JPS63216386A - Semiconductor photo detector - Google Patents

Semiconductor photo detector

Info

Publication number
JPS63216386A
JPS63216386A JP62050714A JP5071487A JPS63216386A JP S63216386 A JPS63216386 A JP S63216386A JP 62050714 A JP62050714 A JP 62050714A JP 5071487 A JP5071487 A JP 5071487A JP S63216386 A JPS63216386 A JP S63216386A
Authority
JP
Japan
Prior art keywords
type
layer
region
semiconductor layer
semi
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62050714A
Other languages
Japanese (ja)
Inventor
Masao Makiuchi
正男 牧内
Akira Furuya
章 古谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP62050714A priority Critical patent/JPS63216386A/en
Publication of JPS63216386A publication Critical patent/JPS63216386A/en
Pending legal-status Critical Current

Links

Landscapes

  • Light Receiving Elements (AREA)

Abstract

PURPOSE:To realize a horizontal structure PIN-PD of small distributed capacity and appropriate for an OEIC, by forming an n-type region and a p-type region reaching from the surface of a semi-insulating substrate to the lowermost layer of a laminated structure provided with a light absorbing layer between an n-type semiconductor layer and a p-type semiconductor layer on the semi-insulating substrate, etc. CONSTITUTION:A laminated structure provided with a light absorbing layer 3 between an n-type semiconductor layer 2 and a p-type semiconductor layer 4 is provided on a semi-insulating semiconductor substrate 1 and the n-type semiconductor layer 2 and the p-type semiconductor layer 4 except the lowermost layer of the laminated structure are made not to absorb light which is aimed to be received. Further, an n-type region 7 and a p-type region 6 both reach to the lowermost layer from the surface of the semiconductor substrate are formed and ohmic contact electrodes 9, 8 are provided in the n-type region 7 and in the p-type region 6 respectively. For example, the n-type InP layer 2, the i-type InGaAs light absorbing layer 3 and the p-type InP layer 4 are formed on the semi insulating InP substrate 1 and further, an InP contact layer 5, the p-type impurity introduced region 6, the n-type impurity introduced region 7 and the ohmic contact electrodes 8, 9 are formed.

Description

【発明の詳細な説明】 〔概要〕 この発明は、半導体受光装置にかかり、n型半導体層と
n型半導体層との間に光吸収層を設けた積層構造を半絶
縁性基板上に設けて、この半導体基体の表面から積層構
造の最下層に達するn型領域とn型領域とを形成し、こ
のn型領域とn型領域にそれぞれオーミックコンタクト
電極を設けることにより、 分布容量が小さく、しかも0BICに好適な横型構造の
PTN−PDを実現するものである。
[Detailed Description of the Invention] [Summary] The present invention relates to a semiconductor light-receiving device, in which a laminated structure in which a light absorption layer is provided between n-type semiconductor layers is provided on a semi-insulating substrate. By forming an n-type region and an n-type region reaching from the surface of the semiconductor substrate to the bottom layer of the laminated structure, and providing ohmic contact electrodes to the n-type region and the n-type region, respectively, the distributed capacitance is small, and the distributed capacitance is small. This realizes a PTN-PD with a horizontal structure suitable for 0BIC.

〔産業上の利用分野〕[Industrial application field]

本発明は半導体受光装置、特に横型PIN構造の半導体
受光装置に関する。
The present invention relates to a semiconductor light receiving device, and particularly to a semiconductor light receiving device having a horizontal PIN structure.

光通信などの光応用システムに用いる半導体受光装置に
は、PINホトダイオード(PIN−PD)とアバラン
シホトタ゛イオード(八PD)  とがあるが、AI’
Dは光検知器の信号対雑音比を改修する効果があるもの
の、数10Vの高電圧が必要であること、AGC回路が
必要であることなどから、主として長距離、大容量の通
信システムに適している。これに対して化合物半導体P
IN−PDは、5■程度で動作し、受光回路が簡単であ
るなどの利点から、中、低容量のシステムに適している
Semiconductor photodetectors used in optical application systems such as optical communications include PIN photodiodes (PIN-PD) and avalanche photodiodes (8PD), but AI'
Although D has the effect of improving the signal-to-noise ratio of photodetectors, it is mainly suitable for long-distance, large-capacity communication systems because it requires a high voltage of several tens of volts and an AGC circuit. ing. On the other hand, compound semiconductor P
IN-PD is suitable for medium to low capacity systems because it operates in about 5cm and has a simple light receiving circuit.

しかしながらPIN−PDでは後述の如く、その電極間
に生ずる容量(キャパシタンス)によって受信レベルが
大きく支配されるために、この容量の低減が重要である
However, in the case of a PIN-PD, as will be described later, the reception level is largely controlled by the capacitance generated between the electrodes, so it is important to reduce this capacitance.

また光半導体素子と電子回路とをモノリシック集積する
光・電子集積回路(O[IC)の開発が進められている
が、0EIC化には横型表面構造の受光素子が適してい
る。しかしながら例えば従来のMSM−PO(Meta
l−8emiconductor−Metal Pho
todiode)は、後述の如く暗電流が大きくなり易
い欠点がある。
Further, the development of opto-electronic integrated circuits (O[IC), which monolithically integrate optical semiconductor elements and electronic circuits, is progressing, and a light-receiving element with a horizontal surface structure is suitable for O[IC]. However, for example, conventional MSM-PO (Meta
l-8emiconductor-Metal Pho
As will be described later, the dark current tends to increase.

この様な事情から、横型PIN構造で電極間容量が小さ
い受光素子が要望されている。
Under these circumstances, there is a demand for a light receiving element with a horizontal PIN structure and a small interelectrode capacitance.

〔従来の技術〕[Conventional technology]

第3図は通常のGaAs/^1GaAs系PIN−PD
の従来例の模式側断面図である。本従来例では♂型Ga
As基板21上に、例えばキャリア濃度I X1015
cm−’、厚さ3μm程度のi(ν)型GaAs層23
、キャリア濃度IX 10 ’ bcm−3、厚さ2p
111程度のn型AlGaAs層24を積層成長し、例
えば亜鉛(Zn)拡散によりキャリア濃度I XIO”
cm−3程度のp型領域25を形成L、p型領域25に
オーミックコンタクトしてポンディングパッド部をp型
領域25の外に設けたn側電極28と、裏面から基板2
1にオーミックコンタクトするn側電極29とを設けて
いる。
Figure 3 shows a normal GaAs/^1GaAs PIN-PD.
FIG. 2 is a schematic side sectional view of a conventional example. In this conventional example, ♂ type Ga
On the As substrate 21, for example, a carrier concentration I
cm-', i(ν) type GaAs layer 23 with a thickness of about 3 μm
, carrier concentration IX 10' bcm-3, thickness 2p
An n-type AlGaAs layer 24 of about 111 is grown in layers, and the carrier concentration is increased to IXIO'' by, for example, zinc (Zn) diffusion.
A p-type region 25 of about cm-3 is formed L, an n-side electrode 28 is formed with a bonding pad part outside the p-type region 25 by making ohmic contact with the p-type region 25, and the substrate 2 is formed from the back side.
An n-side electrode 29 that makes ohmic contact with 1 is provided.

上述の如きPIN−PDの受信信号の増幅には通常電界
効果トランジスタによる高入力インピーダンス増幅器を
用いるが、その等価回路は第4図の様に表される。同図
において、i、(ω)はPDの信号電流、R4はPDの
内部抵抗、R3はPDの直列抵抗、C8はr’Dの容量
で接合容1c、と分布容量CCとの和であり、増幅器の
入力部に相当する外部回路を負荷抵抗RLと容量CLと
で表している。なおPDの直列抵抗R5は一般に小さく
て無視できる。
A high input impedance amplifier using a field effect transistor is usually used to amplify the received signal of the PIN-PD as described above, and its equivalent circuit is shown in FIG. In the figure, i, (ω) is the signal current of the PD, R4 is the internal resistance of the PD, R3 is the series resistance of the PD, and C8 is the capacitance of r'D, which is the sum of the junction capacitance 1c and the distributed capacitance CC. , an external circuit corresponding to the input section of the amplifier is represented by a load resistance RL and a capacitance CL. Note that the series resistance R5 of the PD is generally small and can be ignored.

この外部回路の負荷抵抗1ン、に現れる信号出力電力P
!lLは、 C=C4+CL=Cj +(:、 +(:LRL  R
L で表される。この信号出力電力PSLを大きくし、信号
対雑音比で制約される最小受信レベルを下げるには、等
価容1cを小さくし、使用する周波数特性1許される範
囲内で負荷抵抗RLを大きくして内部抵抗R0に近づけ
ることが望ましい。
The signal output power P appearing at the load resistance 1 of this external circuit
! lL is C=C4+CL=Cj +(:, +(:LRL R
Represented by L. In order to increase this signal output power PSL and lower the minimum reception level restricted by the signal-to-noise ratio, reduce the equivalent capacitance 1c, increase the load resistance RL within the allowable range of the frequency characteristics 1 used, and increase the internal It is desirable to make it close to the resistance R0.

また第5図はMSM−PDの1従来例を示す模式断面図
であり、31は半絶縁性GaAs基板、32は低濃度の
n型GaAs層1,33.34は例えばアルミニウム(
AI)を用いたショットキコンタクト電極であり、電極
33.34は交互に入り組んだ櫛歯形にパターニングさ
れている。
Further, FIG. 5 is a schematic cross-sectional view showing one conventional example of MSM-PD, in which 31 is a semi-insulating GaAs substrate, 32 is a low concentration n-type GaAs layer 1, and 33 and 34 are, for example, aluminum (
This is a Schottky contact electrode using AI), and the electrodes 33 and 34 are patterned in an alternately intricate comb shape.

このMSM−PDは横型表面構造で0[IC化が容易で
あるが、ショッ1−キバリアを用いているために暗電流
を支配するバリアの高さがGaAsの禁制帯幅のほぼl
と小さく、暗電流が大きい。
This MSM-PD has a horizontal surface structure and is easy to integrate into an IC, but since it uses a Schottky barrier, the height of the barrier that governs the dark current is approximately l the forbidden band width of GaAs.
, and the dark current is large.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上述の如く信号出力電力を大きくし最小受信レベルを下
げるためにPIN−PD側でなし得る手段としてはその
容量C8の減少がある。
As mentioned above, one possible measure on the PIN-PD side to increase the signal output power and lower the minimum reception level is to reduce the capacitance C8.

PIN−PDの容量C1のうち、接合容量Cjの低減に
ついては自ずから限度がある。これに対して前記従来例
の如きPIN−PDでは、ポンディングパッド部の容量
が分布容量Ccの大きい比率を占めており、これを減少
させることが必要である。
Of the capacitance C1 of the PIN-PD, there is a limit to the reduction of the junction capacitance Cj. On the other hand, in the conventional PIN-PD, the capacitance of the bonding pad portion accounts for a large proportion of the distributed capacitance Cc, and it is necessary to reduce this.

更にこの分布容量CCの低減を横型P■N構造で実現し
、暗電流を抑制して、0IEIC化によく適合させるこ
とが強く要望されている。
Furthermore, there is a strong demand for reducing the distributed capacitance CC with a lateral P-N structure, suppressing dark current, and making it well suited for OIEIC.

〔問題点を解決するための手段〕[Means for solving problems]

前記問題点は、n型半導体層とp型半4体層との間に光
吸収層を設けた積層構造を半絶縁性半導体基板上に設け
た半導体基体を備えて、該積層構造の最下層を除く該n
型半導体層及びp型半導体層が受光対象とする光を吸収
せず、該半導体基体の表面から該最下層に達するn型領
域とp!!!領域とが形成されて、該n型領域とp型領
域にそれぞれオーミックコンタクト電極を備える本発明
にょる半導体受光装置により解決される。
The above problem is solved by providing a semiconductor substrate in which a laminated structure in which a light absorption layer is provided between an n-type semiconductor layer and a p-type semi-quaternary layer is provided on a semi-insulating semiconductor substrate, and the bottom layer of the laminated structure is n excluding
The n-type semiconductor layer and the p-type semiconductor layer do not absorb the light to be received, and the n-type region and the p! ! ! This problem is solved by the semiconductor light receiving device according to the present invention, in which a region is formed and ohmic contact electrodes are provided in each of the n-type region and the p-type region.

なお前記積層構造は、n型半導体層、光吸収層、n型半
導体層が各INのp−4−n構造に限られず、それぞれ
複数の層を例えば−p−i−n−i−p−の順序に積層
した超格子構造等であってもよい。
Note that the laminated structure is not limited to the p-4-n structure in which the n-type semiconductor layer, the light absorption layer, and the n-type semiconductor layer are each IN; It may also be a superlattice structure in which the layers are stacked in this order.

また積層構造の最下層であるn型半導体層又はn型半導
体層は、受光対象とする光を吸収してもしなくてもよい
Further, the n-type semiconductor layer or the n-type semiconductor layer that is the bottom layer of the stacked structure may or may not absorb the light to be received.

〔作 用〕[For production]

本発明による半導体受光装置は、例えば第1図に示す実
施例の如く、半絶縁性基板1側に、高不純物濃度の一導
電型半導体層2と反対導電型半導体層4との間に光吸収
層3を設けた積層構造と、横方向に対向して半導体基体
の表面からこの積層構造の最下層に達する高濃度の一導
電型不純物導入領域6及び反対導電型不純物導入領域7
と、この領域6.7にそれぞれオーミックコンタクト電
極8.9とを備えている。
In the semiconductor light receiving device according to the present invention, for example, as in the embodiment shown in FIG. A laminated structure in which layer 3 is provided, and a high concentration impurity-introduced region 6 of one conductivity type and an opposite conductivity type impurity-introduced region 7 that face each other laterally and reach the lowest layer of this laminated structure from the surface of the semiconductor substrate.
and an ohmic contact electrode 8.9 in each region 6.7.

第1図に例示した積層構造は光吸収層3が単一の場合で
あるが、同一導電型の不純物4人aH域と半導体層がそ
れぞれ一体となり、光吸収層3を両者の間に挾んだp−
1−n構造となっている。なお上述のそれぞれ複数の半
導体層を積層した超格子構造もこれが重畳したものに相
当する。
The laminated structure illustrated in FIG. 1 is a case in which the light absorption layer 3 is single, but the four impurity aH regions of the same conductivity type and the semiconductor layer are each integrated, and the light absorption layer 3 is sandwiched between them. Dap-
It has a 1-n structure. Note that the above-mentioned superlattice structure in which a plurality of semiconductor layers are laminated also corresponds to a structure in which these layers are superimposed.

この光吸収層3の横方向の寸法はその厚さより通常温か
に大きいために、光吸収層3内で入射光によって励起さ
れた電子、正札は殆どn型半導体層とn型半導体層にド
リフトし、第3図に示した従来例と同様に動作する。
Since the lateral dimension of this light absorbing layer 3 is usually much larger than its thickness, most of the electrons excited by the incident light in the light absorbing layer 3 and the regular tag drift to the n-type semiconductor layer and the n-type semiconductor layer. , operates in the same manner as the conventional example shown in FIG.

従って暗電流を前記MSM−PD等より大幅に減少させ
ることができ、またその半導体基板が半絶縁性であり、
電極が同一平面上に位置するために、電極間の分布容量
は第3図に示した従来例より大幅に減少する。
Therefore, the dark current can be significantly reduced compared to the above-mentioned MSM-PD, and the semiconductor substrate is semi-insulating,
Since the electrodes are located on the same plane, the distributed capacitance between the electrodes is significantly reduced compared to the conventional example shown in FIG.

更に図からも明らかであるように横型表面構造で0EI
C化に好適であり、また単体の受光素子として他の回路
基板にボンディングする場合にも好都合である。
Furthermore, as is clear from the figure, the horizontal surface structure has 0EI.
It is suitable for C conversion, and also suitable for bonding to other circuit boards as a single light receiving element.

〔実施例〕〔Example〕

以下本発明を実施例により具体的に説明する。 The present invention will be specifically explained below using examples.

第1図は本発明の第1の実施例の模式斜視図である。同
図において、1は半絶縁性1nP基板、2は例えば不純
物濃度I XIO”cm−”、厚さ0.5〜1μm0程
度のn型■nP層、3はノンドープで厚さ例えば1〜3
μm程度のi型1no、 s+Gao、 47AS光吸
収層、4は例えば不純物濃度I XIO■cm−’、厚
さ0.5〜1μm程度のp型1nP層、5は厚さ例えば
0.5μm程度のInPコンタクト層、6は例えば亜鉛
(Zn)を最大不純物ン農度1.5X10Il1cm−
3程度にドープしたn型不純物導入領域、7は例えばシ
リコン(Si)を最大不純物濃度1.5X10”cm−
”程度にドープしたn型不純物導入領域、8はp型不純
物4人領域6にオーミックコンタクトする電極、9はn
型不純物導入領域7にオーミックコンタクトする電極で
ある。
FIG. 1 is a schematic perspective view of a first embodiment of the present invention. In the figure, 1 is a semi-insulating 1nP substrate, 2 is an n-type nP layer with impurity concentration I
4 is an i-type 1no, s+Gao, 47AS light absorption layer with a thickness of about μm, 4 is a p-type 1nP layer with an impurity concentration of, for example, IXIOcm-' and a thickness of about 0.5 to 1 μm, and 5 is a p-type 1nP layer with a thickness of about 0.5 μm, for example. The InP contact layer 6 is made of, for example, zinc (Zn) with a maximum impurity concentration of 1.5X10Il1cm-
The n-type impurity introduced region 7 is doped with silicon (Si) to a maximum impurity concentration of 1.5 x 10"cm-
8 is an electrode that makes ohmic contact with the p-type impurity region 6, and 9 is an n-type impurity doped region.
This is an electrode that makes ohmic contact with the type impurity introduced region 7.

本実施例は1.1〜1.65μm帯域を受光対象とし、
n型1nr’層2及びp型1nP層4はこの帯域の光を
吸収しない。なお本実施例は半絶縁性基板1側の半導体
層2をn型としているが、導電型を交換した構造も同様
に構成することができる。
In this example, the 1.1 to 1.65 μm band is the target of light reception,
The n-type 1nr' layer 2 and the p-type 1nP layer 4 do not absorb light in this band. In this embodiment, the semiconductor layer 2 on the semi-insulating substrate 1 side is of n-type, but a structure in which the conductivity types are exchanged can be similarly constructed.

また第2図は本発明の第2の実施例の模式断面図である
。同図において、11は半絶縁性GaAs基板、12a
、・、・・、12nは例えば不純物濃度I X1018
cm−’、厚さ数10nm程度のn型へlo、 + 5
Gao、 92八S層、13a、・−・・、13nはノ
ンドープで厚さ例えば数LOnm程度のi型G a A
 s光吸収層、14a、−−−−,14nは例えば不純
物濃度I X1018cm−”、厚さ数10 nm程度
のp型A1o、+、Ga。、B□AsJW、15は厚さ
例えば約0.5μmのGaAsコンタクト層、16は最
大不純物濃度が例えば1.5 X 10’8cm−3程
度のn型不純物導入領域、17は最大不純物濃度が例え
ば1.5X 101101I1”程度のn型不純物導入
領域、I8はn型不純物導入領域1Gにオーミックコン
タクトする電極、19はn型不純物導入領域17にオー
ミックコンタクトする電極である。
Further, FIG. 2 is a schematic sectional view of a second embodiment of the present invention. In the figure, 11 is a semi-insulating GaAs substrate, 12a
,...,12n is, for example, the impurity concentration IX1018
cm-', to n-type with a thickness of about 10 nm lo, + 5
The 928 S layers 13a, . . . , 13n are non-doped i-type Ga A with a thickness of, for example, several LO nm.
The s light absorption layers 14a, ---, 14n have, for example, an impurity concentration of IX1018 cm-'', a p-type A1o, +, Ga., B□AsJW, and a thickness of about several tens of nanometers, and the layer 15 has a thickness of, for example, about 0. 5 μm GaAs contact layer, 16 an n-type impurity doped region with a maximum impurity concentration of, for example, about 1.5 x 10'8 cm-3, 17 an n-type impurity doped region with a maximum impurity concentration of, for example, about 1.5 x 10'101I1''; I8 is an electrode that makes ohmic contact with the n-type impurity introduced region 1G, and 19 is an electrode that makes ohmic contact with the n-type impurity introduced region 17.

本実施例は0.8μm帯域を受光対象とし、n型Alo
、 + 5Gao、ozAsIl 12a等及びp型A
lo、 +nGao、 ozAsIl14a等はこの帯
域の光を吸収しない組成を選択している。
In this example, the 0.8 μm band is the light receiving target, and the n-type Alo
, +5Gao, ozAsIl 12a etc. and p-type A
For lo, +nGao, ozAsIl14a, etc., compositions that do not absorb light in this band are selected.

なお本第2の実施例の如く、薄い光吸収層とn、p型半
厚体層とによる超格子構造を用いれば、受光方向を半導
体基板に垂直な方向に限らず、横方向とすることも可能
となる。
Note that if a superlattice structure including a thin light absorption layer and n-type and p-type semi-thickness layers is used as in the second embodiment, the light receiving direction is not limited to the direction perpendicular to the semiconductor substrate but can be set to the lateral direction. is also possible.

これらの実施例はポンディングパッドを含む電極部分の
容量が、相当する第3図の従来例に比較して約172〜
1/3に減少し、明らかな信号出力電力の増大、最小受
信レベルの低減が実現している。
In these embodiments, the capacitance of the electrode portion including the bonding pad is approximately 172 to 100% compared to the corresponding conventional example shown in FIG.
The signal output power has been reduced to 1/3, and a clear increase in signal output power and a reduction in the minimum reception level have been realized.

〔発明の効果〕〔Effect of the invention〕

・以上説明した如く本発明によれば、分布容量、暗電流
が低減して信号出力電力の増大、最小受信レベルの低減
が実現し、しかも0EICに好適な横型構造であって、
光通信等の光応用システムの進展に大きい効果が得られ
る。
- As explained above, according to the present invention, the distributed capacitance and dark current are reduced, the signal output power is increased, and the minimum reception level is reduced, and the horizontal structure is suitable for 0EIC,
This will have a great effect on the progress of optical application systems such as optical communications.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1の実施例の模式斜視図、第2図は
第2の実施例の模式断面図、 第3図は従来例の模式断面図(PIN−PD)、第4図
は外部回路を含むその等価回路図、第5図は従来例の模
式断面図(MSM−PD)を示す。 図において、 ■は半絶縁性1nP基板、 2はn型Tnl’層、 3はi型1nGaAs光吸収層、 4はp型InP層、 5はInPコンタクト層、 6.16はp型不純物導入領域、 7.17はn型不純物導入領域、 8.9.18、■9はオーミックコンタクト電極、11
は半絶縁性GaAs基板、 12a、−−・・、12nはn型へlGaAs層、13
a、・・・・、13nはi型GaAs光吸収層、14a
、・−・・、14nはp型AlGaAs層、15はGa
Asコンタクト層を示す。 :¥I 4 后 艮μmの欄へ氏面図酬詰−PD) 矛 ラ 〃
Fig. 1 is a schematic perspective view of the first embodiment of the present invention, Fig. 2 is a schematic sectional view of the second embodiment, Fig. 3 is a schematic sectional view of the conventional example (PIN-PD), and Fig. 4 5 shows an equivalent circuit diagram including an external circuit, and FIG. 5 shows a schematic cross-sectional view of a conventional example (MSM-PD). In the figure, ① is a semi-insulating 1nP substrate, 2 is an n-type Tnl' layer, 3 is an i-type 1nGaAs light absorption layer, 4 is a p-type InP layer, 5 is an InP contact layer, 6.16 is a p-type impurity doped region , 7.17 is an n-type impurity doped region, 8.9.18, ■9 is an ohmic contact electrode, 11
are semi-insulating GaAs substrates, 12a, --..., 12n are n-type GaAs layers, 13
a,..., 13n are i-type GaAs light absorption layers, 14a
,..., 14n is a p-type AlGaAs layer, 15 is Ga
An As contact layer is shown. :¥I 4 Afterwards, go to the μm column for the full profile diagram - PD)

Claims (1)

【特許請求の範囲】[Claims] n型半導体層とp型半導体層との間に光吸収層を設けた
積層構造を半絶縁性半導体基板上に設けた半導体基体を
備えて、該積層構造の最下層を除く該n型半導体層及び
p型半導体層が受光対象とする光を吸収せず、該半導体
基体の表面から該最下層に達するn型領域とp型領域と
が形成されて、該n型領域とp型領域にそれぞれオーミ
ックコンタクト電極を備えることを特徴とする半導体受
光装置。
The n-type semiconductor layer except for the bottom layer of the laminated structure is provided with a semiconductor substrate in which a laminated structure in which a light absorption layer is provided between an n-type semiconductor layer and a p-type semiconductor layer is provided on a semi-insulating semiconductor substrate. And the p-type semiconductor layer does not absorb the light to be received, and an n-type region and a p-type region are formed that reach from the surface of the semiconductor substrate to the bottom layer, and the n-type region and the p-type region are respectively A semiconductor light receiving device characterized by comprising an ohmic contact electrode.
JP62050714A 1987-03-05 1987-03-05 Semiconductor photo detector Pending JPS63216386A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62050714A JPS63216386A (en) 1987-03-05 1987-03-05 Semiconductor photo detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62050714A JPS63216386A (en) 1987-03-05 1987-03-05 Semiconductor photo detector

Publications (1)

Publication Number Publication Date
JPS63216386A true JPS63216386A (en) 1988-09-08

Family

ID=12866555

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62050714A Pending JPS63216386A (en) 1987-03-05 1987-03-05 Semiconductor photo detector

Country Status (1)

Country Link
JP (1) JPS63216386A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100352816B1 (en) * 2000-03-10 2002-09-16 광주과학기술원 Epitaxial structure of high-speed photodetector
JP2011238942A (en) * 2002-12-18 2011-11-24 Noblepeak Vision Corp Semiconductor device having reduced defect of active region, and unique contact scheme

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100352816B1 (en) * 2000-03-10 2002-09-16 광주과학기술원 Epitaxial structure of high-speed photodetector
JP2011238942A (en) * 2002-12-18 2011-11-24 Noblepeak Vision Corp Semiconductor device having reduced defect of active region, and unique contact scheme

Similar Documents

Publication Publication Date Title
US6515315B1 (en) Avalanche photodiode for high-speed applications
US7202102B2 (en) Doped absorption for enhanced responsivity for high speed photodiodes
US7936034B2 (en) Mesa structure photon detection circuit
US20180138350A1 (en) Light-receiving element and optical integrated circuit
DE102019135282A1 (en) Optoelectronic component with current deflected on high gain paths
EP0452801B1 (en) Semiconductor device having light receiving element and method of producing the same
JP7302775B2 (en) Semiconductor light receiving element
US20030155625A1 (en) Semiconductor light receiving device and semiconductor part
US4301463A (en) Demultiplexing photodetector
JPS63216386A (en) Semiconductor photo detector
JP4109159B2 (en) Semiconductor photo detector
JPH0656900B2 (en) Semiconductor optical device
JP3688909B2 (en) Semiconductor photo detector
JPH02199877A (en) Optical receiver and photoelectric integrated circuit
CN115101612B (en) High-speed PIN detector of double multiple quantum wells of silicon-based
JP2670553B2 (en) Semiconductor light receiving / amplifying device
JPH01196182A (en) Photodiode
JP2570424B2 (en) Semiconductor light receiving element
JPS63122180A (en) Pin-type semiconductor photodetector
WO2022219710A1 (en) Light-receiving element and method for producing same
JP4284781B2 (en) MSM type photodiode
RU2676188C1 (en) Uhf photodetector of laser radiation
JP2712208B2 (en) Light receiving element
JPH0529642A (en) Semiconductor photodetector
JPH0567804A (en) Photodetector