爪が前1犯固形炭素析出の触媒作用を実質
的に翳しない範囲内に制限されるFe−Cr”Ni系扁
、1熱鋼にて形成されるとともに、この内側層が高温装
置桐料、例えば従来からの管材刺であったFe −Cr
 −Ni 系オーステナイト型耐熱鋼からなる積層され
た外側層によって被覆された反応用管を提供するもので
あり、このような二重積層構造とされることにより、高
部・畠圧下に使用される反応用管としての必要特性を保
持しつつ、反応に伴う固形炭素の析出沈積を用及的に抑
制防止し、長期間にわだりデコーキングを必要としない
安定操業を保証することに成功した。
This invention was completed on the basis of twofold knowledge, and when the reaction zone is used as a reaction zone, the inner wall surface (inner layer) in contact with the hydrocarbons of the reaction tube )
is Fe-Cr which does not contain Ni. The inner layer is made of high-temperature equipment paulownia material, such as Fe-Cr, which is a conventional pipe material.
- Provides a reaction tube coated with a laminated outer layer made of Ni-based austenitic heat-resistant steel, and by having such a double laminated structure, it can be used in high areas and under pressure in fields. While maintaining the necessary characteristics as a reaction tube, we have successfully suppressed and prevented the precipitation of solid carbon accompanying the reaction and ensured stable operation over a long period of time without the need for decoking.

以下、この発明について詳細に説明する。This invention will be explained in detail below.

この発明の反応用管は、炭化水素と接触する内層か、F
e−Cr  系フェライト型もしくはマルテンサイト型
耐熱鋼、またはNi含有量が約10%以下(DFe−C
r−Ni系フェライト、フェライト−オーステナイト型
もしくはマルテンサイト型耐熱鋼にて形成される。
The reaction tube of this invention has an inner layer in contact with hydrocarbons, an F
e-Cr type ferritic or martensitic heat-resistant steel, or Ni content of approximately 10% or less (DFe-C
It is made of r-Ni ferrite, ferrite-austenite type or martensitic type heat resistant steel.

上記Fe −Cr  系耐熱鋼の具体的例として、Cr
13〜30%(重量%、以下同じ)、CO,01%以上
、1.5%未満、Si2.5%以下、Mn2.0%以下
、NO,15%以下、残部がFeからなるもの、あるい
は材料特性を更に改善する目的を以て、Feノ一部が5
.0%以下の範囲において、MoXW。
As a specific example of the above Fe-Cr heat-resistant steel, Cr
13-30% (weight %, same hereinafter), CO, 01% or more, less than 1.5%, Si 2.5% or less, Mn 2.0% or less, NO, 15% or less, the balance consisting of Fe, or In order to further improve the material properties, a portion of Fe was
.. MoXW in the range of 0% or less.

Nbから選択される1種以上の元素を以て置換されたも
のなどが挙げられる。なお、炭化水素類と接触する内側
層の合金のC含有量が増大するにつれて、その表面への
炭素析出沈積量が増加する傾向かあり、また、高温の使
用状態において内側層合金から外側層合金への炭素分の
拡散移行によって外側層合金材質が劣化する。これらの
不都合を回避するには、内側層合金のC含有量は少ない
方が有利である。従ってこの発明においては内側層合金
のC含有量を1.5%未満とする。
Examples include those substituted with one or more elements selected from Nb. It should be noted that as the C content of the inner layer alloy that comes into contact with hydrocarbons increases, the amount of carbon deposited on its surface tends to increase. The outer layer alloy material deteriorates due to the diffusion of carbon into the outer layer. In order to avoid these disadvantages, it is advantageous for the inner layer alloy to have a lower C content. Therefore, in this invention, the C content of the inner layer alloy is set to less than 1.5%.

前記のFe −Cr  系耐熱鋼に代えてNi を含有
するFe−Cr−Ni系耐熱鋼を以て管内側層を形成さ
せる場合は、具体的には、上記Fe−Cr 系鋼組成に
おけるFeの一部がNi で置換された成分組成のもの
を使用すればよいが、そのNi含有量は約10%以下の
範囲にあることを必要とする。
When forming the tube inner layer using a Fe-Cr-Ni heat-resistant steel containing Ni instead of the Fe-Cr heat-resistant steel described above, specifically, part of the Fe in the Fe-Cr steel composition is A material having a component composition in which Ni is substituted with Ni may be used, but the Ni content needs to be within a range of about 10% or less.

第1図は、Fe−Cr−Ni系耐熱鋼(Cr18%。FIG. 1 shows Fe-Cr-Ni heat-resistant steel (Cr 18%).

C008%、Si1.5%、Mn1.1%、NO,05
%。
C008%, Si1.5%, Mn1.1%, NO,05
%.

Ni0〜35%、 Fe 43,5〜78.55%)を
使用した反応用管における固形炭素の析出沈積量(Mf
/crV)とNi含有量(%)の関係を示す。(実験条
件:エクン供給N400 cc/min 、 s/c 
1.5、温度900°C)。
The amount of solid carbon deposited (Mf
/crV) and Ni content (%). (Experimental conditions: Ecun supply N400 cc/min, s/c
1.5, temperature 900°C).

図示のようニ、臂材のNi 含有量の増加とともに析出
沈積量が増加する。ちなみに、従来反応骨相PIとして
使用されているFe−Cr−Ni系耐熱鋼のNi含有量
は糺35%であり、固形炭素の著しい蓄積が避けらfl
なかった事実と符号する。これは、前記したように、管
壁表面のNi が固形炭素析出の触媒作用を呈するから
してほかならない。
As shown in the figure, the amount of precipitation increases as the Ni content of the arm material increases. By the way, the Ni content of the Fe-Cr-Ni heat-resistant steel conventionally used as reactive bone phase PI is 35%, and significant accumulation of solid carbon can be avoided.
This corresponds to the fact that there was no such thing. This is because, as described above, Ni on the surface of the tube wall exhibits a catalytic effect on the precipitation of solid carbon.

この発明においては、実験的((確認されたこの事実に
より、固形炭素析出沈積を可及的に抑制防止するため、
N1含有I:の上限を約10.0%とし、より好ましく
は、約5.0%以下に規定する。
In this invention, in order to suppress and prevent solid carbon precipitation as much as possible,
The upper limit of N1 content I: is set to about 10.0%, more preferably about 5.0% or less.

上記Fe−Cr  系およびFe −Cr −Ni系面
、]熱鋼の化学成分組成は、炭化水素の化学反応器用相
和として必要な特性を考慮して規定さね、だものである
ことは言う1でもないが、前記成分組成は例示であって
、この発明の目的を逸失しない限り、上記組成範囲をこ
える各成分元素量の若干の増減、他成分元素の少量添加
および削除など、適宜の・浄正・変更も同様に有用であ
る。
Regarding the Fe-Cr system and Fe-Cr-Ni system mentioned above, it is important to note that the chemical composition of the hot steel must be determined by taking into account the properties necessary for use in hydrocarbon chemical reactors. However, the above component composition is an example, and as long as the purpose of the present invention is not lost, the amount of each component element may be slightly increased or decreased beyond the above composition range, or small amounts of other component elements may be added or deleted, etc. as appropriate. Purification/alteration is equally useful.

この発明の反応用管は、上記Fe −Cr  系または
Ni10.0%以下のFe −Cr −Ni系耐熱鋼か
らなる内側層を、高温特性の優れた高Ni含有風のFe
 −Cr−Ni系iJ熱鋼を以て被覆しだ二重積層構造
を有する。この外側層を形成する而、1熱鋼としては、
従来この用途の管材料として汎用されているFe−Cr
−Ni系オーステナイト型耐熱鋼を使用することができ
る。その具体的例として、Cr2O〜30%、Ni 1
8〜40%、C0,1〜0.6%、Si2.5%以下、
Mn 2.0%以下、NO,15%以下、残部がFeか
らなる鋼組成、あるいはとのFeの一部が5.0%以下
の範囲内において、Mo。
The reaction tube of the present invention has an inner layer made of the above-mentioned Fe-Cr type heat-resistant steel or Fe-Cr-Ni type heat-resistant steel with 10.0% or less Ni.
-It has a double laminated structure coated with Cr-Ni type iJ heat steel. This outer layer is formed by the following heat steel:
Fe-Cr is conventionally used as a pipe material for this purpose.
-Ni-based austenitic heat-resistant steel can be used. Specific examples include Cr2O~30%, Ni1
8-40%, C0.1-0.6%, Si2.5% or less,
Mo in a steel composition in which Mn is 2.0% or less, NO is 15% or less, and the balance is Fe, or a part of Fe is 5.0% or less.

WおよびNbから選択される1種以」二の元素を以て晶
換された鋼組成などが挙げられる。むろん、この発明の
目的を逸失しない限り、これ以外に、各元素量を若干増
減しあるいは新たに添加あるいは削除してなる各種成分
組成のものも同様に有用である。
Examples include steel compositions crystallized with one or more elements selected from W and Nb. Of course, as long as the purpose of the present invention is not lost, various component compositions in which the amount of each element is slightly increased or decreased, new additions or deletions are made are similarly useful.

このような二重積層管とすることにより、反応用管の内
側壁面における固形炭素の析出沈積が何効に抑制される
と同峙に、外側層のF e =Cr −N i系オース
テナイト型劇熱鋼が有する高温強度および高温クリープ
破断強度などの機械的特性が附加さハ、高温、高圧下に
使用される反応、相性として一層・好ましいものとなる
By making such a double laminated tube, the precipitation of solid carbon on the inner wall surface of the reaction tube is effectively suppressed, and at the same time, the Fe=Cr-Ni austenitic structure of the outer layer is suppressed. The added mechanical properties of hot steel, such as high temperature strength and high temperature creep rupture strength, make it even more preferable for reactions and compatibility when used at high temperatures and high pressures.

」1記二重積層構造を有するこの発明の反応用管は、好
ましくは遠心力鋳造法にて製造される。内側層および外
側層用合金としてそれぞれ前記化学成分を有する耐熱鋼
を使用し、遠心力鋳造にて反応用管を鋳造するには、ま
ず外側層用合金(高Ni含有風のFe−Cr−Ni系耐
熱鋼)の溶湯を注入して所望厚さの外側層を形成し、そ
の内壁面まで固体化した直後に、上記内側層用合金(F
e −Cr系またはNilOlO%以下のFe −Cr
 −Ni系耐熱鋼)の溶湯を鋳込み所望厚さの内側層を
形成すればよく、これによって内側・外側層がその境界
部で冶金学的に一体結合した二重積層管を得ることかで
きる(この場合内側層合金が外側層合金より低い溶融点
をもつように、各層合金の成分(主として、C匍を前記
規定の範囲内でJん節したものを用いるのが好ましい)
。その池の鋳造条件に特別の制限はなく、例えば各層溶
湯鋳造温度は、常法どおり、それぞれの溶融点より、例
えば約150°C高い温度に調節されればよく、また必
ワに応し、外側層の内表面を空気酸化から保護するため
に常法に従って適当な造滓剤を投与してもよい。
1. The reaction tube of the present invention having a double-layered structure is preferably manufactured by a centrifugal casting method. In order to cast a reaction tube by centrifugal force casting using heat-resistant steels having the above chemical components as alloys for the inner layer and outer layer, first, the alloy for the outer layer (Fe-Cr-Ni of high Ni content) is used. Immediately after injecting the molten metal of the inner layer alloy (F-based heat-resistant steel) to form an outer layer with a desired thickness and solidifying up to the inner wall surface, the inner layer alloy (F
e-Cr system or Fe-Cr with NilOlO% or less
- It is sufficient to form an inner layer of a desired thickness by casting a molten metal of Ni-based heat-resistant steel), thereby obtaining a double-laminated pipe in which the inner and outer layers are metallurgically joined together at the boundary ( In this case, the composition of each layer alloy (principally, it is preferable to use a mixture of C and J within the specified range) so that the inner layer alloy has a lower melting point than the outer layer alloy.
. There are no particular restrictions on the casting conditions of the pond; for example, the molten metal casting temperature of each layer may be adjusted to a temperature higher than the melting point of each layer, for example, by about 150°C, as is the case with conventional methods. A suitable slagging agent may be administered in a conventional manner to protect the inner surface of the outer layer from air oxidation.

遠心力鋳造により得られる二重積層管にその特徴を十分
に発揮させるには、鋳造において、各層の合金が相互に
混合せず、所定の層厚が確保されるべきことは言う壕で
もなく、さらには各層が境界部で冶金学的に完全に密着
し、強固に結合していること、またその境界部の融合層
は強固な結合状態・を得る((必要な最少限の厚さであ
ることが望まれる。このような観点から、従来二重積層
管の遠心力鋳造においては、外側層の内表面まで固化さ
せた後に内側層合金溶湯を注入すれば、両層境界部での
融合が不十分となることを懸念し、内表面が未凝固状態
にある時点で内側層を鋳造するのが一般的である。その
場合、両層の密着性は十分となるが、その反面両層合金
溶湯が過度に混合する欠点があり、良好な二重積層構造
の形成は困難である。しかるに、この発明の遠心力鋳造
二重積層雀においては、外側層内表面の固化後に内側層
を鋳造するにもかかわらず、両層の密着性に優れる。こ
の理由は、内側層合金の溶融点が外側層合金のそれより
も低いならば、外側層の凝固内表面と接する内側層溶湯
か直ちに固化してし1つことはなく、その境界面に適度
の厚さの融合層を形成し得ることによる。しかも、その
際、外側層は不必SI[iIf溶融することがないので
、両層間)合金の混合を生じることViなく、」二重融
合層厚も強固な結合を得るに必要な最少限の厚さにとど
まり、理想的な二重積層M造を形成する。
In order for the double-laminated tube obtained by centrifugal casting to fully demonstrate its characteristics, it is essential that the alloys in each layer do not mix with each other during casting and that a predetermined layer thickness is ensured. Furthermore, each layer is metallurgically completely adhered and strongly bonded at the boundary, and the fused layer at the boundary has a strong bond ((minimum thickness required). From this point of view, in conventional centrifugal casting of double-layered pipes, if the inner layer alloy is injected after solidifying up to the inner surface of the outer layer, fusion at the boundary between the two layers can be prevented. Due to concerns that the inner layer may be insufficient, it is common practice to cast the inner layer while the inner surface is in an unsolidified state.In that case, the adhesion between both layers is sufficient, but on the other hand, the adhesion between the two layers is There is a drawback that the molten metal mixes excessively, and it is difficult to form a good double-layer structure.However, in the centrifugal casting double-layer structure of the present invention, the inner layer is cast after the inner surface of the outer layer is solidified. Nevertheless, the adhesion between both layers is excellent.The reason for this is that if the melting point of the inner layer alloy is lower than that of the outer layer alloy, the inner layer molten metal in contact with the solidified inner surface of the outer layer will solidify immediately. This is because it is possible to form an appropriately thick fusion layer on the interface.Moreover, in that case, the outer layer is unnecessarily SI [iIf between the two layers because it does not melt] of the alloy. No mixing occurs, and the double fusion layer thickness remains at the minimum necessary to obtain a strong bond, forming an ideal double laminate structure.

なお、二重積層構造の形成は、この1・1かに、例えば
、鋳造と溶射を併用し、所定の合金からなる鋳造管を製
造してその表面に所定の合金を溶射被覆する方法を使用
することも可能であるが、遠心力鋳造法を使用すれば、
前記のごとく両層間の−・未結合が確実に得られるのみ
ならず、各層の層厚を所望により厚薄任意に制御でき、
また使用する合金の化学成分組成についても所望の桐刺
特性に応じて自由に選択できる利点がある。
The double laminated structure can be formed by using a method similar to 1.1, for example, by using a combination of casting and thermal spraying to produce a cast pipe made of a predetermined alloy, and then coating the surface with the predetermined alloy by thermal spraying. However, if you use the centrifugal casting method,
As mentioned above, not only can the bonding between both layers be reliably obtained, but also the layer thickness of each layer can be arbitrarily controlled to be thick or thin as desired.
There is also the advantage that the chemical composition of the alloy used can be freely selected depending on the desired paulownia wood characteristics.

上記遠心力鋳造による二重積層構造を有する反応用管の
実施例を挙げると、高周波誘導溶解炉にて、外側層用合
金としてFe−Cr−Ni糸面・j熱鋼溶湯(C0,4
5%、Si1.2%、Mn1.1%、Cr26.5%、
Ni35.5%、NO,06%、残部Fe)、捷た内側
層用合金としてFe−Cr系爵]熱鋼溶湯(C1,2%
、Si1.2%、Mn 1.0%、Cr18.5%、残
部Fe )をそれぞれ溶製し、遠心力鋳造により、旧型
外側層用合金溶湯35kqを鋳込み、外径134mm、
肉厚25mm、長さ500mmの外側層を形成させ、そ
の内表面が固化した直後に、内側層用合金溶湯1oka
を鋺込み、肉厚10mmの内側層を形成させることによ
り、内外層合金の混合がなく、かつ両層が冶金学的に一
体結合さhた同心円状二層からなる反応用管を得た。
To give an example of a reaction tube having a double-layered structure formed by centrifugal casting, in a high-frequency induction melting furnace, Fe-Cr-Ni thread surface/j hot steel molten metal (C0,4
5%, Si1.2%, Mn1.1%, Cr26.5%,
Ni35.5%, NO, 06%, balance Fe), Fe-Cr series alloy as the splintered inner layer alloy] hot steel molten metal (C1,2%)
, Si 1.2%, Mn 1.0%, Cr 18.5%, balance Fe) were melted, and 35 kg of molten alloy for the old model outer layer was cast by centrifugal force casting, and the outer diameter was 134 mm.
Immediately after forming an outer layer with a thickness of 25 mm and a length of 500 mm, and solidifying the inner surface, 1 oka of molten alloy for the inner layer was formed.
A reaction tube was obtained which consisted of two concentric layers in which there was no mixing of the inner and outer layer alloys and both layers were metallurgically bonded together by forming an inner layer with a wall thickness of 10 mm.

更に、他の実施例を挙げれば、外側層用合金として前記
例のそれとはソ同様の化学成分組成を有するFe−Cr
−Ni系劇熱鋼溶湯(C0,43%、Si1.3%、M
n  1゜1%、Cr26.0%、Ni35.8%、N
O,04%、残部Fe ) 35kg、および内側層用
合金としては、Ni10.0%以下に規定されるFe−
Cr−Ni系劇熱鋼溶湯(C0,8%、Si1.2%、
Mn1.1%、Cr24.5%、Ni7.5%、残部F
e)lOkqをそhそれ使用し、遠心力a造にて、前記
例と同一寸法の外側層を形成させ、その内表面が固化し
た直後に内側層を鋳造することにより、内外層合金の混
合がなく、かつ両層が冶金学的に一体結合した反応用管
を得た。
Furthermore, to give another example, Fe-Cr having a chemical composition similar to that of the above example is used as an alloy for the outer layer.
-Ni-based molten steel (C0.43%, Si1.3%, M
n 1°1%, Cr26.0%, Ni35.8%, N
O, 04%, balance Fe) 35kg, and the inner layer alloy is Fe-10.0% or less Ni.
Cr-Ni type extremely hot steel molten metal (C0.8%, Si1.2%,
Mn1.1%, Cr24.5%, Ni7.5%, balance F
e) Mixing of the inner and outer layer alloys by using lOkq and forming an outer layer with the same dimensions as in the previous example using centrifugal force a, and casting the inner layer immediately after the inner surface has solidified. A reaction tube was obtained in which both layers were metallurgically bonded together.

なお、」二重説明では、反応用管の内壁面が炭化水素と
接触する条件下に使用される反bL、用管を例に挙げた
が、管の外壁面が炭化水素と接触する反応用管の場合に
は、上記の例とは逆に、外側層にFe−Cr系またはN
i1O,0%以下のFe−Cr−Ni系而面熱(ifl
を適用すべきであることは言うまでもなく、また管の内
・外画表面が炭化水素類と接触する条件で使用されるも
のである場合には、外側層と内側層とに上記銅相を使用
するとともに、両層の中門に従来のFe−Cr−Ni系
オーステナイト型劇熱鋼を介在させた三重積層構造とす
れはよい。
In addition, in the double explanation, we took as an example a reaction tube used under conditions where the inner wall surface of the reaction tube comes into contact with hydrocarbons, but a reaction tube where the outer wall surface of the reaction tube comes into contact with hydrocarbons is used as an example. In the case of pipes, contrary to the above example, the outer layer is made of Fe-Cr or N
Fe-Cr-Ni system metathermal heat of less than i1O, 0% (ifl
Needless to say, if the inner and outer surfaces of the pipe are to be used in contact with hydrocarbons, the above copper phase should be used for the outer and inner layers. At the same time, a triple laminated structure in which conventional Fe-Cr-Ni austenitic high-temperature steel is interposed in the middle gate of both layers is suitable.

いずれの場合にも、遠心力鋳造により製造することがで
きる。
In either case, it can be manufactured by centrifugal casting.

以上のように、この発明の反応用管は、炭化水素類と接
する側の表面が、Fe−Cr系もしくはNi量を制限し
たF e −Cr −N i系耐熱鋼で形成されている
ため、炭化水素の化学反応に伴う固形炭素の析出沈積を
有効に抑制防止することができる。しかも、このFe−
Cr系もしくはFe−Cr−Ni系酎耐 熱層か、これと−未結合した高Ni含有量のFeへ −Cr−Ni  系耐熱鋼の層によって強化さhている
ため、500°C以上の高温、大気圧以上の圧力下の使
用に十分耐え得る高温特性を具備する。
As described above, in the reaction tube of the present invention, the surface in contact with hydrocarbons is made of Fe-Cr type heat-resistant steel or Fe-Cr-Ni type heat-resistant steel with a limited amount of Ni. Precipitation and deposition of solid carbon accompanying chemical reactions of hydrocarbons can be effectively suppressed and prevented. Moreover, this Fe-
Because it is reinforced by a Cr-based or Fe-Cr-Ni-based heat-resistant layer, or a layer of Cr-Ni-based heat-resistant steel with unbonded high Ni content, it can withstand high temperatures of over 500°C. , has high-temperature properties that can withstand use under pressures higher than atmospheric pressure.

従って、この発明の反応用管は、」二重の高温・高圧下
で、炭化水素」j独もしくはこれと水蒸気、酸素含有ガ
スなどと混合して行われる低分子量炭化物などへの熱分
解、あるいは水素、酸化炭素などを含むガス状混合物の
製造に使用さhて、長期にわたり固形炭素の析出沈積が
抑制され安定した操業が維持され得る。
Therefore, the reaction tube of the present invention is suitable for thermal decomposition into low molecular weight carbides, etc., which is carried out by mixing hydrocarbons with water vapor, oxygen-containing gas, etc. under double high temperatures and high pressures, or When used to produce a gaseous mixture containing hydrogen, carbon oxide, etc., precipitation and deposition of solid carbon can be suppressed and stable operations can be maintained over a long period of time.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は反応用管材料のNi含有量と管表面の固形炭素
析出沈積量との関係を示すグラフである。 代理人 弁理士 宮崎新へ部 (,111A世) 香に儲身の1−個 第1頁の続き ■゛・発 明 者 杉谷純一 枚方市中宮大池1丁目2番1号 久保田鉄工株式会社枚方鋳鋼工 場内 [株]・発 明 者 鳥越猛 枚方市中宮大池1丁目2番1号 久保田鉄工株式会社枚方鋳鋼工 場内 み出 願 人 久保田鉄工株式会社 大阪市浪速区敷津東−丁目2番 47号
FIG. 1 is a graph showing the relationship between the Ni content of the reaction tube material and the amount of solid carbon deposited on the tube surface. Agent: Patent Attorney Shinhebe Miyazaki (111A) Continuing from page 1 - Inventor Junichi Sugitani 1-2-1 Nakamiya Oike, Hirakata City Kubota Ironworks Co., Ltd. Hirakata Cast Steel Inside the factory [stock] / Inventor Takeshi Torigoe 1-2-1 Nakamiya Oike, Hirakata-shi Kubota Iron Works Co., Ltd. Hirakata Casting Steel Factory Applicant Kubota Iron Works Co., Ltd. 2-47 Shikitsu Higashi-chome, Naniwa-ku, Osaka City

Claims (2)

【特許請求の範囲】[Claims] (1)管壁の内側層か、C00O1〜1.5%(重量%
、以下同じ)、Si2.5%以下、Mn2.0%以下、
Cr13〜30%、NO,15%以下の組成範囲にあり
、残部がFe、または、Feの一部が5.0%以下の範
囲内においてMo、WおよびNbから選択される1種以
上の元素を以て置換されているFe−Cr系フェライト
型もしくはマルテンサイト型1胴熱鋼、またはC0,0
1〜1.5%、Si2.5%以下、Mn2.0%以下、
Cr 13〜30%、Ni10.0%以下、NO,15
%以下の組成範囲内にあり、残部がFe、またはFeの
一部が、5.0%以下の範囲においてMo、WおよびN
bから選択される1種以上の元素を以て置換されている
Fe’−Cr−Ni  系フェライト梨、7エライト−
オーステナイト型もしくはマルテンサイト型耐熱鋼から
なり、管壁の外側層が、CO,1〜0.6%、Si25
%以下、Mn2.0%以下、Cr 20〜30%、Ni
よびNbから選択される1種以上の元素を以て置換され
ているFe −Cr−Ni系オーステナイト型面・j熱
鋼からなることを特徴とする炭化水素類の熱分解・改質
反応用管。
(1) The inner layer of the tube wall, C00O1~1.5% (wt%)
, hereinafter the same), Si 2.5% or less, Mn 2.0% or less,
One or more elements selected from Mo, W, and Nb in a composition range of 13 to 30% Cr, 15% or less NO, and the balance is Fe or a part of Fe is 5.0% or less Fe-Cr ferritic type or martensitic type one-body thermal steel substituted with or C0,0
1 to 1.5%, Si 2.5% or less, Mn 2.0% or less,
Cr 13-30%, Ni 10.0% or less, NO, 15
% or less, and the remainder is Fe, or a part of Fe is Mo, W, and N in a range of 5.0% or less.
Fe'-Cr-Ni-based ferrite substituted with one or more elements selected from b, 7-elite-
It is made of austenitic or martensitic heat-resistant steel, and the outer layer of the tube wall contains CO, 1 to 0.6%, Si25
% or less, Mn 2.0% or less, Cr 20-30%, Ni
1. A tube for thermal decomposition and reforming reactions of hydrocarbons, characterized in that it is made of Fe-Cr-Ni austenitic type surface/j-heat steel substituted with one or more elements selected from Nb and Nb.
(2)管壁の外側層および内側層が遠心力鋳造法によっ
て形成される特許請求の範囲第(1)項に記載の炭化水
素類の熱分解・改質反応用管。
(2) A tube for pyrolysis/reforming reaction of hydrocarbons according to claim (1), wherein the outer layer and the inner layer of the tube wall are formed by centrifugal casting.
JP20885281A 1981-12-23 1981-12-23 Reaction tube for thermal cracking/reforming of hydrocarbon Granted JPS58109589A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP20885281A JPS58109589A (en) 1981-12-23 1981-12-23 Reaction tube for thermal cracking/reforming of hydrocarbon
FR8221597A FR2518565B1 (en) 1981-12-23 1982-12-22 TUBE FOR THERMAL CRACKING OR HYDROCARBON REFORMING
DE19823247568 DE3247568A1 (en) 1981-12-23 1982-12-22 REACTOR TUBE FOR THERMAL CRACKING OR REFORMING HYDROCARBONS
GB08236419A GB2116209B (en) 1981-12-23 1982-12-22 Composite steel tube for thermally cracking or reforming hydrocarbons

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20885281A JPS58109589A (en) 1981-12-23 1981-12-23 Reaction tube for thermal cracking/reforming of hydrocarbon

Publications (2)

Publication Number Publication Date
JPS58109589A true JPS58109589A (en) 1983-06-29
JPS6321718B2 JPS6321718B2 (en) 1988-05-09

Family

ID=16563172

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20885281A Granted JPS58109589A (en) 1981-12-23 1981-12-23 Reaction tube for thermal cracking/reforming of hydrocarbon

Country Status (1)

Country Link
JP (1) JPS58109589A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6331535A (en) * 1986-07-23 1988-02-10 Jgc Corp Apparatus for treating carbon-containing compound having carbon precipitation suppressing property

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3066514B2 (en) * 1992-09-29 2000-07-17 三菱自動車工業株式会社 Exhaust gas purification device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6331535A (en) * 1986-07-23 1988-02-10 Jgc Corp Apparatus for treating carbon-containing compound having carbon precipitation suppressing property

Also Published As

Publication number Publication date
JPS6321718B2 (en) 1988-05-09

Similar Documents

Publication Publication Date Title
JPS6313474B2 (en)
CA1140162A (en) High-temperature treatment of hydrocarbon-containing materials
TWI396680B (en) Process for continuous heterogeneously catalyzed partial dehydrogenation of at least one hydrocarbon to be dehydrogenated
JPS6237077B2 (en)
JP4329883B1 (en) Carburization-resistant metal material
CN106061671A (en) Welded joint
JPS6152350B2 (en)
US10207242B2 (en) Alumina forming refinery process tubes with mixing element
ATE323750T1 (en) ANTI-COKING, HEAT-RESISTANT MULTI-LAYER METAL TUBES AND METHOD FOR THEIR PRODUCTION
JPS6365057A (en) Tube for thermal decomposition or reforming reaction of hydrocarbons
US4692313A (en) Apparatus for thermal cracking of or heating of hydrocarbons
EP1481104A1 (en) Copper based alloy resistant against metal dusting and its use
JPH0593239A (en) Tube for thermal cracking and reforming reaction for hydrocarbons
JPS58109589A (en) Reaction tube for thermal cracking/reforming of hydrocarbon
US4454021A (en) Method for thermal cracking of hydrocarbons in an apparatus of an alloy having alkali or alkaline earth metals in the alloy to minimize coke deposition
GB2116209A (en) Composite steel tube for thermally cracking or reforming hydrocarbons
JP4882162B2 (en) Heat-resistant multilayer metal tube with excellent caulking resistance and its manufacturing method
JP4608724B2 (en) Heat resistant multi-layer metal tube with excellent caulking resistance and manufacturing method thereof
US2664622A (en) Method of effecting nonfusion welds with a steel weldrod
JPS5832686A (en) Coated tube for reactor used in pyrolysis and reformation of hydrocarbons and its production
JP3422803B2 (en) Cr-Ni heat-resistant steel
JPS5832688A (en) Production of coated tube for reactor used in pyrolysis and formation of hydrocarbons
JPS5832687A (en) Production of coated tube for reactor used in pyrolysis and reformation of hydrocarbons
JPS6365421B2 (en)
JPH0593248A (en) Tube for thermal cracking and reforming reaction of hydrocarbon