JPH04198452A - Electrode material - Google Patents

Electrode material

Info

Publication number
JPH04198452A
JPH04198452A JP2333328A JP33332890A JPH04198452A JP H04198452 A JPH04198452 A JP H04198452A JP 2333328 A JP2333328 A JP 2333328A JP 33332890 A JP33332890 A JP 33332890A JP H04198452 A JPH04198452 A JP H04198452A
Authority
JP
Japan
Prior art keywords
electrode material
tho2
discharge characteristics
electric discharge
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2333328A
Other languages
Japanese (ja)
Inventor
Manabu Yoshimura
学 吉村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Brother Industries Ltd
Original Assignee
Brother Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Brother Industries Ltd filed Critical Brother Industries Ltd
Priority to JP2333328A priority Critical patent/JPH04198452A/en
Publication of JPH04198452A publication Critical patent/JPH04198452A/en
Pending legal-status Critical Current

Links

Landscapes

  • Arc Welding In General (AREA)
  • Powder Metallurgy (AREA)
  • Plasma Technology (AREA)

Abstract

PURPOSE:To obtain an electrode material having stable electric discharge characteristics at a low cost by specifying a composition consisting of Re and ThO2. CONSTITUTION:This material is an electrode material having a composition consisting of, by weight, about 30-99.5% Re and about 70-0.5% ThO2 and can be obtained by mixing respective powdery raw materials by means of a ball mill, etc., precompacting the resulting powder mixture in a metal mold, further exerting regular compacting by means of cold isostatic pressing, and sintering the resulting green compact at about 2200 deg.C for about 30min. As to the above raw materials, Re has high melting point and also has superior oxidation resistance, particularly high temp. oxidation resistance, and ThO2 has superior electric discharge characteristics and also has high melting point and low vapor pressure, and further, both are excellent in availability. By combining these Re and ThO2 at proper ratio, the electrode material minimal in consumption due to oxidation and consumption due to heat and showing stable electric discharge characteristics under a great amount of electric current can be obtained. Accordingly, by using this electrode material, plasma cutting, etc., in the air can be performed at high speed at a low cost.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、大気中、酸化雰囲気中などにおいて使用され
る電極材料に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to an electrode material used in the atmosphere, oxidizing atmosphere, or the like.

[従来技術] 従来、大気中や酸素雰囲気中など酸化雰囲気中でのプラ
ズマ切断に使用される電極材料としては、たとえばハフ
ニウム(Hf)やジルコニウム(Zr)などの金属材料
が使用されており、また最近、特開昭63−19984
2号公報に示されるように、耐熱耐酸化金属に放電特性
のよい酸化イツトリウム(Y20g)を混合したものが
使用されている。
[Prior Art] Conventionally, metal materials such as hafnium (Hf) and zirconium (Zr) have been used as electrode materials for plasma cutting in oxidizing atmospheres such as air or oxygen atmospheres. Recently, JP-A-63-19984
As shown in Publication No. 2, a mixture of heat-resistant and oxidation-resistant metal with yttrium oxide (Y20 g), which has good discharge characteristics, is used.

[発明が解決しようとする課題] しかしながら、上記I−1fやZrは極めて高価であり
、入手も困難であるので、切断コストも高くつくという
問題点があった。そこで切断コストを安くするために、
前記した特開昭63−199842号公報に示されてい
るRe  Y20a混合電極が開発されているが、これ
も大電流を流した時の放電特性の不安定さかあり、十分
満足な性能を得られるものではないという問題点があっ
た。
[Problems to be Solved by the Invention] However, since I-1f and Zr are extremely expensive and difficult to obtain, there is a problem in that the cutting cost is also high. Therefore, in order to reduce cutting costs,
The Re Y20a mixed electrode shown in the above-mentioned Japanese Patent Application Laid-Open No. 63-199842 has been developed, but this also has unstable discharge characteristics when a large current is passed, and is unable to obtain sufficiently satisfactory performance. The problem was that it was not a real thing.

本発明は、上述した問題点を解決するためになされたも
のであり、その目的は、コストが低く、かつ放電特性の
安定した電極材料を、提供することにある。
The present invention has been made to solve the above-mentioned problems, and its purpose is to provide an electrode material that is low in cost and has stable discharge characteristics.

[課題を解決するための手段] この目的を達成するために、本発明の電極H料は、略3
0〜99.5重量%のReと、略70〜0.5重量%の
ThO2とを含有させた。
[Means for Solving the Problem] In order to achieve this object, the electrode H material of the present invention has approximately 3
It contained 0 to 99.5% by weight of Re and approximately 70 to 0.5% by weight of ThO2.

[作用] 」1記の構成を有する本発明の電極+A料の成分のうち
、Reは、融点が高く耐酸化性とくに高611)耐酸化
性に優れている。またThO2は放電特性に優れており
また融点も高く、蒸気圧も低い。これらReとTh02
を適当な割合で組み合わせることによって、酸化消耗と
熱消耗が少なく、また大電流を流しても安定した放電特
性を保つことが可能となる。Reの好ましい含有量は重
量%で略30〜99.5%であり、ThO2の好ましい
含有量は略70−0.5%である。この電極材料は、」
1記ReとT h O2の合金であるか、その特性を損
なわない範囲内で少量の他の元素を添加してもよい。
[Function] Among the components of the electrode + A material of the present invention having the structure described in item 1, Re has a high melting point and is excellent in oxidation resistance, especially high 611) oxidation resistance. Furthermore, ThO2 has excellent discharge characteristics, a high melting point, and a low vapor pressure. These Re and Th02
By combining these in an appropriate ratio, it is possible to reduce oxidative consumption and thermal consumption, and to maintain stable discharge characteristics even when a large current is passed. The preferred content of Re is approximately 30-99.5% by weight, and the preferred content of ThO2 is approximately 70-0.5%. This electrode material is
1) It may be an alloy of Re and T h O2, or a small amount of other elements may be added within a range that does not impair its properties.

[実施例] 以下、本発明を具体化した一実施例を図面を参照して説
明する。
[Example] Hereinafter, an example embodying the present invention will be described with reference to the drawings.

まず、本実施例の電極材料の製造方法について説明する
。平均粒度4.5μm1純度99.9%のRe粉末と平
均粒度20μm、純度99.9%のT h O2粉末を
ボールミルにて5時間湿式混合し、乾燥した。得られた
Rc−ThO2混合粉末を、金型内にて1トンの成形圧
で予備成形し、直径3mm、長さ5mmの圧粉体とした
後、冷間静水圧プレス(CI P)にて2トンで本成形
を行なう(この時、成形体密度は55〜60%となる)
。その後、アルゴン雰囲気中で焼結(2200’C−3
0分)を行い直径2.2mm長さ4 rn mの焼結体
を形成し、電極材料とした。
First, a method for manufacturing the electrode material of this example will be explained. Re powder with an average particle size of 4.5 μm and a purity of 99.9% and T h O2 powder with an average particle size of 20 μm and a purity of 99.9% were wet mixed in a ball mill for 5 hours and dried. The obtained Rc-ThO2 mixed powder was preformed in a mold at a molding pressure of 1 ton to form a green compact with a diameter of 3 mm and a length of 5 mm, and then cold isostatically pressed (CIP). Perform the main molding with 2 tons (at this time, the density of the molded product will be 55 to 60%)
. After that, sintering in an argon atmosphere (2200'C-3
0 minutes) to form a sintered body with a diameter of 2.2 mm and a length of 4 rm, which was used as an electrode material.

次に、実験方法について説明する。第1図及び第2図に
示すように、得られた電極材料2aを銅製のチップホル
ダーに圧入した電極2と、ノスル7を備えたトーチ1を
陰極とし、水冷した銅板3を陽極として切断電源4によ
り、両者間にアークを発生させ、コンプレッサ6より得
られる圧縮エアーをエアレギュレータ5を通して、電極
2の周りを旋回させ、ノズ゛ルアより排出することによ
り、プラズマアーク8を発生させる試験装置を用い、プ
ラズマアーク発生テストを行なった。
Next, the experimental method will be explained. As shown in FIGS. 1 and 2, an electrode 2 in which the obtained electrode material 2a is press-fitted into a copper tip holder, a torch 1 equipped with a nostle 7 as a cathode, and a water-cooled copper plate 3 as an anode are used as a cutting power source. 4 generates an arc between the two, compressed air obtained from the compressor 6 passes through the air regulator 5, swirls around the electrode 2, and is discharged from the nozzle to generate a plasma arc 8. A plasma arc generation test was conducted.

そのときの電極の消耗量を調べた結果を第3図のグラフ
に示す。第3図の試験条件は電流30A、電圧100V
1エアー圧力3.5Kg/cm2、時間5分間であった
。また消耗量は立方ミリメートル(mm3)で表わしで
ある。第3図から判るとおり、本発明による電極材料は
、従来のZrや1−I fさらにはRe  Y2O3電
極祠料に比べその消耗量が少ない。また、第3図の横軸
は酸化物の添加量を示しており、本発明の好ましい組成
範囲はReが略30〜99.5重量%の範囲であり、よ
り好ましくは略60〜90重量%の範囲であることが判
る。
The graph in FIG. 3 shows the results of examining the amount of electrode wear at that time. The test conditions in Figure 3 are current 30A and voltage 100V.
The air pressure was 3.5 Kg/cm2 and the time was 5 minutes. The consumption amount is expressed in cubic millimeters (mm3). As can be seen from FIG. 3, the electrode material according to the present invention consumes less than the conventional Zr, 1-If, and Re Y2O3 electrode materials. Further, the horizontal axis in FIG. 3 indicates the amount of oxide added, and the preferred composition range of the present invention is a Re range of approximately 30 to 99.5% by weight, more preferably approximately 60 to 90% by weight. It can be seen that the range is within the range of .

また、電流値を変化させて消耗特性を調べた結果を第4
図に示す。この時の試験条件は、電圧100V、エアー
圧力3.5Kg/cm2、時間5分間と一定にして、試
験電流値を30A、35A。
In addition, the results of examining the consumption characteristics by changing the current value were
As shown in the figure. The test conditions at this time were a constant voltage of 100V, air pressure of 3.5Kg/cm2, time of 5 minutes, and test current values of 30A and 35A.

4OA、45A、50Aと変化させた。試験した電極材
料は、ReにThO2を0. 3.0. 5.20.5
0.70.75重量%含有したもの、および¥203を
20重量%含有したものである。
It was changed to 4OA, 45A, and 50A. The tested electrode materials were prepared by adding 0.0% ThO2 to Re. 3.0. 5.20.5
One contains 0.70.75% by weight, and the other contains 20% by weight of ¥203.

Re  Y20g電極材料は、試験電流値を増加してい
くと消耗量が急激に増加したが、本発明による電極材料
では、Th02を0.5.20.50.70重量%含有
したものについては、試験電流値を上げても、その消耗
量はほとんと変化しておらず、安定した放電特性を示す
ことが分かる。したがって、このグラフからも、本発明
の好ましい組成範囲はReが略30〜99.5重量%の
範囲であることが判る。
For the Re Y20g electrode material, the amount of consumption increased rapidly as the test current value increased, but for the electrode material according to the present invention containing 0.5.20.50.70% by weight of Th02, It can be seen that even when the test current value is increased, the consumption amount hardly changes, indicating stable discharge characteristics. Therefore, it can be seen from this graph that the preferred composition range of the present invention is a Re range of about 30 to 99.5% by weight.

この電極材料の製造は比較的容易であり、原料の入手に
も問題はない。この電極材料は、安定したプラズマアー
クが得られ、プラズマ切断用電極として用いた場合には
、大電流を入力しても安定しており消耗も少なく、切断
スピードも速く、また厚板も容易に切断出来、従来の電
極に比べその性能が格段に向」ニすることが確かめられ
た。
This electrode material is relatively easy to manufacture, and there are no problems in obtaining raw materials. This electrode material provides a stable plasma arc, and when used as a plasma cutting electrode, it is stable even when large currents are input, has little wear and tear, has a fast cutting speed, and can easily cut thick plates. It was confirmed that the electrode was able to cut the electrode, and its performance was significantly improved compared to conventional electrodes.

[発明の効果] 以上詳述したことから明らかなように、本発明によれば
、従来のZrやHfよりも入手性に優れ、これに比べ約
3倍〜4倍の耐消耗性を有し、さらにRe  Y2O3
電極と比べ1.5倍〜2倍の耐消耗性を有しているので
、切断コストを安くでき、また大電流時にも安定したア
ーク放電特性を得ることが出来るので、切断スピードを
−にげたり、厚い切断物を切断できるなどの優れた効果
を有する。
[Effects of the Invention] As is clear from the detailed description above, according to the present invention, it is more readily available than conventional Zr and Hf, and has wear resistance that is about 3 to 4 times higher than that of conventional Zr and Hf. , and further Re Y2O3
It has 1.5 to 2 times the wear resistance compared to electrodes, so cutting costs can be reduced, and stable arc discharge characteristics can be obtained even at high currents, so cutting speed can be reduced. It has excellent effects such as being able to cut thick objects.

この電極材料は、ブラスマ溶射用、耐熱耐酸化電極用な
どとして使用しても十分にその特性が発揮できるもので
ある。
This electrode material can sufficiently exhibit its characteristics even when used as a heat-resistant, oxidation-resistant electrode, etc. for plasma spraying.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図から第4図までは本発明を具体化した実施例を示
すもので、第1図は試験装置の説明図であり、第2図は
試験装置のトーチ部分を拡大して示す説明図であり、第
3図は組成と耐消耗性の関係を表わすグラフであり、第
4図は試験電流値と耐消耗性の関係を表わすグラフであ
る。 図中は1はトーチ、2は電極、3は水冷銅板、8はプラ
ズマアークを示す。
1 to 4 show embodiments embodying the present invention; FIG. 1 is an explanatory diagram of a test device, and FIG. 2 is an explanatory diagram showing an enlarged torch portion of the test device. FIG. 3 is a graph showing the relationship between composition and wear resistance, and FIG. 4 is a graph showing the relationship between test current value and wear resistance. In the figure, 1 is a torch, 2 is an electrode, 3 is a water-cooled copper plate, and 8 is a plasma arc.

Claims (1)

【特許請求の範囲】[Claims] 1、略30〜99.5重量%のレニウム(Re)と、略
70〜0.5重量%の酸化トリウム(ThO_2)とを
含有する電極材料。
1. Electrode material containing approximately 30 to 99.5% by weight of rhenium (Re) and approximately 70 to 0.5% by weight of thorium oxide (ThO_2).
JP2333328A 1990-11-28 1990-11-28 Electrode material Pending JPH04198452A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2333328A JPH04198452A (en) 1990-11-28 1990-11-28 Electrode material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2333328A JPH04198452A (en) 1990-11-28 1990-11-28 Electrode material

Publications (1)

Publication Number Publication Date
JPH04198452A true JPH04198452A (en) 1992-07-17

Family

ID=18264884

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2333328A Pending JPH04198452A (en) 1990-11-28 1990-11-28 Electrode material

Country Status (1)

Country Link
JP (1) JPH04198452A (en)

Similar Documents

Publication Publication Date Title
US6551374B2 (en) Method of controlling the microstructures of Cu-Cr-based contact materials for vacuum interrupters and contact materials manufactured by the method
EP3555898B1 (en) Improved electrical contact alloy for vacuum contactors
US4419551A (en) Vacuum circuit interrupter and method of producing the same
JPS62224495A (en) Tungsten electrode material
JPH0896643A (en) Electric contact point material
JPH0791608B2 (en) Contact material and manufacturing method thereof
EP0334981B1 (en) Discharge electrode material
JPH04198452A (en) Electrode material
US4980125A (en) Sinter contact material for low voltage switching apparatus of the energy technology, in particular for motor contactors
US5512240A (en) Tungsten electrode material
WO1994024327A1 (en) Tungsten-base electrode material
JPH04346632A (en) Electrode material for cutting plasma
JPS63216943A (en) Electrode material
JPH04285140A (en) Discharge electrode material for cutting plasma
JPH0543909A (en) Electrode material for plasma cutting
JPH02159343A (en) Electrode material
JPH11273618A (en) Discharge electrode material and its manufacture
JPH02159344A (en) Electrode material
Wang et al. Effect of high content nano-thoria addition on the properties of tungsten electrode
JPH1150177A (en) Contact material for vacuum circuit breaker, its production and vacuum circuit breaker
JPH03226543A (en) Electrode material
JPH0578763A (en) Electrode for plasma arc cutting
JPH038233A (en) Contact material for vacuum switch tube and manufacture thereof
JPH0976092A (en) Material for tungsten electrode
JP3067317B2 (en) Manufacturing method of electrode material