JP2007016027A - Method for producing styrene - Google Patents

Method for producing styrene Download PDF

Info

Publication number
JP2007016027A
JP2007016027A JP2006161495A JP2006161495A JP2007016027A JP 2007016027 A JP2007016027 A JP 2007016027A JP 2006161495 A JP2006161495 A JP 2006161495A JP 2006161495 A JP2006161495 A JP 2006161495A JP 2007016027 A JP2007016027 A JP 2007016027A
Authority
JP
Japan
Prior art keywords
dehydrogenation
gas
oxygen
mixed
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006161495A
Other languages
Japanese (ja)
Inventor
Shuji Obayashi
修二 大林
Shohei Suzuki
正平 鈴木
Takahito Nishiyama
貴人 西山
Hisao Kinoshita
久夫 木下
Kouetsu Ito
貢悦 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP2006161495A priority Critical patent/JP2007016027A/en
Publication of JP2007016027A publication Critical patent/JP2007016027A/en
Withdrawn legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing styrene in a high yield for a long period by suppressing formation of carbon dioxide in between a spot where dehydrogenation product gas and oxygen-containing gas are mixed and an oxidation-step inlet. <P>SOLUTION: The method for producing styrene comprises a dehydrogenation step (1) for reacting a feed gas containing at least ethylbenzene and steam in the presence of a dehydrogenation catalyst; an oxidation step (2) for reacting at least part of hydrogen contained in the dehydrogenation product gas obtained in the dehydrogenation step in the presence of an oxidation catalyst and in the coexistence of the oxygen-containing gas; and another dehydrogenation step (3) for reacting the oxidation product gas obtained in the oxidation step in the presence of a dehydrogenation catalyst. In the method for producing styrene, in supplying the step (2) with the mixed gas of the dehydrogenation product gas obtained in the step (1) and the oxygen-containing gas, the combustion rate by oxygen is controlled to be 15% or lower in the section between the spot where the dehydrogenation product gas and the oxygen-containing gas are mixed and the inlet of the step (2). <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、スチレンの製造方法に関し、更に詳しくは、エチルベンゼンの酸化脱水素法によりスチレンを製造するにおいて、長期間に亘り、脱水素触媒の活性の低下を抑制し、高い収率でスチレンを製造することができるスチレンの製造方法に関する。   The present invention relates to a method for producing styrene, and more specifically, in producing styrene by the oxidative dehydrogenation method of ethylbenzene, producing a styrene in a high yield while suppressing a decrease in the activity of the dehydrogenation catalyst over a long period of time. The present invention relates to a method for producing styrene.

エチルベンゼンを例えばカリウム含有鉄系脱水素触媒を用い脱水素してスチレンを製造するプロセスは、従来から工業的に広く実施されている。しかし、一般に脱水素反応は、平衡の制約を強く受けること、脱水素反応が吸熱反応であるため断熱反応装置での反応では反応の進行と共に反応温度が低下すること、等の理由から、高い収率を得ることが困難である。そのため、脱水素反応で生成した水素を、酸化触媒を用いて選択的に酸化する酸化工程を脱水素工程に組み合わせることが、従前より提案されている。   A process for producing styrene by dehydrogenating ethylbenzene using, for example, a potassium-containing iron-based dehydrogenation catalyst has been widely practiced industrially. However, in general, the dehydrogenation reaction is strongly constrained by equilibrium, and since the dehydrogenation reaction is an endothermic reaction, the reaction temperature in an adiabatic reactor decreases with the progress of the reaction. It is difficult to get a rate. For this reason, it has been conventionally proposed to combine an oxidation step of selectively oxidizing hydrogen generated by a dehydrogenation reaction with an oxidation catalyst in the dehydrogenation step.

その際、脱水素工程からの流出ガスには脱水素触媒由来のカリウム化合物等のアルカリ性物質が含まれている。そのため、その流出ガスを酸化工程に供給すると、酸化触媒にアルカリ性物質が付着し、その選択性が阻害され、酸化工程でスチレンやエチルベンゼン等の炭化水素類の燃焼量が増加して二酸化炭素を多く生成する。一方、脱水素触媒の定常反応時に微量の二酸化炭素があるだけで反応活性は低下することから、生成した二酸化炭素は、後段の脱水素触媒の活性を低下させてスチレンの収率を悪化させることが知られている。   At that time, the effluent gas from the dehydrogenation step contains an alkaline substance such as a potassium compound derived from the dehydrogenation catalyst. Therefore, when the effluent gas is supplied to the oxidation process, alkaline substances adhere to the oxidation catalyst, and the selectivity thereof is hindered. In the oxidation process, the combustion amount of hydrocarbons such as styrene and ethylbenzene increases, and carbon dioxide is increased. Generate. On the other hand, since the reaction activity is reduced only by the presence of a small amount of carbon dioxide during the steady-state reaction of the dehydrogenation catalyst, the generated carbon dioxide decreases the activity of the subsequent dehydrogenation catalyst and deteriorates the yield of styrene. It has been known.

その酸化工程における水素の酸化選択性の低下を抑制し、酸化工程における炭化水素類の燃焼による二酸化炭素の生成を抑制すべく、例えば、酸化工程に供給される反応混合物中のアルカリ性物質を予め除去しておく方法(例えば、特許文献1参照。)が提案されている。しかしながら、特許文献1の方法においては、アルカリ性物質が酸化工程の下流側の後段の脱水素工程に供給されないこととなる。そのため、後段の脱水素触媒性能の経時的な劣化が促進され、反応活性が低下し、さらに選択性も低下してスチームリフォーミング反応等により二酸化炭素が多く生成し、その影響で更に脱水素触媒の活性が低下するという悪循環に繋がる。また、その脱水素工程での二酸化炭素生成率を、反応初期と比べ2.1倍未満に維持する方法(例えば、特許文献2参照。)も提案されているが、特許文献2の方法では、本発明者の検討によると、酸素含有ガスを混合させる箇所から酸化工程の入口までの炭化水素類の燃焼による二酸化炭素の生成量の増加を抑えることはできず、高い収率でスチレンを製造し続けることはできないことが判明した。   For example, alkaline substances in the reaction mixture supplied to the oxidation process are removed in advance in order to suppress the reduction of oxidation selectivity of hydrogen in the oxidation process and to suppress the generation of carbon dioxide due to combustion of hydrocarbons in the oxidation process. A method (for example, refer to Patent Document 1) has been proposed. However, in the method of Patent Document 1, the alkaline substance is not supplied to the subsequent dehydrogenation step on the downstream side of the oxidation step. Therefore, the deterioration of the dehydrogenation catalyst performance in the latter stage is promoted over time, the reaction activity is lowered, the selectivity is further lowered, and a large amount of carbon dioxide is generated by the steam reforming reaction, etc. This leads to a vicious circle in which the activity of the human body decreases. In addition, a method of maintaining the carbon dioxide production rate in the dehydrogenation step at less than 2.1 times compared to the initial reaction (see, for example, Patent Document 2) has also been proposed. According to the study of the present inventor, it is impossible to suppress an increase in the amount of carbon dioxide produced by combustion of hydrocarbons from the point where the oxygen-containing gas is mixed to the inlet of the oxidation process, and styrene is produced in a high yield. It turns out that you can't continue.

尚、酸化工程における炭化水素類の燃焼による二酸化炭素の生成の抑制に着目したものではないが、後段の脱水素工程におけるスチレン収率を向上すべく、脱水素工程からの流出ガスを直接的又は間接的熱交換によって予め冷却して、酸化工程での加熱量を、冷却しない場合よりも増加させ、酸化工程での水素燃焼量を増加させる方法(例えば、特許文献3参照。)も提案されている。しかし、本発明者の検討によると、流出ガスを冷却することにより、含有されるアルカリ性物質が流路の内壁に付着する。そのため、該付着内壁でのスチレンやエチルベンゼン等の炭化水素類の燃焼量が増加して二酸化炭素を多く生成することとなって、高い収率でスチレンを製造し続けることはできないことが判明した。
特開平11−80045号公報。 特開2002−154991号公報。 特公平4−20410号公報。
Although not focusing on the suppression of carbon dioxide production due to the combustion of hydrocarbons in the oxidation process, in order to improve the styrene yield in the subsequent dehydrogenation process, the effluent gas from the dehydrogenation process is directly or There has also been proposed a method of cooling in advance by indirect heat exchange to increase the amount of heating in the oxidation step as compared with the case of not cooling, and increasing the amount of hydrogen combustion in the oxidation step (for example, see Patent Document 3). Yes. However, according to the study of the present inventor, the contained alkaline substance adheres to the inner wall of the flow path by cooling the outflow gas. For this reason, it has been found that the combustion amount of hydrocarbons such as styrene and ethylbenzene on the inner wall of the adhesion increases and a large amount of carbon dioxide is generated, and it is not possible to continue producing styrene at a high yield.
Japanese Patent Application Laid-Open No. 11-80045. JP 2002-154991A. Japanese Patent Publication No. 4-20410.

本発明は、前述の従来技術に鑑み、脱水素工程からの脱水素反応ガスに含まれるアルカリ性物質が、その脱水素反応ガスに酸素含有ガスを混合させた箇所からそれに続く酸化工程入口までの流路内壁に付着することによる、炭化水素類の燃焼反応による二酸化炭素の生成を抑制すべくなされたものである。本発明は、脱水素反応と酸化反応との組み合わせからなる、エチルベンゼンの脱水素によるスチレンの製造方法において、脱水素反応ガスに酸素含有ガスを混合させた箇所から酸化工程入口までにおける二酸化炭素の生成量を抑制し、長期間に亘り、高い収率でスチレンを製造する方法を提供することを目的とする。   In view of the above-described prior art, the present invention provides a flow from the location where the alkaline substance contained in the dehydrogenation reaction gas from the dehydrogenation process is mixed with the oxygen-containing gas to the dehydrogenation reaction gas to the subsequent oxidation process inlet. It was made to suppress the production | generation of the carbon dioxide by the combustion reaction of hydrocarbons by adhering to a road inner wall. The present invention relates to a method for producing styrene by dehydrogenation of ethylbenzene, which is a combination of a dehydrogenation reaction and an oxidation reaction, and the production of carbon dioxide from a location where an oxygen-containing gas is mixed with the dehydrogenation reaction gas to the oxidation process inlet. The object is to provide a method for producing styrene in a high yield over a long period of time while suppressing the amount.

本発明者らは、前記課題を解決すべく鋭意検討した結果、脱水素反応ガスに酸素含有ガスを混合させる箇所から酸化工程入口までにおいて、酸素燃焼反応率を特定範囲以下とすることにより前記目的を達成できることを見出し本発明に到達したものである。すなわち、本発明の要旨は、下記の工程(1)乃至(3)の各工程を含むスチレンの製造方法であって、工程(1)で得られた脱水素反応ガスに酸素含有ガスを混合させた後に該脱水素反応ガスを工程(2)へ供給するに際し、脱水素反応ガスに酸素含有ガスを混合させた箇所から工程(2)の入口までの部分において、酸素燃焼反応率を15%以下とするスチレンの製造方法、に存する。   As a result of intensive studies to solve the above-mentioned problems, the present inventors have made the above object by reducing the oxyfuel combustion reaction rate to a specific range or less from the location where the oxygen-containing gas is mixed into the dehydrogenation reaction gas to the oxidation process inlet. It has been found that the above can be achieved, and the present invention has been achieved. That is, the gist of the present invention is a styrene production method including the following steps (1) to (3), wherein an oxygen-containing gas is mixed with the dehydrogenation reaction gas obtained in step (1). Thereafter, when supplying the dehydrogenation reaction gas to the step (2), the oxygen combustion reaction rate is 15% or less in the portion from the portion where the oxygen-containing gas is mixed to the dehydrogenation reaction gas to the inlet of the step (2). And a method for producing styrene.

工程(1):少なくともエチルベンゼンと水蒸気を含む原料ガスを、脱水素触媒の存在下でエチルベンゼンを脱水素反応させて、スチレン、水素、未反応エチルベンゼン、水蒸気、及び脱水素触媒由来のアルカリ性物質を含む脱水素反応ガスを得る脱水素工程
工程(2):脱水素工程で得られた脱水素反応ガスを、酸化触媒の存在下、酸素含有ガスの共存下で水素の少なくとも一部を酸化反応させる酸化工程
工程(3):酸化工程で得られた酸化反応ガスを、脱水素触媒の存在下でエチルベンゼンを脱水素させて、スチレン、水素、未反応エチルベンゼン、水蒸気、及び脱水素触媒由来のアルカリ性物質を含む脱水素反応ガスを得る脱水素工程
Step (1): A raw material gas containing at least ethylbenzene and water vapor is subjected to a dehydrogenation reaction of ethylbenzene in the presence of a dehydrogenation catalyst to contain styrene, hydrogen, unreacted ethylbenzene, water vapor, and an alkaline substance derived from the dehydrogenation catalyst. Dehydrogenation process step (2) for obtaining a dehydrogenation reaction gas: An oxidation in which at least a part of hydrogen is oxidized in the presence of an oxidation catalyst in the presence of an oxidation catalyst. Process step (3): The oxidation reaction gas obtained in the oxidation step is dehydrogenated in the presence of a dehydrogenation catalyst to dehydrogenate benzene, hydrogen, unreacted ethylbenzene, water vapor, and an alkaline substance derived from the dehydrogenation catalyst. Dehydrogenation process to obtain dehydrogenation reaction gas containing

本発明によれば、脱水素反応と酸化反応との組み合わせからなる、エチルベンゼンの脱水素によるスチレンの製造方法において、脱水素反応ガスに酸素含有ガスを混合させた箇所から酸化工程入口までにおける二酸化炭素の生成量を抑制し、長期間に亘り、高い収率でスチレンを製造する方法を提供することができる。   According to the present invention, in the method for producing styrene by dehydrogenation of ethylbenzene, which comprises a combination of a dehydrogenation reaction and an oxidation reaction, carbon dioxide from the location where the oxygen-containing gas is mixed into the dehydrogenation reaction gas to the oxidation process inlet It is possible to provide a method for producing styrene with a high yield over a long period of time.

本発明のスチレンの製造方法において、工程(1)は、少なくともエチルベンゼンと水蒸気を含む原料ガスを、脱水素触媒の存在下でエチルベンゼンを脱水素反応させて、スチレン、水素、未反応エチルベンゼン、水蒸気、及び脱水素触媒由来のアルカリ性物質を含む脱水素反応ガスを得る脱水素工程である。   In the method for producing styrene of the present invention, in the step (1), a raw material gas containing at least ethylbenzene and water vapor is subjected to dehydrogenation reaction of ethylbenzene in the presence of a dehydrogenation catalyst, so that styrene, hydrogen, unreacted ethylbenzene, water vapor, And a dehydrogenation step for obtaining a dehydrogenation reaction gas containing an alkaline substance derived from the dehydrogenation catalyst.

該脱水素工程(1)において、原料炭化水素としてのエチルベンゼンは、水蒸気と混合されてガス状で本脱水素工程(1)に供給される。原料炭化水素としては、エチルベンゼン以外に、例えば、スチレン、トルエン、ベンゼン等の他の炭化水素類を含んでいてもよく、そのエチルベンゼン濃度としては、通常90%以上、好ましくは95%以上、更に好ましくは97%以上である。また、エチルベンゼンを含む原料炭化水素に対する水蒸気の混合割合は、通常、モル比で1〜15の範囲、好ましくは1〜10の範囲である。   In the dehydrogenation step (1), ethylbenzene as a raw material hydrocarbon is mixed with water vapor and supplied in gaseous form to the dehydrogenation step (1). The raw material hydrocarbon may contain, in addition to ethylbenzene, other hydrocarbons such as styrene, toluene, benzene, etc., and the ethylbenzene concentration is usually 90% or more, preferably 95% or more, more preferably. Is 97% or more. Moreover, the mixing ratio of water vapor to the raw material hydrocarbon containing ethylbenzene is usually in the range of 1 to 15, preferably 1 to 10, in terms of molar ratio.

また、脱水素触媒としては、特に限定されないが、通常、特開昭60−130531号公報等に記載されたもの、すなわち、アルカリ金属又はアルカリ土類金属を含む鉄系触媒、或いはこの鉄系触媒に、更にジルコニウム、タングステン、モリブテン、バナジウム、クロム等の他の金属を含有させたものを用いることができる。これらの中でも、酸化鉄を主体とし、これに酸化カリウム及び所望により前記他の金属等を含有させた、カリウム含有鉄系触媒が好ましい。その一例としては、特開平4−277030号公報等に記載されたもの、すなわち、酸化鉄及び酸化カリウムを主成分とし、助触媒成分として酸化チタンを含むもの等が挙げられる。   Further, the dehydrogenation catalyst is not particularly limited, but is usually described in Japanese Patent Application Laid-Open No. 60-130531, for example, an iron-based catalyst containing an alkali metal or an alkaline earth metal, or the iron-based catalyst. Further, those containing other metals such as zirconium, tungsten, molybdenum, vanadium, and chromium can be used. Among these, a potassium-containing iron-based catalyst containing iron oxide as a main component and containing potassium oxide and, if desired, the above-mentioned other metals and the like is preferable. Examples thereof include those described in JP-A-4-277030 and the like, that is, those containing iron oxide and potassium oxide as main components and titanium oxide as a promoter component.

該脱水素工程(1)における反応の温度は、通常500℃以上、好ましくは550℃以上であり、通常700℃以下、好ましくは670℃以下である。尚、エチルベンゼンの脱水素反応は、吸熱反応であるため、反応の進行に伴って、工程(1)内の温度は低下する。圧力は、通常、0.0049〜0.98MPaの範囲である。   The reaction temperature in the dehydrogenation step (1) is usually 500 ° C. or higher, preferably 550 ° C. or higher, and usually 700 ° C. or lower, preferably 670 ° C. or lower. In addition, since the dehydrogenation reaction of ethylbenzene is an endothermic reaction, the temperature in the step (1) decreases with the progress of the reaction. The pressure is usually in the range of 0.0049 to 0.98 MPa.

該脱水素工程(1)では、エチルベンゼンが脱水素され、スチレン及び水素が生成し、スチレン、水素、未反応エチルベンゼン、水蒸気、及び脱水素触媒由来のアルカリ性物質を含む脱水素反応ガスが得られる。   In the dehydrogenation step (1), ethylbenzene is dehydrogenated to produce styrene and hydrogen, and a dehydrogenation reaction gas containing styrene, hydrogen, unreacted ethylbenzene, water vapor, and an alkaline substance derived from a dehydrogenation catalyst is obtained.

尚、本発明において、「アルカリ性物質」とは、アルカリ金属又はアルカリ土類金属の酸化物、炭酸塩、水酸化物等のアルカリ性金属を含有する化合物の総称である。脱水素反応ガス中に含まれるアルカリ性物質の特定はなされていないが、高温の水蒸気と二酸化炭素の存在下で生成していることから、例えば水酸化カリウム等のアルカリ性金属の水酸化物、又は炭酸カリウム等のアルカリ性金属の炭酸塩等と推定される。   In the present invention, the “alkaline substance” is a general term for compounds containing an alkaline metal such as an oxide, carbonate, hydroxide or the like of an alkali metal or alkaline earth metal. Although the alkaline substance contained in the dehydrogenation reaction gas has not been specified, it is generated in the presence of high-temperature water vapor and carbon dioxide. Presumed to be carbonates of alkaline metals such as potassium.

尚、本発明における脱水素工程(1)の脱水素反応に用いられる装置としては、特に限定されないが、通常、脱水素触媒充填層を有する固定床装置が用いられる。この脱水素工程(1)を出た脱水素反応ガスは、脱水素工程入口に比べ温度が低下しており、この脱水素反応ガスは、酸素含有ガスと混合させた後、酸化工程(2)に供給される。   In addition, although it does not specifically limit as an apparatus used for the dehydrogenation reaction of the dehydrogenation process (1) in this invention, Usually, the fixed bed apparatus which has a dehydrogenation catalyst packed bed is used. The temperature of the dehydrogenation reaction gas exiting the dehydrogenation step (1) is lower than that at the dehydrogenation step inlet, and the dehydrogenation reaction gas is mixed with the oxygen-containing gas and then the oxidation step (2). To be supplied.

ここで、酸素含有ガスとしては、酸素を含有するガスであれば特に限定されない。例えば、空気、希釈空気、酸素富化空気、不活性ガスで希釈された酸素等が挙げられる。酸素含有ガスの供給方法としては、特に制限されず、脱水素工程(1)を出た脱水素反応ガスに該酸素含有ガスを供給して、その混合ガスを酸化工程(2)に導入する。   Here, the oxygen-containing gas is not particularly limited as long as it is a gas containing oxygen. Examples thereof include air, diluted air, oxygen-enriched air, oxygen diluted with an inert gas, and the like. The method for supplying the oxygen-containing gas is not particularly limited, and the oxygen-containing gas is supplied to the dehydrogenation reaction gas exiting the dehydrogenation step (1), and the mixed gas is introduced into the oxidation step (2).

本発明のスチレンの製造方法において、工程(2)は、脱水素工程(1)で得られた脱水素反応ガスを、酸化触媒の存在下、酸素含有ガスの共存下で水素の少なくとも一部を酸化反応させる酸化工程である。   In the method for producing styrene of the present invention, in the step (2), the dehydrogenation reaction gas obtained in the dehydrogenation step (1) is converted from at least a part of hydrogen in the presence of an oxidation catalyst in the presence of an oxygen-containing gas. This is an oxidation step for oxidation reaction.

該酸化工程(2)において、酸化触媒としては、スチレン及びエチルベンゼンの共存下において、水素を選択的に燃焼させることのできるものであれば、任意のものを用いることができる。通常は貴金属系の酸化触媒を用いる。例えば、特開昭60−130531号公報等に記載されている触媒、すなわち、白金とカリウム、又は白金、錫及びカリウムを含んでなる触媒である。また、特開昭61−225140号公報等に記載されている触媒、すなわち、アルカリ金属又はアルカリ土類金属、ゲルマニウム、錫又は鉛等の第4A族、及び貴金属を含んでなる触媒等が挙げられる。又、特開平11−322303号公報等に記載されている触媒、すなわち、白金とニオブ又はタンタルを含んでなる触媒等を用いることもできる。   In the oxidation step (2), any oxidation catalyst can be used as long as it can selectively burn hydrogen in the presence of styrene and ethylbenzene. Usually, a noble metal-based oxidation catalyst is used. For example, a catalyst described in JP-A-60-130531, for example, platinum and potassium, or a catalyst comprising platinum, tin and potassium. Moreover, the catalyst described in Unexamined-Japanese-Patent No. 61-225140 etc., ie, the catalyst containing 4A group, such as an alkali metal or alkaline-earth metal, germanium, tin, or lead, and a noble metal, etc. are mentioned. . Moreover, the catalyst described in Unexamined-Japanese-Patent No. 11-322303 etc., ie, the catalyst containing platinum, niobium, or tantalum, etc. can also be used.

尚、本発明における酸化工程(2)の酸化反応に用いられる装置としては、特に限定されない。通常、酸化触媒充填層を有する固定床反応装置が用いられ、この酸化工程(2)を出た酸化反応ガスは、水素の酸化反応熱により脱水素反応ガスに比べて温度が上昇している。通常500〜700℃、好ましくは550〜670℃の範囲である。酸化工程(2)を出た反応ガスは、次いで、脱水素工程(3)に供給される。尚、この酸化工程(2)では水素の酸化反応熱により温度が上昇すると共に、水素が酸化されて減少するために、後段の脱水素工程(3)での脱水素反応の平衡阻害が小さくなり、脱水素反応が促進される利点が生じる。   In addition, it does not specifically limit as an apparatus used for the oxidation reaction of the oxidation process (2) in this invention. Usually, a fixed bed reactor having an oxidation catalyst packed bed is used, and the temperature of the oxidation reaction gas exiting this oxidation step (2) is higher than that of the dehydrogenation reaction gas due to the oxidation reaction heat of hydrogen. Usually, it is 500-700 degreeC, Preferably it is the range of 550-670 degreeC. The reaction gas leaving the oxidation step (2) is then supplied to the dehydrogenation step (3). In this oxidation step (2), the temperature rises due to the heat of the oxidation reaction of hydrogen, and hydrogen is oxidized and reduced. Therefore, the equilibrium inhibition of the dehydrogenation reaction in the subsequent dehydrogenation step (3) is reduced. , There is an advantage that the dehydrogenation reaction is promoted.

本発明のスチレンの製造方法において、工程(3)は、酸化工程(2)で得られた酸化反応ガスを、脱水素触媒の存在下でエチルベンゼンを脱水素反応させて、スチレン、水素、未反応エチルベンゼン、水蒸気、及び脱水素触媒由来のアルカリ性物質を含む脱水素反応ガスを得る脱水素工程である。   In the method for producing styrene of the present invention, in the step (3), the oxidation reaction gas obtained in the oxidation step (2) is dehydrogenated with ethylbenzene in the presence of a dehydrogenation catalyst, so that styrene, hydrogen, unreacted This is a dehydrogenation step of obtaining a dehydrogenation reaction gas containing ethylbenzene, water vapor, and an alkaline substance derived from a dehydrogenation catalyst.

該脱水素工程(3)の脱水素反応に用いられる触媒及び反応条件、装置等は、脱水素工程(1)に記載した条件から任意に選択でき、脱水素工程(1)とは互いに独立して実施される。   The catalyst used in the dehydrogenation reaction in the dehydrogenation step (3), reaction conditions, equipment, and the like can be arbitrarily selected from the conditions described in the dehydrogenation step (1), and are independent of the dehydrogenation step (1). Implemented.

本発明のスチレンの製造方法は、前記の工程(1)乃至(3)の各工程を含み、工程(1)で得られた脱水素反応ガスに酸素含有ガスを混合させた後に該脱水素反応ガスを工程(2)へ供給するに際し、脱水素反応ガスに酸素含有ガスを混合させた箇所から工程(2)の入口までの部分において、酸素燃焼反応率を15%以下とすることを必須とする。   The method for producing styrene of the present invention includes the steps (1) to (3) described above, and the dehydrogenation reaction is performed after mixing the oxygen-containing gas with the dehydrogenation reaction gas obtained in step (1). When supplying the gas to the step (2), it is essential to set the oxyfuel combustion reaction rate to 15% or less in the portion from the portion where the oxygen-containing gas is mixed to the dehydrogenation reaction gas to the inlet of the step (2). To do.

尚、本発明においては、必要に応じて、工程(3)の脱水素工程の後に、更に工程(2’)の酸化工程と工程(3’)の脱水素工程を多段に組み合わせもよい。その場合にも、工程(3)の脱水素工程で得られた脱水素反応ガスを工程(2’)の酸化工程に供給する前に酸素含有ガスを混合させるが、その際、工程(3)の脱水素工程からの脱水素反応ガスに酸素含有ガスを混合させた箇所から工程(2’)の入口までの部分において、酸素燃焼反応率を15%以下とするのが好ましい。   In the present invention, if necessary, after the dehydrogenation step of step (3), the oxidation step of step (2 ') and the dehydrogenation step of step (3') may be combined in multiple stages. Also in this case, the oxygen-containing gas is mixed before the dehydrogenation reaction gas obtained in the dehydrogenation step of step (3) is supplied to the oxidation step of step (2 ′). It is preferable that the oxygen combustion reaction rate is 15% or less in the portion from the location where the oxygen-containing gas is mixed to the dehydrogenation reaction gas from the dehydrogenation step to the entrance of the step (2 ′).

脱水素反応と酸化反応との組み合わせからなる、エチルベンゼンの脱水素によるスチレンの製造方法において、脱水素工程(1)の脱水素触媒に由来するアルカリ性物質は、工程(1)から蒸気圧分だけ蒸気で飛散してきており、脱水素反応ガス温度の低下等により、蒸気圧が低下すると、配管等の流路内壁に付着する。流路内壁にアルカリ性物質が付着すると、脱水素工程(1)出口から酸素含有ガスを混合させる箇所の前までは酸素が存在しないのでスチレンやエチルベンゼン等の炭化水素類の燃焼は生じない。一方、脱水素工程(1)の脱水素反応ガスに酸素含有ガスを混合させた箇所から酸化工程(2)の入口までの部分においては、流路内壁にアルカリ性物質が付着している。これにより、スチレンやエチルベンゼン等の炭化水素類の燃焼量が増加し、二酸化炭素を多く生成し、この二酸化炭素が後段の脱水素工程(3)の脱水素触媒の活性を低下させて、スチレンの収率を低下させることとなる。これに対して、本発明においては、その脱水素反応ガスに酸素含有ガスを混合させる箇所から工程(2)の入口までの部分において、酸素燃焼反応率を15%以下、好ましくは10%以下で、下限値は、不可避的に生じる反応率の1%以上とすることにより、長期間に亘り、安定的に、高い収率でスチレンを製造することができるのである。   In the method for producing styrene by dehydrogenation of ethylbenzene, which comprises a combination of a dehydrogenation reaction and an oxidation reaction, the alkaline substance derived from the dehydrogenation catalyst in the dehydrogenation step (1) is vaporized by a vapor pressure from step (1). When the vapor pressure decreases due to a decrease in the dehydrogenation reaction gas temperature or the like, it adheres to the inner wall of the flow path such as a pipe. When an alkaline substance adheres to the inner wall of the flow path, since there is no oxygen from the dehydrogenation step (1) outlet to the position where the oxygen-containing gas is mixed, combustion of hydrocarbons such as styrene and ethylbenzene does not occur. On the other hand, in the part from the location where the oxygen-containing gas is mixed to the dehydrogenation reaction gas in the dehydrogenation step (1) to the inlet of the oxidation step (2), an alkaline substance is attached to the inner wall of the flow path. As a result, the amount of combustion of hydrocarbons such as styrene and ethylbenzene increases, and a large amount of carbon dioxide is produced. This carbon dioxide reduces the activity of the dehydrogenation catalyst in the subsequent dehydrogenation step (3), The yield will be reduced. On the other hand, in the present invention, the oxygen combustion reaction rate is 15% or less, preferably 10% or less in the portion from the location where the oxygen-containing gas is mixed to the dehydrogenation reaction gas to the inlet of the step (2). By setting the lower limit to 1% or more of the inevitable reaction rate, styrene can be produced stably and with a high yield over a long period of time.

尚、本発明において、脱水素工程(1)で得られた脱水素反応ガスに酸素含有ガスを混合させた箇所から酸化工程(2)の入口までの部分における酸素燃焼反応率は、脱水素工程(1)出口と酸化工程(2)入口でそれぞれのガスをサンプリングし、それらのサンプルをガスクロマトグラフィーで分析し、以下に示す式により算出したものである。
酸素燃焼反応率=〔(A−B)/A〕×100(%)
A:脱水素工程(1)で得られた脱水素反応ガスに混合させた酸素の量(モル)
B:酸化工程(2)入口での酸素の量(モル)
In the present invention, the oxyfuel combustion reaction rate in the portion from the location where the oxygen-containing gas is mixed with the dehydrogenation reaction gas obtained in the dehydrogenation step (1) to the inlet of the oxidation step (2) is the dehydrogenation step. (1) The gas is sampled at the outlet and the oxidation step (2) at the inlet, the samples are analyzed by gas chromatography, and calculated by the following formula.
Oxygen combustion reaction rate = [(A−B) / A] × 100 (%)
A: Amount of oxygen (mole) mixed in the dehydrogenation reaction gas obtained in the dehydrogenation step (1)
B: Oxidation step (2) Amount of oxygen (mole) at the inlet

本発明において、酸素燃焼反応率を前記範囲とする方法としては、特に限定されるものではなく、結果として酸素燃焼反応率を前記範囲にできればよい。例えば、(i) 脱水素工程(1)から飛散してくるアルカリ性物質が流路内壁に付着することを抑制する方法、(ii)脱水素工程(1)から飛散してくるアルカリ性物質が流路内壁に付着しても、燃焼反応活性点の形成を抑制する方法、(iii) 脱水素工程(1)から飛散してくるアルカリ性物質が流路内壁に付着して燃焼反応活性点を形成した場合でも、炭化水素類の酸化反応を抑制できる方法、等が挙げられる。   In the present invention, the method for setting the oxyfuel reaction rate within the above range is not particularly limited, and it is only necessary that the oxyfuel reaction rate be within the above range as a result. For example, (i) a method of suppressing the alkaline substance scattered from the dehydrogenation step (1) from adhering to the inner wall of the flow path, (ii) the alkaline substance scattered from the dehydrogenation process (1) A method to suppress the formation of combustion reaction active sites even if it adheres to the inner wall, (iii) When the alkaline substance scattered from the dehydrogenation step (1) adheres to the inner wall of the flow path and forms the combustion reaction active sites However, the method etc. which can suppress the oxidation reaction of hydrocarbons are mentioned.

上記の(i) の方法としては、具体的には、脱水素工程(1)出口から次の酸化工程(2)入口までの間で温度低下が起きないようにし、アルカリ性物質の蒸気圧が低下しないようにすることが挙げられる。そのためには、脱水素工程(1)出口から酸化工程(2)入口までの間、特に、酸素含有ガスを混合させた箇所から酸化工程(2)入口までの脱水素反応ガスの温度を、脱水素工程(1)出口の温度と同温度以上に保つ方法が好ましい。また、このような操作を行っても流路内壁に既にアルカリ性物質が付着している場合は、所望の効果が発揮されないので、例えば触媒の交換時等に流路内壁のアルカリ性物質を除去しておく等の処置をすることが望ましい。   Specifically, as the method (i), the vapor pressure of the alkaline substance is reduced by preventing a temperature drop from the dehydrogenation step (1) outlet to the next oxidation step (2) inlet. Not to do so. For this purpose, the temperature of the dehydrogenation reaction gas from the dehydrogenation step (1) outlet to the oxidation step (2) inlet, in particular, from the location where the oxygen-containing gas is mixed to the oxidation step (2) inlet is dehydrated. Elementary step (1) A method of keeping the same temperature or higher as the outlet temperature is preferred. Also, even if such an operation is performed, if an alkaline substance is already attached to the inner wall of the flow path, the desired effect will not be exerted. For example, the alkaline substance on the inner wall of the flow path is removed when the catalyst is replaced. It is desirable to take measures such as leaving them.

但し、脱水素工程(1)出口から酸化工程(2)入口までの温度を、脱水素工程(1)出口の温度よりも高めた場合、酸化工程(2)での温度上昇幅が小さくなり(酸化工程で必要となる酸素の供給量が少なくなり)、水素燃焼率が減少する。このため、後段の脱水素工程(3)において、エチルベンゼンの脱水素反応に対する平衡阻害が大きくなり、エチルベンゼンの脱水素反応の転化率が低下する。これを避けるために酸素の混合量を減少させないと、酸化工程(2)出口、すなわち後段の脱水素工程(3)入口の温度が高くなり、一時的に脱水素工程(3)でのエチルベンゼンの脱水素反応の転化率が高くなるが、その脱水素触媒由来のアルカリ性物質の飛散が促進される。すなわち、活性低下速度が速くなるため、長期間に亘って、高い収率でスチレンを製造することが困難となる。従って、脱水素工程(1)出口から酸化工程(2)入口までの間、特に、酸素含有ガスを混合させた箇所から酸化工程(2)入口までの脱水素反応ガスの温度を脱水素工程(1)出口の温度と同温度以上とする場合、その高める温度幅は、通常20℃以下、好ましくは10℃以下、更に好ましくは5℃以下とする。   However, when the temperature from the dehydrogenation step (1) outlet to the oxidation step (2) inlet is higher than the temperature of the dehydrogenation step (1) outlet, the temperature increase width in the oxidation step (2) becomes small ( The amount of oxygen required in the oxidation process is reduced), and the hydrogen combustion rate is reduced. For this reason, in the subsequent dehydrogenation step (3), the equilibrium inhibition for the dehydrogenation reaction of ethylbenzene increases, and the conversion rate of the dehydrogenation reaction of ethylbenzene decreases. If the oxygen mixing amount is not reduced to avoid this, the temperature of the oxidation step (2) outlet, that is, the subsequent dehydrogenation step (3) inlet temperature rises, and the ethylbenzene in the dehydrogenation step (3) is temporarily removed. Although the conversion rate of the dehydrogenation reaction is increased, scattering of the alkaline substance derived from the dehydrogenation catalyst is promoted. That is, since the rate of decrease in activity increases, it becomes difficult to produce styrene with a high yield over a long period of time. Accordingly, the temperature of the dehydrogenation reaction gas from the dehydrogenation step (1) outlet to the oxidation step (2) inlet, in particular, from the location where the oxygen-containing gas is mixed to the oxidation step (2) inlet is determined. 1) When the temperature is equal to or higher than the outlet temperature, the temperature range to be increased is usually 20 ° C. or lower, preferably 10 ° C. or lower, more preferably 5 ° C. or lower.

脱水素工程(1)出口から酸化工程(2)入口までの間、特に、酸素含有ガスを混合させた箇所から酸化工程(2)入口までの脱水素反応ガスの温度を、脱水素工程(1)出口の温度と同温度以上に保つには、以下のような方法が挙げられる。すなわち、脱水素反応ガスに、酸素含有ガスを混合させる前に脱水素反応ガスよりも高温の流体を混合するとか、或いは酸素含有ガスを混合させる箇所の前に熱交換器を設置して高温の流体と熱交換させるとか、又は、酸素含有ガスに水蒸気等の不活性ガスを予め混合させ、その不活性ガスの温度を脱水素工程(1)の出口温度の変化に合わせて調整すること等である。   The temperature of the dehydrogenation reaction gas from the dehydrogenation step (1) outlet to the oxidation step (2) inlet, in particular, from the location where the oxygen-containing gas is mixed to the oxidation step (2) inlet is determined by the dehydrogenation step (1 ) In order to keep the temperature equal to or higher than the outlet temperature, the following method can be used. That is, before mixing the oxygen-containing gas with the dehydrogenation reaction gas, a fluid having a temperature higher than that of the dehydrogenation reaction gas is mixed, or a heat exchanger is installed in front of the location where the oxygen-containing gas is mixed. By exchanging heat with the fluid or by previously mixing an inert gas such as water vapor with the oxygen-containing gas and adjusting the temperature of the inert gas in accordance with the change in the outlet temperature of the dehydrogenation step (1), etc. is there.

上記(ii)の例としては、以下の方法が挙げられる。まず、流路内壁へのアルカリ性物質の付着による炭化水素類の燃焼量の増加は、脱水素工程(1)から飛散したアルカリ性物質が流路内壁に付着し、その流路内壁が金属の場合は内壁の金属が腐食し、流路内壁の金属表面積の増加に起因する。すなわち、燃焼反応の活性点を形成する物質、例えばニッケル等の物質と、プロセス流体との接触量が増加することによって起こると推定される。そこで、燃焼反応活性点の形成を抑制するには、流路内壁を構成する材質としてアルカリ性物質による腐食が起きにくい材質を用いる。又は、流路内壁表面に腐食が起きにくい材質をコーティングする、メッキ或いは溶射する等により、腐食が起きにくい材質の層を形成する方法等が挙げられる。アルカリ性物質による腐食が起きにくい材質としては、例えばセラミックなどの無機材料、耐熱性樹脂等の有機材料、及びニッケル等の含有量が少ない金属が挙げられる。入手の容易さ及び装置製造の容易さの点で、ニッケル等の含有量が少ない金属を用いるのが好ましい。ここで用いられる金属中のニッケル含有量は8%未満であるのが好ましく、5%以下であるのが更に好ましく、3%以下であるのがより好ましく、1%以下であるのが特に好ましい。このような金属を流路内壁の材質として使用する場合、流路内壁表面をバフ掛け、電解研磨等で処理することにより流路内壁の金属表面を滑らかにして表面積を小さくし、アルカリ性物質の付着を防止し、腐食を抑えることも効果的である。ここでいう「流路内壁」とは、配管の内壁表面のみならず、脱水素反応ガスと酸素含有ガスを混合するためのミキサーの表面や、酸化工程(2)の触媒層入り口のスクリーンの表面等、流体が接触する部分を全て包含する。   Examples of the above (ii) include the following methods. First, the increase in the combustion amount of hydrocarbons due to the attachment of alkaline substances to the inner wall of the flow path is due to the fact that the alkaline substances scattered from the dehydrogenation step (1) adhere to the inner wall of the flow path and the flow path inner wall is made of metal. This is due to the corrosion of the metal on the inner wall and an increase in the metal surface area of the inner wall of the flow path. That is, it is presumed that this occurs when the amount of contact between the process fluid and a substance that forms the active point of the combustion reaction, such as nickel, is increased. Therefore, in order to suppress the formation of combustion reaction active sites, a material that does not easily corrode by an alkaline substance is used as a material constituting the inner wall of the flow path. Alternatively, a method of forming a layer of a material that does not easily corrode by coating a material that does not easily corrode on the inner wall surface of the flow path, plating, or spraying may be used. Examples of the material that is hardly corroded by an alkaline substance include inorganic materials such as ceramics, organic materials such as heat-resistant resins, and metals having a low content such as nickel. It is preferable to use a metal with a small content such as nickel in view of easy availability and device manufacturing. The nickel content in the metal used here is preferably less than 8%, more preferably 5% or less, more preferably 3% or less, and particularly preferably 1% or less. When such a metal is used as the material for the inner wall of the flow path, the surface of the inner wall of the flow path is buffed and treated by electrolytic polishing to smooth the metal surface of the inner wall of the flow path to reduce the surface area and to adhere alkaline substances. It is also effective to prevent corrosion and suppress corrosion. The “channel inner wall” here means not only the inner wall surface of the pipe, but also the surface of the mixer for mixing the dehydrogenation reaction gas and the oxygen-containing gas, and the surface of the screen at the catalyst layer entrance in the oxidation step (2). Etc., including all the parts in contact with the fluid.

さらに、上記(iii) の例としては、以下の方法が挙げられる。すなわち、アルカリ性物質が付着した流路内壁での炭化水素類の燃焼反応は、通常の酸化反応と同様、温度が高い方が促進されることから、具体的には、脱水素工程(1)出口から酸化工程(2)入口までの間、特に、酸素含有ガスを脱水素反応ガスに混合させた箇所から酸化工程(2)入口までの脱水素反応ガスの温度を下げる方法が挙げられる。   Further, as an example of the above (iii), the following method may be mentioned. That is, the combustion reaction of hydrocarbons on the inner wall of the flow channel to which the alkaline substance is adhered is promoted at a higher temperature as in the normal oxidation reaction. Specifically, the dehydrogenation step (1) outlet In particular, there is a method of lowering the temperature of the dehydrogenation reaction gas from the location where the oxygen-containing gas is mixed with the dehydrogenation reaction gas to the oxidation step (2) inlet, from the time point to the oxidation step (2) inlet.

但し、脱水素工程(1)出口から酸化工程(2)入口までの温度を、脱水素工程(1)の出口の温度よりも大きく低下させた場合、酸化工程(2)での温度上昇幅が大きくなることから、酸素の混合量を多くする必要がある。すなわち、酸化工程(2)での炭化水素類の燃焼反応量も増加して、二酸化炭素の生成量が増加することとなる。その結果、後段の脱水素工程(3)において、エチルベンゼンの脱水素反応の転化率が低下する。これを避けるために酸素の混合量を増加させないと、酸化工程(2)出口、すなわち、後段の脱水素工程(3)入口の温度が低くなる。その結果、脱水素工程(3)でのエチルベンゼンの脱水素反応の転化率が低くなって、長期間に亘って、高い収率でスチレンを製造することが困難となる。従って、脱水素工程(1)出口から酸化工程(2)入口までの間、特に、酸素含有ガスを脱水素反応ガスに混合させた箇所から酸化工程(2)入口までの脱水素反応ガスの温度は、好ましくは560℃以下、更に好ましくは550℃以下、但し、好ましくは500℃以上である。且つ、酸化工程(2)での温度上昇幅が好ましくは10〜100℃、更に好ましくは25〜95℃となるように保つのが好ましい。   However, when the temperature from the dehydrogenation step (1) outlet to the oxidation step (2) inlet is lowered more than the temperature at the dehydrogenation step (1) outlet, the temperature rise in the oxidation step (2) Since it becomes large, it is necessary to increase the mixing amount of oxygen. That is, the combustion reaction amount of hydrocarbons in the oxidation step (2) is also increased, and the amount of carbon dioxide produced is increased. As a result, in the subsequent dehydrogenation step (3), the conversion rate of the dehydrogenation reaction of ethylbenzene decreases. If the oxygen mixing amount is not increased to avoid this, the temperature of the oxidation step (2) outlet, that is, the downstream dehydrogenation step (3) inlet temperature is lowered. As a result, the conversion rate of the dehydrogenation reaction of ethylbenzene in the dehydrogenation step (3) becomes low, and it becomes difficult to produce styrene with a high yield over a long period of time. Accordingly, the temperature of the dehydrogenation reaction gas from the dehydrogenation step (1) outlet to the oxidation step (2) inlet, in particular, from the location where the oxygen-containing gas is mixed with the dehydrogenation reaction gas to the oxidation step (2) inlet. Is preferably 560 ° C. or lower, more preferably 550 ° C. or lower, but preferably 500 ° C. or higher. And it is preferable to keep the temperature increase width in the oxidation step (2) preferably 10 to 100 ° C., more preferably 25 to 95 ° C.

脱水素工程(1)出口から酸化工程(2)入口までの間、特に、酸素含有ガスを混合させた箇所から酸化工程(2)入口までの脱水素反応ガスの温度を、前記範囲に保つ方法がある。すなわち、脱水素反応ガスに、酸素含有ガスを混合させる前に脱水素反応ガスよりも低温の流体を混合するとか、或いは酸素含有ガスを混合させる箇所の前に熱交換器を設置して低温の流体と熱交換させるとか、または、酸素含有ガスに水蒸気等の不活性ガスを予め混合させ、その不活性ガスの温度を脱水素工程(1)の出口温度の変化に合わせて調整すること等の方法が挙げられる。   A method of maintaining the temperature of the dehydrogenation reaction gas from the dehydrogenation step (1) outlet to the oxidation step (2) inlet, in particular, from the location where the oxygen-containing gas is mixed to the oxidation step (2) inlet in the above range. There is. That is, before mixing the oxygen-containing gas with the dehydrogenation reaction gas, a fluid having a temperature lower than that of the dehydrogenation reaction gas is mixed, or a heat exchanger is installed in front of the portion where the oxygen-containing gas is mixed, The heat exchange with the fluid, or the inert gas such as water vapor is mixed with the oxygen-containing gas in advance, and the temperature of the inert gas is adjusted in accordance with the change in the outlet temperature of the dehydrogenation step (1), etc. A method is mentioned.

なお、本発明において、酸素燃焼反応率を前記範囲に維持するその他の方法としては、酸素含有ガスを脱水素反応ガスに混合させる箇所から酸化工程(2)の入口までの流路表面積を小さくし、燃焼反応活性点と脱水素反応ガスとの接触時間をできるだけ短くする方法等も挙げられる。   In the present invention, as another method for maintaining the oxyfuel combustion reaction rate within the above range, the surface area of the flow path from the portion where the oxygen-containing gas is mixed with the dehydrogenation reaction gas to the inlet of the oxidation step (2) is reduced. A method of shortening the contact time between the combustion reaction active site and the dehydrogenation reaction gas as much as possible is also mentioned.

以下、実施例を用いて本発明を更に詳細に説明するが、本発明はその要旨を越えない限り、以下の実施例によって限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated further in detail using an Example, this invention is not limited by a following example, unless the summary is exceeded.

実施例1
内径81.1mmの反応管の内部に外径12mmの熱電対挿入管を装着した固定床流通式の反応器5段を配管で直列に繋げた装置を用いた。1段目、3段目、及び5段目反応器には、市販されているスチレン製造用脱水素触媒としての酸化鉄系触媒(ズードケミー触媒社製、「Styromax Plus-5 」)を充填し、2段目と4段目反応器には、特開平9−29095号公報の実施例8に準拠して製造した酸化触媒を充填した。脱水素触媒の充填量は、1段目:4.8L、3段目:4.8L、5段目:9.6Lであり、酸化触媒の充填量は、2段目:1.3L、4段目:1.3Lとした。また、1段目反応器と2段目反応器の間に、1段目脱水素反応器からの脱水素反応ガスに空気と水蒸気を含むガスを混合させるための供給管を設置した。同様に、3段目反応器と4段目反応器の間に、3段目反応器からの脱水素反応ガスに空気と水蒸気を含むガスを混合させるための供給管を設置した。
Example 1
An apparatus was used in which five stages of a fixed bed flow reactor equipped with a thermocouple insertion tube with an outer diameter of 12 mm were connected in series with a pipe inside a reaction tube with an inner diameter of 81.1 mm. The first, third, and fifth stage reactors are filled with a commercially available iron oxide catalyst (“Styromax Plus-5”, manufactured by Zude Chemie Catalysts) as a dehydrogenation catalyst for styrene production. The second and fourth stage reactors were filled with an oxidation catalyst produced in accordance with Example 8 of JP-A-9-29095. The filling amount of the dehydrogenation catalyst is the first stage: 4.8L, the third stage: 4.8L, the fifth stage: 9.6L, and the filling amount of the oxidation catalyst is the second stage: 1.3L, 4 Stage: 1.3 L. Further, a supply pipe for mixing a gas containing air and water vapor into the dehydrogenation reaction gas from the first stage dehydrogenation reactor was installed between the first stage reactor and the second stage reactor. Similarly, a supply pipe for mixing a gas containing air and water vapor into the dehydrogenation reaction gas from the third stage reactor was installed between the third stage reactor and the fourth stage reactor.

各反応管をそれぞれ別々の電気炉内に設置し、窒素ガスを1段目反応器の入口から100NL/min、1段目と2段目反応器の間、及び3段目と4段目反応器の間に設置した空気と水蒸気を含むガスの供給管からは各10NL/minずつ供給させながら加熱した。1、3、5段目脱水素触媒層出口の温度が全て300℃以上に達した時点で、窒素ガスを水蒸気に切り替えた。水蒸気は、1段目反応器入口からは5.7kg/hr、1段目と2段目反応器の間、及び3段目と4段目反応器の間に設置した空気と水蒸気を含むガスを混合させる供給管からは各0.8kg/hrずつ供給した。   Each reaction tube is installed in a separate electric furnace, and nitrogen gas is supplied at 100 NL / min from the first stage reactor inlet, between the first and second stage reactors, and the third and fourth stage reactions. Heating was performed while supplying air at a rate of 10 NL / min from a gas supply pipe containing air and water vapor installed between the vessels. When the temperatures at the outlets of the first, third and fifth stage dehydrogenation catalyst layers all reached 300 ° C. or higher, the nitrogen gas was switched to water vapor. The steam is 5.7 kg / hr from the first stage reactor inlet, and is a gas containing air and steam installed between the first and second stage reactors and between the third and fourth stage reactors. 0.8 kg / hr of each was supplied from the supply pipe for mixing the.

1段目脱水素触媒層入口の温度が580℃に達した時点で、1段目反応器入口からの供給ガスを水蒸気とエチルベンゼンの混合ガスに切り替えた。供給ガスの組成は、水蒸気:エチルベンゼン=10:1(モル比)とした。次いで、1段目反応器の脱水素反応ガスに混合させている水蒸気に空気を混合させた。同様に、3段目反応器の脱水素反応ガスに混合させている水蒸気に空気を混合させた。1段目反応器に供給するエチルベンゼンの流量は、各触媒層の空間速度(LHSV:Liquid Hourly Space Velocity)が1段目:1.2hr−1、2段目:4.4hr−1、3段目:1.2hr−1、4段目:4.4hr−1、5段目:0.6hr−1となるように設定した。1段目脱水素反応器の入口温度は580℃になるようにエチルベンゼンに混合させる水蒸気の温度を調整し、3段目と5段目脱水素反応器の入口温度は580℃になるように1段目と3段目反応器の脱水素反応ガスの脱水素反応ガスに混合させる空気の流量を調整して反応を行った。また、反応圧力は、5段目反応器の出口が0.045MPaとなるように設定した。 When the temperature at the inlet of the first stage dehydrogenation catalyst layer reached 580 ° C., the supply gas from the inlet of the first stage reactor was switched to a mixed gas of water vapor and ethylbenzene. The composition of the supply gas was water vapor: ethylbenzene = 10: 1 (molar ratio). Next, air was mixed with water vapor mixed with the dehydrogenation reaction gas of the first stage reactor. Similarly, air was mixed with water vapor mixed with the dehydrogenation reaction gas of the third stage reactor. The flow rate of ethylbenzene supplied to the first-stage reactor is such that the space velocity (LHSV) of each catalyst layer is 1st stage: 1.2 hr −1 , 2nd stage: 4.4 hr −1 , 3rd stage Eye: 1.2 hr −1 , 4th stage: 4.4 hr −1 , 5th stage: 0.6 hr −1 . The temperature of the water vapor mixed with ethylbenzene is adjusted so that the inlet temperature of the first stage dehydrogenation reactor is 580 ° C., and the inlet temperature of the third stage and fifth stage dehydrogenation reactors is 580 ° C. The reaction was carried out by adjusting the flow rate of air to be mixed with the dehydrogenation reaction gas of the dehydrogenation reaction gas in the stage and third stage reactors. The reaction pressure was set so that the outlet of the fifth-stage reactor was 0.045 MPa.

エチルベンゼンを供給して70時間経過した時点で、1段目反応器入口からの供給ガスの組成を水蒸気:エチルベンゼン=7:1(モル比)に変更した。1段目脱水素反応器の入口温度は592℃になるようにエチルベンゼンに混合させる水蒸気の温度を調整した。3段目脱水素反応器の入口温度は613℃になるように1段目反応器からの脱水素反応ガスに混合させる空気の流量を調整した。また、1段目脱水素反応器からの脱水素反応ガスの温度に対して、空気と水蒸気の混合ガスを混合させた後のガス温度の方が5℃高くなるように混合させる水蒸気の温度を調整した。同様に、5段目脱水素反応器の入口温度は631℃となるように3段目反応器からの脱水素反応ガスに混合させる空気の流量を調整した。また、3段目脱水素反応器出口の脱水素反応ガスの温度に対して、空気と水蒸気の混合ガスを混合させた後のガス温度の方が5℃高くなるように混合させる水蒸気の温度を調整した。尚、脱水素反応器の入口温度は触媒層入口の20mm上流側で測定し、空気と水蒸気の混合ガスを混合させた後の温度は酸化反応器の酸化触媒層入口の20mm上流側で測定した。   When 70 hours passed after supplying ethylbenzene, the composition of the supply gas from the inlet of the first-stage reactor was changed to water vapor: ethylbenzene = 7: 1 (molar ratio). The temperature of water vapor mixed with ethylbenzene was adjusted so that the inlet temperature of the first stage dehydrogenation reactor was 592 ° C. The flow rate of air mixed with the dehydrogenation reaction gas from the first stage reactor was adjusted so that the inlet temperature of the third stage dehydrogenation reactor was 613 ° C. In addition, the temperature of the steam to be mixed so that the gas temperature after mixing the mixed gas of air and steam is 5 ° C. higher than the temperature of the dehydrogenation reaction gas from the first stage dehydrogenation reactor. It was adjusted. Similarly, the flow rate of air mixed with the dehydrogenation reaction gas from the third stage reactor was adjusted so that the inlet temperature of the fifth stage dehydrogenation reactor was 631 ° C. Further, the temperature of the steam to be mixed is set so that the gas temperature after mixing the mixed gas of air and steam is 5 ° C. higher than the temperature of the dehydrogenation reaction gas at the outlet of the third stage dehydrogenation reactor. It was adjusted. The inlet temperature of the dehydrogenation reactor was measured 20 mm upstream of the catalyst layer inlet, and the temperature after mixing the mixed gas of air and water vapor was measured 20 mm upstream of the oxidation catalyst layer inlet of the oxidation reactor. .

反応を開始してから表1に記載の経過した時間毎に、各反応器出口ガスと1段目脱水素反応器に供給するエチルベンゼンをサンプリングして、その組成をガスクロマトグラフィーにより分析した。使用したガスクロマトグラフィーの機種とカラムは次の通りである。
機種:GC−14B
カラム:(1)水素分析用はMS−5A
(2)ベンゼン、トルエン、エチルベンゼン、スチレン分析用はクロモソルブ−W
(3)二酸化炭素、エタン、エチレン、水分析用はポラパック−Q
(4)酸素、窒素、メタン、一酸化炭素分析用はMS−13X
1段目反応器入口へのエチルベンゼンの供給を開始後、13,000時間反応させた結果を表1に示す。
At each elapsed time shown in Table 1 after the start of the reaction, each reactor outlet gas and ethylbenzene supplied to the first stage dehydrogenation reactor were sampled, and the composition was analyzed by gas chromatography. The types and columns of gas chromatography used are as follows.
Model: GC-14B
Column: (1) MS-5A for hydrogen analysis
(2) For analysis of benzene, toluene, ethylbenzene and styrene, chromosolve-W
(3) For carbon dioxide, ethane, ethylene and water analysis, Polapack-Q
(4) For analysis of oxygen, nitrogen, methane, carbon monoxide, MS-13X
Table 1 shows the results of reaction for 13,000 hours after the start of the supply of ethylbenzene to the first stage reactor inlet.

比較例1
1段目脱水素反応器からの脱水素反応ガスの温度に対して、空気と水蒸気の混合ガスを混合させた後のガス温度の方が5℃低くなるように混合させる水蒸気の温度を調整した。同様に3段目脱水素反応器からの脱水素反応ガスの温度に対して、空気と水蒸気の混合ガスを混合させた後のガス温度の方が10℃低くなるように混合させる水蒸気の温度を調整(実際は8〜11℃低くなった)した。それ以外は、実施例1と同様の方法で反応を実施した。1段目反応器入口へのエチルベンゼンの供給を開始後、13,000時間反応させた結果を表1に示す。
Comparative Example 1
The temperature of the steam to be mixed was adjusted so that the gas temperature after mixing the mixed gas of air and steam was 5 ° C. lower than the temperature of the dehydrogenation reaction gas from the first stage dehydrogenation reactor. . Similarly, the temperature of the steam to be mixed so that the gas temperature after mixing the mixed gas of air and steam is 10 ° C. lower than the temperature of the dehydrogenation reaction gas from the third stage dehydrogenation reactor. Adjustment (actually 8-11 ° C lower). Otherwise, the reaction was carried out in the same manner as in Example 1. Table 1 shows the results of reaction for 13,000 hours after the start of the supply of ethylbenzene to the first stage reactor inlet.

実施例2
1段目脱水素反応器からの脱水素反応ガスの温度に対して、空気と水蒸気の混合ガスを混合させた後のガス温度の方が5℃低くなるように混合させる水蒸気の温度を調整した。また、空気と水蒸気の混合ガスを混合させた後のガス温度が560℃を越えた時点(反応開始後10,000時間経過)以降は、この部分の温度が545℃になるように混合させる水蒸気の温度を調整した。同じように、3段目脱水素反応器から脱水素反応ガスの温度に対して、空気と水蒸気の混合ガスを混合させた後のガス温度の方が10℃低くなるように混合させる水蒸気の温度を調整(実際は8℃低くなった)し、空気と水蒸気の混合ガスを混合させた後のガス温度が560℃を越えた時点(反応開始後3,500時間経過)以降は、この部分の温度が545℃になるように混合させる水蒸気の温度を調整した。それ以外は、実施例1と同様の方法で反応を実施した。1段目反応器入口へのエチルベンゼンの供給を開始後、13,000時間反応させた結果を表1に示す。
Example 2
The temperature of the steam to be mixed was adjusted so that the gas temperature after mixing the mixed gas of air and steam was 5 ° C. lower than the temperature of the dehydrogenation reaction gas from the first stage dehydrogenation reactor. . Further, after the time when the gas temperature after mixing the mixed gas of air and water vapor exceeds 560 ° C. (10,000 hours after the start of the reaction), the water vapor to be mixed so that the temperature of this portion becomes 545 ° C. The temperature of was adjusted. Similarly, the temperature of water vapor mixed from the third-stage dehydrogenation reactor so that the gas temperature after mixing the mixed gas of air and water vapor is 10 ° C. lower than the temperature of the dehydrogenation reaction gas. After adjusting the temperature (actually 8 ° C lower) and mixing the mixed gas of air and water vapor, the temperature of this part after the time when the gas temperature exceeded 560 ° C (3,500 hours elapsed after the start of the reaction) The temperature of water vapor to be mixed was adjusted so as to be 545 ° C. Otherwise, the reaction was carried out in the same manner as in Example 1. Table 1 shows the results of reaction for 13,000 hours after the start of the supply of ethylbenzene to the first stage reactor inlet.

Figure 2007016027
Figure 2007016027

なお、表1中の各項目は次の値を示す。
「反応時間」:1段目反応器へのエチルベンゼンの供給を開始してからの時間。
「酸化反応器入口温度(2段目反応器)」:1段目脱水素反応器出口の反応ガスに空気と水蒸気の混合ガスを混合させる箇所から2段目酸化反応器入口までの温度。
「酸化反応器入口温度(4段目反応器)」:3段目脱水素反応器出口の反応ガスに空気と水蒸気の混合ガスを混合させる箇所から4段目酸化反応器入口までの温度。
「空気混合部での酸素燃焼反応率(2段目反応器)」:1段目脱水素反応器出口の反応ガスに空気と水蒸気の混合ガスを混合させる箇所から2段目酸化反応器入口までの金属配管表面及び空間部での酸素燃焼反応率である。次の式により算出した。
空気混合部での酸素燃焼反応率(2段目反応器)=〔(A1−B2)/A1〕×100(%)
A1:1段目脱水素反応器からの脱水素反応ガスに混合させる酸素の量(モル)
B2:2段目酸化反応器入口での酸素の量(モル)
「空気混合部での酸素燃焼反応率(4段目反応器)」:3段目脱水素反応器出口の反応ガスに空気と水蒸気の混合ガスを混合させる箇所から4段目酸化反応器入口までの金属表面及び空間部での酸素燃焼反応率である。次の式により算出した。
空気混合部での酸素燃焼反応率(4段目反応器)=〔(A3−B4)/A3〕×100(%)
A3:3段目脱水素反応器からの脱水素反応ガスに混合させる酸素の量(モル)
B4:4段目酸化反応器入口での酸素の量(モル)
「スチレン収率」:1段目脱水素反応器から5段目脱水素反応器までのトータルでのスチレン収率であり、次の式により算出した。
スチレン収率=〔(Z−Y)/X〕×100(wt%)
X:1段目脱水素反応器に流入したエチルベンゼンの量(kg)
Y:1段目脱水素反応器に流入したスチレンの量(kg)
Z:5段目脱水素反応器から流出したスチレンの量(kg)
In addition, each item in Table 1 shows the following value.
“Reaction time”: Time from the start of the supply of ethylbenzene to the first-stage reactor.
“Oxidation reactor inlet temperature (second stage reactor)”: temperature from the point where the mixed gas of air and water vapor is mixed with the reaction gas at the first stage dehydrogenation reactor outlet to the second stage oxidation reactor inlet.
“Oxidation reactor inlet temperature (fourth stage reactor)”: temperature from the point where the mixed gas of air and water vapor is mixed with the reaction gas at the third stage dehydrogenation reactor outlet to the fourth stage oxidation reactor inlet.
“Oxygen combustion reaction rate in the air mixing section (second stage reactor)”: From the location where the mixed gas of air and water vapor is mixed with the reaction gas at the outlet of the first stage dehydrogenation reactor to the inlet of the second stage oxidation reactor It is the oxyfuel combustion reaction rate in the metal piping surface and space part. The following formula was used for calculation.
Oxygen combustion reaction rate in the air mixing section (second stage reactor) = [(A1-B2) / A1] × 100 (%)
A1: The amount (mole) of oxygen mixed with the dehydrogenation reaction gas from the first stage dehydrogenation reactor
B2: Amount of oxygen (mole) at the inlet of the second stage oxidation reactor
“Oxygen combustion reaction rate in the air mixing section (fourth stage reactor)”: From the location where the mixed gas of air and water vapor is mixed with the reaction gas at the outlet of the third stage dehydrogenation reactor to the inlet of the fourth stage oxidation reactor It is the oxyfuel combustion reaction rate in the metal surface and space part. The following formula was used for calculation.
Oxygen combustion reaction rate in the air mixing section (fourth stage reactor) = [(A3-B4) / A3] × 100 (%)
A3: Amount of oxygen (mole) to be mixed with the dehydrogenation reaction gas from the third stage dehydrogenation reactor
B4: Amount of oxygen (mole) at the inlet of the fourth stage oxidation reactor
“Styrene yield”: The total styrene yield from the first stage dehydrogenation reactor to the fifth stage dehydrogenation reactor, and was calculated by the following equation.
Styrene yield = [(Z−Y) / X] × 100 (wt%)
X: Amount of ethylbenzene (kg) flowing into the first stage dehydrogenation reactor
Y: Amount of styrene flowing into the first stage dehydrogenation reactor (kg)
Z: Amount of styrene flowing out of the fifth stage dehydrogenation reactor (kg)

実施例3
外径2mm、長さ10mmのSUS410S(ニッケル含有量の規格値:0.6%以下)の針金をシャーレの上に置き、5wt%の水酸化カリウム水溶液をスポイトで5滴かけた後、乾燥機の中に入れ、120℃で1時間乾燥させた。その後、針金を乾燥機から取り出し、電気炉に入れて空気雰囲気の640℃で24時間焼成させた後、電気炉から取り出して、室温まで冷却させた。
Example 3
A wire of SUS410S (standard value of nickel content: 0.6% or less) having an outer diameter of 2 mm and a length of 10 mm is placed on a petri dish, and 5 drops of 5 wt% potassium hydroxide aqueous solution is applied with a dropper, followed by a dryer. And dried at 120 ° C. for 1 hour. Thereafter, the wire was taken out from the dryer, put in an electric furnace and baked at 640 ° C. in an air atmosphere for 24 hours, and then taken out from the electric furnace and cooled to room temperature.

内径16mm、長さ500mmの石英製の反応管の下側に粒径2.4〜6mmの石英チップを67.1g充填し、その上に焼成処理した針金を充填、更にその上に粒径1〜2.4mmの石英チップを50.6g充填した。反応管を電気炉内に設置し、窒素と水素の混合ガスを0.09NL/min供給しながら加熱した。混合ガスの組成は、窒素:水素=2.0:1.0(モル比)であった。反応管の壁面温度が520℃まで達した時点で、管壁温度を520℃に保ち、そのままの条件で30分間保持した。その後、供給ガスをエチルベンゼン、スチレン、水蒸気、水素、酸素及び窒素の混合ガスに切り替え、1.0NL/minで供給した。供給ガスの組成はエチルベンゼン:スチレン:水蒸気:水素:酸素:窒素=1.0:0.87:17.6:0.65:0.17:1.3(モル比)であった。30分経過した時点で反応管出口ガスをサンプリングして、その組成をガスクロマトグラフィーにより分析した。   The bottom of a quartz reaction tube having an inner diameter of 16 mm and a length of 500 mm is filled with 67.1 g of a quartz chip having a particle size of 2.4 to 6 mm, filled with a fired wire, and further a particle size of 1 Filled with 50.6 g of a ~ 2.4 mm quartz chip. The reaction tube was installed in an electric furnace and heated while supplying a mixed gas of nitrogen and hydrogen at 0.09 NL / min. The composition of the mixed gas was nitrogen: hydrogen = 2.0: 1.0 (molar ratio). When the wall temperature of the reaction tube reached 520 ° C., the tube wall temperature was maintained at 520 ° C. and maintained for 30 minutes under the same conditions. Thereafter, the supply gas was switched to a mixed gas of ethylbenzene, styrene, water vapor, hydrogen, oxygen and nitrogen and supplied at 1.0 NL / min. The composition of the supply gas was ethylbenzene: styrene: water vapor: hydrogen: oxygen: nitrogen = 1.0: 0.87: 17.6: 0.65: 0.17: 1.3 (molar ratio). When 30 minutes had elapsed, the reaction tube outlet gas was sampled, and its composition was analyzed by gas chromatography.

その後、反応管の壁面温度だけを550℃に変更して、30分経過した後に反応管出口ガスをサンプリングして、その組成をガスクロマトグラフィーにより分析した。
続いて、反応管の壁面温度を580、610℃に変更し、各壁面温度において30分経過した後に同様の方法で反応管出口ガスをサンプリングし、その組成を分析した。結果を表2に示す。
また、次式により、各温度での水素燃焼以外の酸素選択率を計算した。その結果を表2に示す。なお、水素燃焼以外の酸素選択率とは、燃焼に使われた酸素の内で供給ガス中のエチルベンゼン、スチレンを燃焼させた酸素の割合を示す。
Then, only the wall surface temperature of the reaction tube was changed to 550 ° C., 30 minutes later, the reaction tube outlet gas was sampled, and the composition was analyzed by gas chromatography.
Subsequently, the wall temperature of the reaction tube was changed to 580 and 610 ° C., and after 30 minutes had passed at each wall surface temperature, the reaction tube outlet gas was sampled by the same method and the composition was analyzed. The results are shown in Table 2.
Moreover, oxygen selectivity other than hydrogen combustion at each temperature was calculated by the following equation. The results are shown in Table 2. The oxygen selectivity other than hydrogen combustion indicates the proportion of oxygen burned by ethylbenzene and styrene in the supply gas among the oxygen used for combustion.

水素燃焼以外の酸素選択率
=[1−(C−D)×0.5/(A−B)]×100 (%)
A:反応管に供給した酸素量(モル)
B:反応管出口での酸素量(モル)
C:反応管に供給した水素量(モル)
D:反応管出口での水素量(モル)
Oxygen selectivity other than hydrogen combustion = [1- (C−D) × 0.5 / (A−B)] × 100 (%)
A: Amount of oxygen (mol) supplied to the reaction tube
B: Oxygen amount (mole) at the reaction tube outlet
C: Hydrogen amount (mol) supplied to the reaction tube
D: Hydrogen amount (mole) at the outlet of the reaction tube

比較例2
SUS410Sの代わりにSUS304(ニッケル含有量の規格値:8.0〜10.5%)の針金を使用した以外は実施例3と同様の方法で反応を行ない、水素燃焼以外の酸素選択率を計算した。結果を表2に示す。
Comparative Example 2
The reaction is performed in the same manner as in Example 3 except that SUS304 (standard value of nickel content: 8.0 to 10.5%) is used instead of SUS410S, and oxygen selectivity other than hydrogen combustion is calculated. did. The results are shown in Table 2.

Figure 2007016027
Figure 2007016027

Claims (9)

下記の工程(1)乃至(3)の各工程を含むスチレンの製造方法であって、工程(1)で得られた脱水素反応ガスに酸素含有ガスを混合させた後の該脱水素反応ガスを工程(2)へ供給するに際し、脱水素反応ガスに酸素含有ガスを混合させた箇所から工程(2)の入口までの部分において、酸素燃焼反応率を15%以下とすることを特徴とするスチレンの製造方法。
工程(1):少なくともエチルベンゼンと水蒸気を含む原料ガスを、脱水素触媒の存在下でエチルベンゼンを脱水素反応させて、スチレン、水素、未反応エチルベンゼン、水蒸気、及び脱水素触媒由来のアルカリ性物質を含む脱水素反応ガスを得る脱水素工程
工程(2):脱水素工程で得られた脱水素反応ガスを、酸化触媒の存在下、酸素含有ガスの共存下で水素の少なくとも一部を酸化反応させる酸化工程
工程(3):酸化工程で得られた酸化反応ガスを、脱水素触媒の存在下でエチルベンゼンを脱水素反応させて、スチレン、水素、未反応エチルベンゼン、水蒸気、及び脱水素触媒由来のアルカリ性物質を含む脱水素反応ガスを得る脱水素工程
A method for producing styrene including the following steps (1) to (3), wherein the dehydrogenation reaction gas after mixing an oxygen-containing gas with the dehydrogenation reaction gas obtained in step (1) Is supplied to the step (2), the oxygen combustion reaction rate is set to 15% or less in the portion from the location where the oxygen-containing gas is mixed to the dehydrogenation reaction gas to the inlet of the step (2). A method for producing styrene.
Step (1): A raw material gas containing at least ethylbenzene and water vapor is subjected to a dehydrogenation reaction of ethylbenzene in the presence of a dehydrogenation catalyst to contain styrene, hydrogen, unreacted ethylbenzene, water vapor, and an alkaline substance derived from the dehydrogenation catalyst. Dehydrogenation process step (2) for obtaining a dehydrogenation reaction gas: An oxidation in which at least a part of hydrogen is oxidized in the presence of an oxidation catalyst in the presence of an oxidation catalyst. Process step (3): The oxidation reaction gas obtained in the oxidation step is subjected to a dehydrogenation reaction of ethylbenzene in the presence of a dehydrogenation catalyst, so that styrene, hydrogen, unreacted ethylbenzene, water vapor, and an alkaline substance derived from the dehydrogenation catalyst Dehydrogenation process for obtaining dehydrogenation reaction gas containing
前記工程(1)における原料ガス中の水蒸気の混合割合が、エチルベンゼンを含む原料炭化水素に対してモル比で1〜15の範囲である請求項1に記載のスチレンの製造方法。   The method for producing styrene according to claim 1, wherein a mixing ratio of water vapor in the raw material gas in the step (1) is in a range of 1 to 15 in terms of a molar ratio with respect to the raw material hydrocarbon containing ethylbenzene. 脱水素触媒がカリウム含有鉄系触媒であり、アルカリ性物質がカリウム化合物である請求項1又は2に記載のスチレンの製造方法。   The method for producing styrene according to claim 1 or 2, wherein the dehydrogenation catalyst is a potassium-containing iron-based catalyst and the alkaline substance is a potassium compound. 脱水素反応ガスに酸素含有ガスを混合させた箇所から工程(2)の入口までの部分において、酸素含有ガスを混合させた脱水素反応ガスの温度を、工程(1)の出口温度と同温度以上に保つ請求項1乃至3のいずれかに記載のスチレンの製造方法。   The temperature of the dehydrogenation reaction gas mixed with the oxygen-containing gas is the same as the outlet temperature of step (1) in the portion from the location where the oxygen-containing gas is mixed with the dehydrogenation reaction gas to the inlet of the step (2). The method for producing styrene according to any one of claims 1 to 3, which is maintained as described above. 脱水素反応ガスに酸素含有ガスを混合させた箇所から工程(2)の入口までの部分において、酸素含有ガスを混合させた脱水素反応ガスの温度と工程(1)の出口温度との温度差が20℃以下である請求項4に記載のスチレンの製造方法。   Temperature difference between the temperature of the dehydrogenation reaction gas mixed with the oxygen-containing gas and the exit temperature of step (1) in the portion from the location where the oxygen-containing gas is mixed with the dehydrogenation reaction gas to the inlet of the step (2) The method for producing styrene according to claim 4, wherein is 20 ° C. or lower. 脱水素反応ガスに酸素含有ガスを混合させた箇所から工程(2)の入口までの部分において、酸素含有ガスを混合させた脱水素反応ガスの温度を、560℃以下に保つ請求項1乃至5の何れか1項に記載のスチレンの製造方法。   6. The temperature of the dehydrogenation reaction gas mixed with the oxygen-containing gas is maintained at 560 ° C. or lower in a portion from the location where the oxygen-containing gas is mixed with the dehydrogenation reaction gas to the inlet of the step (2). The method for producing styrene according to any one of the above. 脱水素反応ガスに酸素含有ガスを混合させた箇所から工程(2)の入口までの部分において、酸素含有ガスを混合させた脱水素反応ガスの温度が500〜560℃に保たれてなる請求項1乃至6の何れか1項に記載のスチレンの製造方法。   The temperature of the dehydrogenation reaction gas mixed with the oxygen-containing gas is maintained at 500 to 560 ° C in the portion from the location where the oxygen-containing gas is mixed with the dehydrogenation reaction gas to the inlet of the step (2). The method for producing styrene according to any one of 1 to 6. 酸素含有ガスを脱水素反応ガスに混合させた箇所から工程(2)の入口までの部分における脱水素反応ガスの温度に対し、工程(2)の温度の上昇幅が、10〜100℃である請求項1乃至7の何れか1項に記載のスチレンの製造方法。   With respect to the temperature of the dehydrogenation reaction gas in the portion from the location where the oxygen-containing gas is mixed with the dehydrogenation reaction gas to the inlet of the step (2), the temperature increase in the step (2) is 10 to 100 ° C. The method for producing styrene according to any one of claims 1 to 7. 脱水素反応ガスに酸素含有ガスを混合させた箇所から工程(2)の入口までの部分において、流路内壁の表面が、ニッケル含有率が8wt%未満の材質である請求項1乃至8の何れか1項に記載のスチレンの製造方法。   The surface of the inner wall of the flow path is made of a material having a nickel content of less than 8 wt% in a portion from the position where the oxygen-containing gas is mixed into the dehydrogenation reaction gas to the inlet of the step (2). The method for producing styrene according to claim 1.
JP2006161495A 2005-06-10 2006-06-09 Method for producing styrene Withdrawn JP2007016027A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006161495A JP2007016027A (en) 2005-06-10 2006-06-09 Method for producing styrene

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005171108 2005-06-10
JP2006161495A JP2007016027A (en) 2005-06-10 2006-06-09 Method for producing styrene

Publications (1)

Publication Number Publication Date
JP2007016027A true JP2007016027A (en) 2007-01-25

Family

ID=37753494

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006161495A Withdrawn JP2007016027A (en) 2005-06-10 2006-06-09 Method for producing styrene

Country Status (1)

Country Link
JP (1) JP2007016027A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105646125A (en) * 2014-11-20 2016-06-08 中国石油化工股份有限公司 Ethylbenzene dehydrogenation-hydrogen oxidation reaction process
CN105664904A (en) * 2014-11-20 2016-06-15 中国石油化工股份有限公司 Potassium retarder preparation method
CN105669355A (en) * 2014-11-20 2016-06-15 中国石油化工股份有限公司 Process for preparation of styrene from ethylbenzene

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105646125A (en) * 2014-11-20 2016-06-08 中国石油化工股份有限公司 Ethylbenzene dehydrogenation-hydrogen oxidation reaction process
CN105664904A (en) * 2014-11-20 2016-06-15 中国石油化工股份有限公司 Potassium retarder preparation method
CN105669355A (en) * 2014-11-20 2016-06-15 中国石油化工股份有限公司 Process for preparation of styrene from ethylbenzene
CN105646125B (en) * 2014-11-20 2018-04-06 中国石油化工股份有限公司 Ethylbenzene dehydrogenation hydroxide reaction technique

Similar Documents

Publication Publication Date Title
TWI359131B (en) Integrated catalytic process for converting alkane
US5997826A (en) Reactor for catalytic dehydrogenation of hydrocarbons with selective oxidation of hydrogen
TWI268920B (en) Preparation of acrolein or acrylic acid or a mixture thereof from propane
JP5777183B2 (en) Process for increasing the carbon monoxide content in a synthesis gas mixture
RU2479569C2 (en) Method of using partial gas-phase oxidation of acrolein into acrylic acid or methacrolein into methacrylic acid on heterogeneous catalyst
JP2008266339A (en) Method for producing styrene
KR100850857B1 (en) Method of producing unsaturated fatty acid
TW200307665A (en) Continuous heterogeneously catalyzed partial dehydrogenation
CN101622068A (en) The renovation process of the catalyst bed of inactivation in the heterogeneously catalyzed partial dehydrogenation process of hydrocarbon
US7090789B2 (en) Process and catalyst for treatment of synthesis gas
KR20170057378A (en) Method for converting methane to ethylene and in situ transfer of exothermic heat
US20170369311A1 (en) Methods for conversion of methane to syngas
KR20090046897A (en) Process for the long-term operation of a continuously operated heterogeneously catalyzed partial dehydrogenation of a hydrocarbon to be dehydrogenated
KR101135416B1 (en) Process for production of styrene
JP3912077B2 (en) Hydrogen selective oxidation catalyst, hydrogen selective oxidation method, and hydrocarbon dehydrogenation method
EP1261570B1 (en) Method and reactor for autothermal dehydrogenation of hydrocarbons
JP2007016027A (en) Method for producing styrene
US7619099B2 (en) Reduction of acrylic acid in the production of maleic anhydride
JP4154877B2 (en) Method for producing styrene
JP5710964B2 (en) Method and apparatus for producing hydrogen
WO2018020345A1 (en) Process for producing oxo-synthesis syngas composition by high-pressure hydrogenation of c02 over spent chromium oxide/aluminum catalyst
WO2018015829A1 (en) Process for high-pressure hydrogenation of carbon dioxide to syngas applicable for methanol synthesis
US20230348343A1 (en) Oxidative dehydrogenation process
WO2018020343A1 (en) Process for producing an oxo-synthesis syngas composition by high-pressure hydrogenation over a chromium oxide/aluminum supported catalyst
KR20050122239A (en) Method for the production of at least one partial oxidation and/or ammoxidation product of a hydrocarbon

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090122

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20090122

A761 Written withdrawal of application

Effective date: 20091104

Free format text: JAPANESE INTERMEDIATE CODE: A761