JPH02159343A - Electrode material - Google Patents

Electrode material

Info

Publication number
JPH02159343A
JPH02159343A JP31476988A JP31476988A JPH02159343A JP H02159343 A JPH02159343 A JP H02159343A JP 31476988 A JP31476988 A JP 31476988A JP 31476988 A JP31476988 A JP 31476988A JP H02159343 A JPH02159343 A JP H02159343A
Authority
JP
Japan
Prior art keywords
electrode material
oxide
ruthenium
electrode
resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31476988A
Other languages
Japanese (ja)
Inventor
Hideshi Hofuku
法福 英志
Katsumi Koda
幸田 勝実
Sadao Umetsu
梅津 貞夫
Fukuhisa Matsuda
松田 福久
Masao Ushio
誠夫 牛尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toho Kinzoku Co Ltd
Original Assignee
Toho Kinzoku Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toho Kinzoku Co Ltd filed Critical Toho Kinzoku Co Ltd
Priority to JP31476988A priority Critical patent/JPH02159343A/en
Publication of JPH02159343A publication Critical patent/JPH02159343A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To stabilize electric discharge property and to improve the heat resistance and oxidation resistance of the electrode material by forming the electrode material of two or more kinds among yttrium oxide, lanthanum oxide, and cerium oxide and ruthenium. CONSTITUTION:An electric discharge electrode material has a composition consisting of 2-50wt.%, in total, of at least two kinds among yttrium oxide, lanthanum oxide, and cerium oxide and the balance ruthenium. This electrode material can be manufactured, e.g. by the process in which powders of the above oxides of about 5-6mu average grain size are added and mixed into powdered ruthenium of about 15-20mum average grain size and the resulting powder mixture is compacted and sintered. Since this material has superior consumption resistance and stable arc characteristic, this material can be used for air plasma cutting, plasma spraying, heat- and oxidation-resisting electrode, etc.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、大気中、酸素雰囲気中などにおいて使用され
る放電電極材料に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a discharge electrode material used in the atmosphere, oxygen atmosphere, or the like.

[従来の技術] 大気中や酸素雰囲気中など酸化雰囲気中での切断に使用
される放電電極材料は、ハフニウムやジルコニウム等ご
く一部の金属材料に限られている。これらの他に導電性
や耐熱性に優れた種々の電極材料があるが、これらは酸
化雰囲気中では消耗が大きく使用できない。
[Prior Art] Discharge electrode materials used for cutting in an oxidizing atmosphere such as air or oxygen atmosphere are limited to a few metal materials such as hafnium and zirconium. In addition to these, there are various electrode materials that have excellent conductivity and heat resistance, but these cannot be used because of their wear and tear in an oxidizing atmosphere.

[発明が解、決しようとする課題] しかしながら、上記ハフニウムやジルコニウムは極めて
高価であり、人手も困難であるので、切断コストが高く
つくという問題点があった。最近切断装置の改良仁多様
化に加えて、人件費節減や量産化の目的で自動化やロボ
ット化が急速に進んでいるが、電極材料の改良が遅れて
いるため、切断装置の発展がこれによって制限を受けて
いた。
[Problems to be Solved by the Invention] However, the hafnium and zirconium described above are extremely expensive and labor intensive, resulting in a problem of high cutting costs. Recently, in addition to improvements and diversification of cutting equipment, automation and robotization are rapidly progressing for the purpose of reducing labor costs and increasing mass production. was subject to restrictions.

このため、比較的安価で耐熱耐酸化性にすぐれた電極材
料を開発することが大きな課題となっている。
Therefore, it has become a major challenge to develop electrode materials that are relatively inexpensive and have excellent heat and oxidation resistance.

本発明者らは上記のような事情から諸種研究を行ない、
すでにルテニウムと一酸化イットリウムの合金からなる
耐熱耐酸化性に富んだ電極材料を開発した(特願昭62
−049855号)が、さらにすぐれた材料の開発中に
本願発明を完成したものである。
The present inventors conducted various studies based on the above circumstances,
We have already developed an electrode material with excellent heat and oxidation resistance made of an alloy of ruthenium and yttrium monoxide.
-049855), the present invention was completed during the development of even better materials.

[課題を解決するための手段] 上記課題を解決するため、本発明は次のような電極材料
を提供する。
[Means for Solving the Problems] In order to solve the above problems, the present invention provides the following electrode material.

すなわち、本発明に係る電極材料は、酸化イツトリウム
、酸化ランタンおよび酸化セリウムのうちの少なくとも
2種類を総量で2〜50重量%含存し、残部がルテニウ
ムであることを特徴としている。この電極材料の成分の
うち、ルテニウムは融点が高く耐酸化性とくに高温耐酸
化性に優れている。また、酸化イツトリウム、酸化ラン
タンおよび酸化セリウム等いずれも放電特性に優れてお
り、これら酸化物とルテニウムを適当な割合で組み合わ
せることによって、酸化消耗と熱消耗が少なく、かつ安
定した放電性能を保つことが可能となるのである。上記
酸化イツトリウム(Y2O3)、酸化ランタン(LaO
□、 La、03など)、酸化セリウム((:eO2)
はいずれか2種を組合せて用いるのが効果的であったが
、場合によりては3種をすべて含んでもよい。ルテニウ
ムの好ましい含有量は重量比で50%以上、より好まし
くは60〜95%であり、酸化イツトリウム、酸化ラン
タン、酸化セリウムからなる酸化物群の好ましい含有量
は総量で2〜50%、より好ましくは5〜40%である
。また、上記酸化物群中の各酸化物の配合比は、これら
酸化物の総量を100 ffli%とした場合に、いず
れか一方が2〜98重量%であっても効果はdられたが
、好ましく一方が5〜95%、より好ましくは40〜6
0%であった。この電極材料は、上記ルテニウムと酸化
物との合金であるが、その特性を損なわない範囲内で少
量の他の元素を添加してもよい。
That is, the electrode material according to the present invention is characterized in that it contains at least two of yttrium oxide, lanthanum oxide, and cerium oxide in a total amount of 2 to 50% by weight, with the remainder being ruthenium. Among the components of this electrode material, ruthenium has a high melting point and excellent oxidation resistance, particularly high-temperature oxidation resistance. In addition, yttrium oxide, lanthanum oxide, cerium oxide, etc. all have excellent discharge characteristics, and by combining these oxides and ruthenium in an appropriate ratio, oxidation consumption and thermal consumption are low, and stable discharge performance can be maintained. becomes possible. The above yttrium oxide (Y2O3), lanthanum oxide (LaO
□, La, 03, etc.), cerium oxide ((:eO2)
Although it has been effective to use any two types in combination, in some cases, all three types may be included. The preferred content of ruthenium is 50% or more, more preferably 60 to 95% by weight, and the preferred content of the oxide group consisting of yttrium oxide, lanthanum oxide, and cerium oxide is 2 to 50%, more preferably in total. is 5-40%. In addition, even if the blending ratio of each oxide in the above oxide group was 2 to 98% by weight, when the total amount of these oxides was 100 ffli%, the effect was d. Preferably one is 5-95%, more preferably 40-6
It was 0%. This electrode material is an alloy of the above-mentioned ruthenium and an oxide, but small amounts of other elements may be added within a range that does not impair its properties.

この電極材料は例えば次のような方法で製造することが
できる。まず原料となるルテニウム粉末(例えば平均粒
度15−20μm)に酸化物(酸化イツトリウム、酸化
ランタン、酸化セリウムのうちの2HA以上)の粉末(
例えば平均粒度5−6μm)を適当な配合比で添加混合
し、得られた混合粉末を所定形状に加圧成形する。
This electrode material can be manufactured, for example, by the following method. First, ruthenium powder (for example, average particle size 15-20 μm) as a raw material is mixed with powder of oxide (2HA or more of yttrium oxide, lanthanum oxide, and cerium oxide) (
For example, particles having an average particle size of 5 to 6 μm are added and mixed in an appropriate blending ratio, and the resulting mixed powder is press-molded into a predetermined shape.

このようにして得られた圧粉体を常法に従って焼結し、
所望の電極材料とする。
The green compact thus obtained is sintered according to a conventional method,
Use the desired electrode material.

以下、本発明の実施例について説明する。Examples of the present invention will be described below.

[実施例] 所定の配合比で配合したルテニウム粉末と2種の酸化物
粉末をシェーカーミキサーにて30分分間式混合した。
[Example] Ruthenium powder and two types of oxide powders blended at a predetermined blending ratio were mixed for 30 minutes using a shaker mixer.

原料として用いた粉末の平均粒度は、ルテニウム粉末が
15.0ミクロン、酸化イツトリウム粉末が5.7ミク
ロン、酸化ランタン粉末が6.0ミクロン、酸化セリウ
ム粉末が5.9 ミクロンであった。なお、純度はいず
れも99.9%以上であった。この混合粉末にバインダ
ーを添加して造粒した。得られたルテニウム(Ru)−
酸化物混合粉末の顆粒を金型内で加圧して直径2 ma
d、長さ4III11の圧粉体(圧粉密度は理論密度の
65〜75%)としたのち、常法に従って水素気流中で
予焼結(500”CX15分)及び本焼結(2100℃
×30分)を行なつて直径1.8mm長さ3.5mo+
の焼結体からなる電極材料とした。
The average particle size of the powders used as raw materials was 15.0 microns for the ruthenium powder, 5.7 microns for the yttrium oxide powder, 6.0 microns for the lanthanum oxide powder, and 5.9 microns for the cerium oxide powder. In addition, the purity was 99.9% or more in all cases. A binder was added to this mixed powder and granulated. The obtained ruthenium (Ru)-
Granules of oxide mixed powder are pressed in a mold to a diameter of 2 ma.
d. After making a green compact with a length of 4III11 (green density is 65 to 75% of the theoretical density), pre-sintering (500"CX 15 minutes) in a hydrogen stream and main sintering (2100 ° C.
x 30 minutes) to create a diameter of 1.8mm and a length of 3.5mo+
The electrode material was made of a sintered body of

得られた電極材料を銅製のチップホルダーに圧入して陰
極とし、水冷銅版を陽極として第1図および第2図に示
す試験装置を用いてアークテストを行ない、消耗量を調
べた結果は第3図および第4図に示すとおりであった。
The obtained electrode material was press-fitted into a copper chip holder to serve as a cathode, and a water-cooled copper plate was used as an anode to conduct an arc test using the test equipment shown in Figures 1 and 2. It was as shown in the figure and FIG.

図中、1はトーチ、2は電極、2aは電極材料、3は水
冷銅板、4は切断電源、5はエアレギュレータ、6はコ
ンプレッサ、7はノズル、8はプラズマアークである。
In the figure, 1 is a torch, 2 is an electrode, 2a is an electrode material, 3 is a water-cooled copper plate, 4 is a cutting power source, 5 is an air regulator, 6 is a compressor, 7 is a nozzle, and 8 is a plasma arc.

第3図の試験条件は電流25A、電圧95V、エアー圧
力3.5にg/cm2.層間5分間であった。消耗1は
立方ミリメートル(I!1I113)で表されている。
The test conditions in Figure 3 are current 25A, voltage 95V, air pressure 3.5g/cm2. The interlayer time was 5 minutes. Consumption 1 is expressed in cubic millimeters (I!1I113).

また、第4図の試験条件は、5秒間通電し、15秒間通
電を停止するサイクルを縁り返した。図中、AはRu−
Ce02−La2O3(Ce02 : Laz03 =
 50 : 50)、BはRu−Y2O3−Ce02(
YzO3: Ce02=50 : 50) 、 CはR
u−Yzo3−La20i(Y2O3: La2O3=
50 : 50) 、 DはRu−18%Y20.−1
0%1.a203 、EはRu−18%Y2O3−10
%CcO□をそれぞれあられす。図中には、比較例とし
てジルコニウム(2「)、ハフニウム(11r)および
Ru−40%Y20.のデータを併せて記入した。第3
図および第4図から分るとおり、本発明にかかる電極材
料は、従来のジルコニウムやハフニウム等の電極材料に
くらべてはるかにアークスタート性が良く、しかもその
消耗量が少い。また、この電極材料の製造は比較的容易
であり、原料の入手性にも問題はない。しかも、粉末焼
結体をそのまま電極として使用することができるため、
材料費、加工費の面で経済的である。この電極材料は、
安定したプラズマアークが得られ、消耗が少なく、切断
電極として用いた場合に切断面が直線的かつ滑らかで、
切断中が小さく、切断スピードが速かった。また、切断
時の熱影響による変色もごく狭い範囲にとどまっていた
Further, the test conditions shown in FIG. 4 were a cycle in which electricity was applied for 5 seconds and electricity was stopped for 15 seconds. In the figure, A is Ru-
Ce02−La2O3(Ce02 : Laz03 =
50: 50), B is Ru-Y2O3-Ce02 (
YzO3: Ce02=50:50), C is R
u-Yzo3-La20i(Y2O3: La2O3=
50:50), D is Ru-18%Y20. -1
0%1. a203, E is Ru-18% Y2O3-10
%CcO□ respectively. In the figure, data for zirconium (2''), hafnium (11r), and Ru-40% Y20. are also written as comparative examples.
As can be seen from the figures and FIG. 4, the electrode material according to the present invention has far better arc starting properties than conventional electrode materials such as zirconium and hafnium, and also has less wear. Furthermore, the production of this electrode material is relatively easy, and there is no problem with the availability of raw materials. Moreover, since the powder sintered body can be used as an electrode as it is,
It is economical in terms of material costs and processing costs. This electrode material is
A stable plasma arc is obtained, there is little wear and tear, and the cutting surface is straight and smooth when used as a cutting electrode.
The cutting area was small and the cutting speed was fast. In addition, discoloration due to heat effects during cutting remained within a very narrow range.

[発明の効果] 以上の説明から明らかなように、本発明にかかる電極材
料は、従来のジルコニウムやハフニウムよりも入手性に
優れ、これらにくらべて約2倍から3倍の耐消耗性を有
するとともに、安定したアーク特性を得ることのできる
優れたものである。この電極材料は、エアプラズマ切断
用、プラズマ溶射用、耐熱耐酸化電極用等として使用し
ても充分にその特性が発揮できるものである。
[Effects of the Invention] As is clear from the above description, the electrode material according to the present invention is more readily available than conventional zirconium and hafnium, and has wear resistance that is about 2 to 3 times higher than that of conventional zirconium and hafnium. At the same time, it is an excellent product that can provide stable arc characteristics. This electrode material can sufficiently exhibit its characteristics even when used for air plasma cutting, plasma spraying, heat-resistant and oxidation-resistant electrodes, etc.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図は試験装置の説明図、第3図は組成
と耐消耗性の関係を表わすグラフ、第4図はアークスタ
ート回数と消耗量の関係をあられすグラフである。 1・・・トーチ 2・−電極 3・・・水冷銅板
1 and 2 are explanatory diagrams of the test equipment, FIG. 3 is a graph showing the relationship between the composition and wear resistance, and FIG. 4 is a graph showing the relationship between the number of arc starts and the amount of wear. 1... Torch 2 - Electrode 3... Water-cooled copper plate

Claims (1)

【特許請求の範囲】[Claims] (1)酸化イットリウム、酸化ランタンおよび酸化セリ
ウムのうちの少なくとも2種類を総量で2〜50重量%
含有し、残部がルテニウムである耐熱耐酸化性に富んだ
放電電極材料。
(1) At least two types of yttrium oxide, lanthanum oxide, and cerium oxide in a total amount of 2 to 50% by weight
A discharge electrode material with high heat and oxidation resistance, with the remainder being ruthenium.
JP31476988A 1988-12-12 1988-12-12 Electrode material Pending JPH02159343A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31476988A JPH02159343A (en) 1988-12-12 1988-12-12 Electrode material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31476988A JPH02159343A (en) 1988-12-12 1988-12-12 Electrode material

Publications (1)

Publication Number Publication Date
JPH02159343A true JPH02159343A (en) 1990-06-19

Family

ID=18057366

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31476988A Pending JPH02159343A (en) 1988-12-12 1988-12-12 Electrode material

Country Status (1)

Country Link
JP (1) JPH02159343A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9012030B2 (en) 2002-01-08 2015-04-21 Applied Materials, Inc. Process chamber component having yttrium—aluminum coating

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62286698A (en) * 1986-06-03 1987-12-12 Toho Kinzoku Kk Tungsten electrode material
JPS63216943A (en) * 1987-03-03 1988-09-09 Toho Kinzoku Kk Electrode material

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62286698A (en) * 1986-06-03 1987-12-12 Toho Kinzoku Kk Tungsten electrode material
JPS63216943A (en) * 1987-03-03 1988-09-09 Toho Kinzoku Kk Electrode material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9012030B2 (en) 2002-01-08 2015-04-21 Applied Materials, Inc. Process chamber component having yttrium—aluminum coating

Similar Documents

Publication Publication Date Title
JPS62224495A (en) Tungsten electrode material
CN103681015A (en) Production method of composite metal oxide enhanced silver-based electrical contact material
JPH0434622B2 (en)
JP2810162B2 (en) Sintered contact materials for power low-voltage switchgear
JPH02159343A (en) Electrode material
JPS6148572B2 (en)
JPH02159344A (en) Electrode material
JPH0564696B2 (en)
JPH03226543A (en) Electrode material
CN1147606C (en) Electrode material of alloy element added with tungsten oxide and its preparation technique
JPS62286698A (en) Tungsten electrode material
US5258052A (en) Powder metallurgy silver-tin oxide electrical contact material
JPH11273618A (en) Discharge electrode material and its manufacture
JPH01180901A (en) Silver nickel composite powder for electric contact material and manufacture thereof
JPS598010B2 (en) Electrical contact materials and manufacturing methods
JPH0543909A (en) Electrode material for plasma cutting
JP5581152B2 (en) Oxidation resistant heat resistant alloy
JPS5987767A (en) Molten salt fuel cell
JPH04346632A (en) Electrode material for cutting plasma
JPH04198452A (en) Electrode material
JPS63195242A (en) Electrode material for electric discharge machining
JPH05178664A (en) Composite dense material and its production
JPH10321239A (en) Electrode of fuel cell
JPS598009B2 (en) Method for manufacturing electrical contact materials
JPS631382B2 (en)