JPS63216943A - Electrode material - Google Patents

Electrode material

Info

Publication number
JPS63216943A
JPS63216943A JP4985587A JP4985587A JPS63216943A JP S63216943 A JPS63216943 A JP S63216943A JP 4985587 A JP4985587 A JP 4985587A JP 4985587 A JP4985587 A JP 4985587A JP S63216943 A JPS63216943 A JP S63216943A
Authority
JP
Japan
Prior art keywords
electrode
powder
electrode material
cutting
arc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4985587A
Other languages
Japanese (ja)
Other versions
JPH0564696B2 (en
Inventor
Yoshinori Maeno
前野 善典
Hiroshi Mikita
三喜田 浩
Sadao Umetsu
梅津 貞夫
Fukuhisa Matsuda
松田 福久
Masao Ushio
誠夫 牛尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toho Kinzoku Co Ltd
Original Assignee
Toho Kinzoku Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toho Kinzoku Co Ltd filed Critical Toho Kinzoku Co Ltd
Priority to JP4985587A priority Critical patent/JPS63216943A/en
Publication of JPS63216943A publication Critical patent/JPS63216943A/en
Publication of JPH0564696B2 publication Critical patent/JPH0564696B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Conductive Materials (AREA)

Abstract

PURPOSE:To develop an electrode for arc cutting having less oxidation consumption and heat consumption and having stable arc characteristics, by mixing specific ratios of Ru powder and Y2O3 powder, press molding the mixed powder, and thereafter sintering the same. CONSTITUTION:40-90wt.% Ru powder having 15.0mum average grain size and 99.9% purity and 60-2wt.% Y2O3 powder having 5.7mum average grain size and 99.9% purity are mixed and granulated by using a suitable binder. Said granulated goods are press molded in a mold, are thereafter presintered for 15min at 500 deg.C in a stream of hydrogen and are subjected to the main sintering in succession to produce the electrode material. The electrode having excellent characteristics as the electrode for air plasma cutting, electrode for plasma thermal spraying and heat resisting oxidation resisting electrode and having the arc characteristics can be obtd.

Description

【発明の詳細な説明】 本発明は、大気中、酸素雰囲気中などにおいて使用され
る放電電極材料に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a discharge electrode material used in the atmosphere, oxygen atmosphere, etc.

[従来の技術] 例えば、大気中や酸素雰囲気中など酸化雰囲気中での切
断に使用される電極材料は、ハフニウムやジルコニウム
等の金属材料のごく一部の種類に限られている。これら
の他に導電性や耐熱性に優れた種々の電極材料があるが
、これらは酸化雰囲気中で使用する場合に消耗が大きく
、使用できない。
[Prior Art] For example, electrode materials used for cutting in an oxidizing atmosphere such as air or oxygen atmosphere are limited to only a few types of metal materials such as hafnium and zirconium. In addition to these, there are various electrode materials that have excellent conductivity and heat resistance, but these cannot be used because they are subject to large amounts of wear when used in an oxidizing atmosphere.

[発明が解決しようとする問題点] しかしながら、上記ハフニウムやジルコニウムは極めて
高価であり、人手も困難であるので、切断コストが高く
つくという問題点があった。最近切断装置の改良と多様
化に加えて、人件費節減や量産化の目的での自動化やロ
ボット化が急速に進んでいるが、電極材料の改良が遅れ
ているため、切断装置の発展がこれによって制限を受け
ていた。
[Problems to be Solved by the Invention] However, the above-mentioned hafnium and zirconium are extremely expensive and difficult to use manually, so there is a problem that cutting costs are high. Recently, in addition to the improvement and diversification of cutting equipment, automation and robotization are rapidly progressing for the purpose of reducing labor costs and mass production. was restricted by.

[問題点を解決するための手段] 上記問題点を解決するため本発明は次のような電極材料
を提供する。
[Means for Solving the Problems] In order to solve the above problems, the present invention provides the following electrode material.

すなわち、本発明にかかる電極材料は重量比で40〜9
8%のルテニウムと、60〜2%の酸化イツトリウムを
含有することを特徴としている。この電極の成分のうち
、ルテニウムは融点が高く耐酸化性とくに高温耐酸化性
に優れている。また、酸化イツトリウムは放電特性に優
れており、これらルテニウムと酸化イツトリウムを適当
な割合で組み合わせることによって、酸化消耗と熱消耗
が少なく、かつ安定した放電性能を保つことが可能とな
るのである。ルテニウムの好ましい含有量は重量比で4
0〜98%であり、酸化イツトリウムの好ましい含有量
は60〜2%である。この電極材料は、上記ルテニウム
と酸化イツトリウムの合金であるか、その特性を損なわ
ない範囲内で少量の他の元素を添加してもよい。
That is, the electrode material according to the present invention has a weight ratio of 40 to 9.
It is characterized by containing 8% ruthenium and 60-2% yttrium oxide. Among the components of this electrode, ruthenium has a high melting point and excellent oxidation resistance, particularly high-temperature oxidation resistance. Furthermore, yttrium oxide has excellent discharge characteristics, and by combining ruthenium and yttrium oxide in an appropriate ratio, it is possible to maintain stable discharge performance with less oxidative consumption and thermal consumption. The preferred content of ruthenium is 4 by weight.
The content of yttrium oxide is preferably 60 to 2%. This electrode material may be an alloy of the above-mentioned ruthenium and yttrium oxide, or a small amount of other elements may be added within a range that does not impair its properties.

このTi極材料は例えば次のような方法で製造すること
ができる。まず原料となるルテニウム粉末(例えば平均
粒度!5〜20μm)に酸化イツトリウム粉末(例えば
平均粒度5〜6μm)を添加混合し、得られた混合粉末
を所定形状に加圧成形する。
This Ti electrode material can be manufactured, for example, by the following method. First, yttrium oxide powder (for example, average particle size: 5 to 6 μm) is added to and mixed with ruthenium powder (for example, average particle size: 5 to 20 μm) as a raw material, and the resulting mixed powder is pressure-molded into a predetermined shape.

このようにして得られた圧粉体を常法に従って焼結し、
所望の電極材料とする。
The green compact thus obtained is sintered according to a conventional method,
Use the desired electrode material.

以下、本発明の実施例について説明する。Examples of the present invention will be described below.

[実施例] 平均粒度15.0μl、純度99.9%のルテニウム粉
末と平均粒度5.7μm、純度99.9%の酸化イツト
リウム粉末をシェーカーミキサーにて30分分間式混合
した。この混合粉末にバインダーを添加して造粒した。
[Example] Ruthenium powder with an average particle size of 15.0 μl and a purity of 99.9% and yttrium oxide powder with an average particle size of 5.7 μm and a purity of 99.9% were mixed for 30 minutes in a shaker mixer. A binder was added to this mixed powder and granulated.

得られたルテニウム(Ru)−酸化イツトリウム(Y2
O2)混合粉末の顆粒を金型内で加圧して直径2n+m
、長さ4mmの圧粉体(圧粉密度65〜75%)とした
のち、常法に従って水素気流中で子焼結(500℃X1
5分)及び本焼結(2100℃×30分)を行なって直
径1.8non長さ3.5+nmの焼結体からなる電極
材料とした。
The obtained ruthenium (Ru)-yttrium oxide (Y2
O2) Pressure the mixed powder granules in a mold to make a diameter of 2n+m.
After forming a green compact with a length of 4 mm (green compact density: 65 to 75%), it was sintered in a hydrogen stream according to a conventional method (500℃
5 minutes) and main sintering (2100°C x 30 minutes) to obtain an electrode material consisting of a sintered body with a diameter of 1.8non and a length of 3.5+nm.

得られた電極材料を銅製のチップホルダーに圧入して陰
極とし、水冷銅板を陽極として第1図および第2図に示
す試験装置を用いてアークテストを行ない、消耗量を調
べた結果は第3図に示すとおりであった。図中、1はト
ーチ、2は電極、2aは電極材料、3は水冷銅板、4は
切断電源、5はエアレギュレータ、6はコンプレッサ、
7はノズル、8はプラズマアークである。
The obtained electrode material was press-fitted into a copper chip holder to serve as a cathode, and the water-cooled copper plate was used as an anode to perform an arc test using the test equipment shown in Figures 1 and 2. It was as shown in the figure. In the figure, 1 is a torch, 2 is an electrode, 2a is an electrode material, 3 is a water-cooled copper plate, 4 is a cutting power source, 5 is an air regulator, 6 is a compressor,
7 is a nozzle, and 8 is a plasma arc.

また、第3図の試験条件は電流25八、電圧95■、エ
アー圧力3.5にg/cm2、時間5分間であった。消
耗量は立方ミリメートル(mm3)で表されている。第
3図から解るとおり、本発明にかかる電極材料は、従来
のジルコニウムやハフニウムの電極材料にくらべその消
耗量が少ない。また、組成の好ましい範囲は第1図から
解るとありルテニウムが40〜98%の範囲であり、よ
り好ましくは50〜96%の範囲である。この電極材料
の製造は比較的容易であり、原料の入手性にも問題はな
い。
The test conditions shown in FIG. 3 were a current of 258 cm, a voltage of 95 cm, an air pressure of 3.5 g/cm2, and a time of 5 minutes. The amount of wear is expressed in cubic millimeters (mm3). As can be seen from FIG. 3, the electrode material according to the present invention has less wear than conventional zirconium or hafnium electrode materials. Further, as can be seen from FIG. 1, the preferable range of the composition is 40 to 98% ruthenium, more preferably 50 to 96%. This electrode material is relatively easy to manufacture, and there are no problems with the availability of raw materials.

この電極材料は、安定したプラズマアークが得られ、消
耗が少なく、切断電極として用いた場合に切断面が直線
的かつ滑らかで、切断中が小さく、切断スピードが速か
った。
With this electrode material, a stable plasma arc was obtained, there was little wear, and when used as a cutting electrode, the cutting surface was straight and smooth, the cutting area was small, and the cutting speed was high.

[発明の効果] 以上の説明から明らかなように、本発明にかかるTL電
極材料、従来のジルコニウムやハフニウムよりも人手性
に優れ、これらにくらべ約2倍より3倍の耐消耗性を有
するとともに、安定したアーク特性を得ることのできる
優れたものである。この電極材料は、エアプラズマ切断
用、プラズマ溶射用、耐熱耐酸化電極用等として使用し
ても充分にその特性が発揮できるものである。
[Effects of the Invention] As is clear from the above description, the TL electrode material according to the present invention is easier to handle than conventional zirconium and hafnium, and has wear resistance that is approximately two to three times higher than those of conventional zirconium and hafnium. This is an excellent product that can provide stable arc characteristics. This electrode material can sufficiently exhibit its characteristics even when used for air plasma cutting, plasma spraying, heat-resistant and oxidation-resistant electrodes, etc.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図は試験装置の説明図、第3図は組成
と耐消耗性の関係を表わすグラフである。 1・・・トーチ        2・・・電極3・・・
水冷銅板
FIGS. 1 and 2 are explanatory diagrams of the test apparatus, and FIG. 3 is a graph showing the relationship between composition and wear resistance. 1...Torch 2...Electrode 3...
water cooled copper plate

Claims (1)

【特許請求の範囲】[Claims] (1)重量比で40〜98%のルテニウムと、60〜2
%の酸化イットリウムを含有する耐熱耐酸化性に富んだ
放電電極材料。
(1) Ruthenium with a weight ratio of 40 to 98% and 60 to 2
Discharge electrode material with excellent heat and oxidation resistance, containing % yttrium oxide.
JP4985587A 1987-03-03 1987-03-03 Electrode material Granted JPS63216943A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4985587A JPS63216943A (en) 1987-03-03 1987-03-03 Electrode material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4985587A JPS63216943A (en) 1987-03-03 1987-03-03 Electrode material

Publications (2)

Publication Number Publication Date
JPS63216943A true JPS63216943A (en) 1988-09-09
JPH0564696B2 JPH0564696B2 (en) 1993-09-16

Family

ID=12842669

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4985587A Granted JPS63216943A (en) 1987-03-03 1987-03-03 Electrode material

Country Status (1)

Country Link
JP (1) JPS63216943A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02159343A (en) * 1988-12-12 1990-06-19 Toho Kinzoku Kk Electrode material
JPH02159344A (en) * 1988-12-12 1990-06-19 Toho Kinzoku Kk Electrode material
US9012030B2 (en) 2002-01-08 2015-04-21 Applied Materials, Inc. Process chamber component having yttrium—aluminum coating

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02159343A (en) * 1988-12-12 1990-06-19 Toho Kinzoku Kk Electrode material
JPH02159344A (en) * 1988-12-12 1990-06-19 Toho Kinzoku Kk Electrode material
US9012030B2 (en) 2002-01-08 2015-04-21 Applied Materials, Inc. Process chamber component having yttrium—aluminum coating

Also Published As

Publication number Publication date
JPH0564696B2 (en) 1993-09-16

Similar Documents

Publication Publication Date Title
RU2283900C2 (en) Electrolytic production of high-purity aluminum with the use of ceramic inert anodes
CN107794389A (en) A kind of silver-tin oxide or indium oxide contact material and preparation method thereof
EP0568640A1 (en) Beneficiated lanthanum chromite for low temperature firing.
CN106086495B (en) Cupric oxide doped siller tin oxide composite and preparation method thereof
CN102044347B (en) Preparation method and products of silver-copper-nickel-ceramic alloy contact material with high welding resistance
US4882519A (en) Discharge electrode material composed of yttrium and rhenium or ruthenium
JPS58151331A (en) Magnetic oxide material capable of being sintered at low temperature
JPS63216943A (en) Electrode material
US4980125A (en) Sinter contact material for low voltage switching apparatus of the energy technology, in particular for motor contactors
CN105551861A (en) Preparation method of graphene-reinforced silver-based electric contact material
JPH03226543A (en) Electrode material
JPH02159344A (en) Electrode material
CN1147606C (en) Electrode material of alloy element added with tungsten oxide and its preparation technique
JPH02159343A (en) Electrode material
JPS62286698A (en) Tungsten electrode material
JPS5987767A (en) Molten salt fuel cell
CN104966627B (en) A kind of rare earth modified B4C strengthens copper-based electrical contact material and preparation method thereof
JPH0470380B2 (en)
CN1188162A (en) Rare earth molten-salt electrolysis ceramic anode and preparing method thereof
JPH10321239A (en) Electrode of fuel cell
JPS62284030A (en) Electric contact point material and its production
JPH0691391A (en) Tungsten electrode material
JPS62146236A (en) Tungsten electrode material
JPH04198452A (en) Electrode material
JPS6350437A (en) Electric contact material and its production

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees