JPS63215306A - Manufacture of copper or copper alloy foil for tape carrier - Google Patents

Manufacture of copper or copper alloy foil for tape carrier

Info

Publication number
JPS63215306A
JPS63215306A JP62047451A JP4745187A JPS63215306A JP S63215306 A JPS63215306 A JP S63215306A JP 62047451 A JP62047451 A JP 62047451A JP 4745187 A JP4745187 A JP 4745187A JP S63215306 A JPS63215306 A JP S63215306A
Authority
JP
Japan
Prior art keywords
copper
foil
copper alloy
crystal grain
tape carrier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62047451A
Other languages
Japanese (ja)
Inventor
Masahiro Tsuji
正博 辻
Susumu Kawauchi
川内 進
Hiroshi Nakayama
弘 中山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Nippon Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Mining Co Ltd filed Critical Nippon Mining Co Ltd
Priority to JP62047451A priority Critical patent/JPS63215306A/en
Publication of JPS63215306A publication Critical patent/JPS63215306A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/50Tape automated bonding [TAB] connectors, i.e. film carriers; Manufacturing methods related thereto
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern

Landscapes

  • Metal Rolling (AREA)
  • Wire Bonding (AREA)

Abstract

PURPOSE:To easily obtain copper or copper alloy foils with smooth surfaces by annealing the foils to have fine crystal grain sizes smaller than the final foil thickness and again performing cold rolling on the foils. CONSTITUTION:A performed rolled stock of copper or copper alloy is annealed so that its crystal grain sizes are brought to be smaller than the final foil thickness and the stock is again cold rolled to be a foil. Thus, a foil having good rollability, flat shape, and fine surface roughness is obtained. Preferable annealing is such that crystal grain sizes are regulated to <=about 1/2 of the final foil thickness.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体チップを配線板に実装するのに適したテ
ープキャリヤ用銅又は銅合金箔の製造方法に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for manufacturing a copper or copper alloy foil for a tape carrier suitable for mounting semiconductor chips on a wiring board.

〔従来の技術〕[Conventional technology]

半導体チップは通常数ミリ角、厚さ100ミクロン程度
の小片なので、このままでは配線板に装着しにくい。そ
のため一般にICパッケージと呼ばれている一種の容器
に収納されている。
Semiconductor chips are usually small pieces a few millimeters square and about 100 microns thick, so it is difficult to mount them on a wiring board as is. Therefore, it is generally housed in a type of container called an IC package.

このICパッケージの基本形は半導体チップが放熱用金
属板であるヒートシンク上に装着され、ボンディングワ
イヤーにより前記チップのfl!極端子と外部回路接続
用リード線とが接合されている構造を有している。
The basic form of this IC package is that a semiconductor chip is mounted on a heat sink, which is a metal plate for heat dissipation, and the fl! It has a structure in which an electrode terminal and a lead wire for external circuit connection are joined.

前記リード線はパッケージ外にムカデの足のように突出
しており、ピンとも呼ばれている。
The lead wires protrude outside the package like centipede legs and are also called pins.

このようなIC,LSI用パッケージはピンが垂直下方
向に両側から2列に突き出ているデュアルインラインパ
ッケージ(D I P)方式とピンが四辺の平面方向に
突き出ているフラットパッケージ(F P)方式が今の
ところ主流となっている。
There are two types of IC and LSI packages: the dual in-line package (DIP), in which the pins protrude vertically downward from both sides in two rows, and the flat package (FP), in which the pins protrude in the plane of the four sides. is currently the mainstream.

前記FP方式はリード数(ピン数)をDIP方式よりも
比較的多くできるので配線板上の実装密度をやや高める
ことができるという利点がある。
The FP method has the advantage that the number of leads (pins) can be relatively increased compared to the DIP method, so that the packaging density on the wiring board can be increased somewhat.

しかしながら最近ではLSIの高集積化が進み、それに
比例してピン数も急速に増加する傾向にあるので、前記
のようなFP方式やDIP方式では間に合わず、多ピン
化に対応できる新しいパッケージ方式が求められていた
However, in recent years, LSIs have become more highly integrated, and the number of pins has also increased rapidly in proportion to this, so the FP and DIP methods described above are no longer sufficient, and new packaging methods that can accommodate increased pin counts are being developed. It was wanted.

このような中でテープキャリヤ(フィルムキャリヤとも
言う)と呼ばれるパッケージ方式が開発された。
Under these circumstances, a packaging method called tape carrier (also called film carrier) was developed.

このテープキャリヤ方式は第1図に示すようにスプロケ
ットホイール1のついた長尺のテープ状2のもので、テ
ープ2の基材はポリイミド、ポリエステル、ポリエーテ
ルスルホン(PES)、ポリパラパニック酸(PPA)
などの樹脂を使用し。
As shown in Figure 1, this tape carrier system consists of a long tape 2 with a sprocket wheel 1 attached, and the base material of the tape 2 is polyimide, polyester, polyether sulfone (PES), polyparapanic acid ( PPA)
using resins such as

その上に銅箔を貼り、これをさらにフォトエツチングに
より銅製のチップボンディング用フィンガー3及び鋼製
の外部接続用フィンガー4を形成したものである。
Copper foil is pasted thereon, and then photo-etched to form copper chip bonding fingers 3 and steel external connection fingers 4.

半導体チップの電極にはバンプを形成し、全ての端子を
同時に接合するギヤングボンディングにより、前記チッ
プの電極(バンプ)とフィンガーとを接合する。そして
次にキャリヤより銅製の外部接続用フィンガーの付いた
半導体素子を打ち抜き配線板に実装する。
Bumps are formed on the electrodes of the semiconductor chip, and the electrodes (bumps) of the chip are bonded to the fingers by means of gigantic bonding, in which all terminals are bonded simultaneously. Next, the semiconductor element with copper external connection fingers is mounted on the punched wiring board from the carrier.

このように形成されるテープキャリヤは■ テープ状(
長尺)のまま扱うことができ、スプロケットホールを利
用して位置決めができる。
The tape carrier formed in this way has a tape-like shape (
It can be handled as a long piece and can be positioned using the sprocket hole.

■ ワイヤボンディング方式に比べて、ボンディング時
にフィンガーのつぶれが殆んどないので、端子ピッチを
著しく詰めることができる(80ミクロン程度まで)。
■ Compared to the wire bonding method, there is almost no crushing of the fingers during bonding, so the terminal pitch can be significantly reduced (up to about 80 microns).

■ ギヤングボンディング方式であるため、ボンディン
グ工数は一度で済み端子数に無関係である。
■ Because it uses a gigantic bonding method, the bonding process is done only once and is independent of the number of terminals.

■ キャリアにつけたままでチップのバーンインテスト
ができる。
■ Chip burn-in tests can be performed while attached to the carrier.

■ キャリアが薄く、柔軟性を有するので薄型。■ The carrier is thin and flexible, making it thin.

フレキシブル型の実装ができる。Flexible implementation possible.

■ 実装後のチップ取り替えが容易である。■ Chip replacement after mounting is easy.

などの多くの利点があり、特に多ピン化を必要とする高
密度実装タイプのLSI用に適するものである。
It has many advantages such as, and is particularly suitable for high-density mounting type LSI requiring a large number of pins.

ところで、このようなテープキャリヤ方式に使用される
金属導体としては20〜50μm厚の銅箔が使用されて
おり、さらに薄い板厚のものも検討されている。テープ
キャリヤ用金属導体はフィンガ一部の裏面にIC素子を
ボンディングするので、できるだけ銅箔の裏面が平滑で
あることが要求される1通常、圧延鋼箔が用いられるが
1表面の平滑な形状のよい極薄銅箔の製造は非常に難か
しく、歩留りよく品質のよい鋼箔が望まれていた。
By the way, copper foil with a thickness of 20 to 50 .mu.m is used as the metal conductor used in such a tape carrier method, and copper foil with an even thinner plate thickness is also being considered. Since the metal conductor for the tape carrier has an IC element bonded to the back side of a part of the finger, it is required that the back side of the copper foil be as smooth as possible. 1. Usually, rolled steel foil is used, but 1. It is extremely difficult to produce good ultra-thin copper foil, and a high-quality steel foil with good yield has been desired.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明は、上述した如き状況に鑑みなされたものであっ
て、表面の平滑な銅又は銅合金箔を容易に製造できる方
法を提供しようとするものである。
The present invention was made in view of the above-mentioned situation, and it is an object of the present invention to provide a method for easily manufacturing copper or copper alloy foil with a smooth surface.

以下本発明の詳細な説明する。The present invention will be explained in detail below.

〔発明の構成〕[Structure of the invention]

鋼又は銅合金製中間圧延材を結晶粒径が最終の箔の厚み
よりも小さくなるように焼鈍し、これを再冷間圧延して
箔とすることを特徴とするテープキャリヤ用銅又は銅合
金箔の製造方法に関する。
A copper or copper alloy for a tape carrier, characterized in that an intermediate rolled steel or copper alloy material is annealed so that the crystal grain size becomes smaller than the final thickness of the foil, and then cold rolled again to form a foil. This invention relates to a method for producing foil.

〔問題点を解決するための手段〕[Means for solving problems]

本発明者らは、銅箔の製造性、形状(平坦性)、表面品
質等について種々の検討を行ったところ、これら諸性質
と結晶粒径に強い相関のあることがわかった。
The present inventors conducted various studies on the manufacturability, shape (flatness), surface quality, etc. of copper foil, and found that there is a strong correlation between these properties and crystal grain size.

すなわち、焼鈍によって最終の箔の厚さ以上の結晶粒径
になったものを、冷間圧延すると、箔の厚さ方向で結晶
粒が1つしかないような状態となる。このような結晶粒
径をもつ材料の箔素材を最終厚さにしようとすると圧延
抵抗が著しく大きくなり、圧延性を悪化させる。またこ
の圧延性を良好にすべく張力を大きくかけると、材料形
状がS字状になり易くなりまた、表面粗さも悪化(粗く
なる)するという欠点を有している。このようなことか
ら、本発明におけるように最終の箔の厚さよりも小さな
結晶粒径になるように焼鈍し、これに再冷間圧延を施す
ことにより、圧延性が良好で、かつ形状が平坦で表面粗
さの細かい箔を製造することが可能となった。好ましく
は、前記箔の最終厚さの172以下の結晶粒径になるよ
うに焼鈍することが推奨される。
That is, when a foil whose crystal grain size is equal to or larger than the thickness of the final foil through annealing is cold rolled, the foil will be in a state where there is only one crystal grain in the thickness direction. If a foil material made of a material having such a crystal grain size is attempted to have the final thickness, the rolling resistance will become significantly large and the rolling properties will deteriorate. Furthermore, if a large tension is applied to improve the rolling properties, the material tends to become S-shaped, and the surface roughness also deteriorates (becomes rougher). For this reason, as in the present invention, by annealing the foil to a grain size smaller than the final thickness and then cold rolling it again, it is possible to achieve good rollability and a flat shape. It became possible to produce foil with fine surface roughness. Preferably, it is recommended that the foil be annealed to a grain size of 172 or less of the final thickness of the foil.

なお、テープキャリヤの金属導体としては銅箔が従来か
ら使用されていたが、テープキャリヤ製造工程で熱が加
ねるため、耐熱性の良好な材料が望まれている。従って
、Iに微量添加元素を加えた銅合金は、より好ましい。
Copper foil has conventionally been used as the metal conductor for tape carriers, but since heat is applied during the tape carrier manufacturing process, a material with good heat resistance is desired. Therefore, a copper alloy in which trace amounts of additional elements are added to I is more preferable.

本発明の製造方法は、これら鋼合金にも適用が可能であ
る。
The manufacturing method of the present invention can also be applied to these steel alloys.

具体的に銅合金とは、P、Sn、Ni、Fe、Go、C
r、Zr、Ti、Si、Mg、Ag、Cd、I n、T
e、Be、Hf、B、Mn等の元素の1種又は2種以上
を最大1.0重量%添加したものをいう。
Specifically, copper alloys include P, Sn, Ni, Fe, Go, and C.
r, Zr, Ti, Si, Mg, Ag, Cd, In, T
It refers to a product to which one or more of elements such as e, Be, Hf, B, and Mn are added at a maximum of 1.0% by weight.

〔実施例〕〔Example〕

第1表に示す各種銅又は銅合金を高周波溶解炉で溶解し
鋳造した。このインゴットを熱間圧延で811I11の
板とし、さらに冷間圧延で1mm厚とした。
Various coppers or copper alloys shown in Table 1 were melted and cast in a high frequency melting furnace. This ingot was hot rolled to form a plate of 811I11, and further cold rolled to a thickness of 1 mm.

これを400℃X1hr焼鈍した後0.2膿まで冷間圧
延し、ここで第1表に示す種々の結晶粒度になるように
各種条件で焼鈍した後、0.025mまで冷間圧延した
。なお、このさい冷間圧延ロールとしてはRmaxo、
3μmのものを用い、圧延油としてはロータスCCを用
いた。
This was annealed at 400° C. for 1 hr, then cold rolled to a diameter of 0.2 m, then annealed under various conditions to obtain the various grain sizes shown in Table 1, and then cold rolled to 0.025 m. In this case, the cold rolling rolls were Rmaxo,
A material having a diameter of 3 μm was used, and Lotus CC was used as the rolling oil.

このような供試材の表面粗さについては表面粗さ計でR
maxを測定し、形状については定盤上に置いた時のカ
ール、トヨ等の有無を目視wt察した。
The surface roughness of such test materials can be measured using a surface roughness meter.
max was measured, and the shape was visually observed wt for the presence or absence of curls, sticklebacks, etc. when placed on a surface plate.

また、製造性については、0.2amから0.025I
までの圧延パス回数により判定した。
In addition, regarding manufacturability, from 0.2am to 0.025I
Judgment was made based on the number of rolling passes.

結果を第1表に示す。この結果かられかるように結晶粒
径を最終の箔の厚さよりも小さくすることにより1表面
粗さの平坦な、かつ形状、m造性も良好なテープキャリ
ヤ用銅又は銅合金箔が製造第  1  表
The results are shown in Table 1. These results show that by making the crystal grain size smaller than the final thickness of the foil, copper or copper alloy foil for tape carriers with a flat surface roughness of 1, and with good shape and manufacturing properties can be produced. 1 table

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はテープキャリヤ方式の一例を示す概略説明図で
ある。 1:スプロケットホイール 2:樹脂フィルム 3:チップボンディング用フィンガー 4:外部接続用フィンガー 5:テスト用パッド
FIG. 1 is a schematic explanatory diagram showing an example of a tape carrier system. 1: Sprocket wheel 2: Resin film 3: Chip bonding finger 4: External connection finger 5: Test pad

Claims (1)

【特許請求の範囲】[Claims] 銅又は銅合金製中間圧延材を結晶粒径が最終の箔の厚み
よりも小さくなるように焼鈍し、これを再冷間圧延して
箔とすることを特徴とするテープキャリヤ用銅又は銅合
金箔の製造方法。
Copper or copper alloy for tape carrier, characterized in that an intermediate rolled copper or copper alloy material is annealed so that the crystal grain size becomes smaller than the final thickness of the foil, and then cold rolled again to form a foil. Method of manufacturing foil.
JP62047451A 1987-03-04 1987-03-04 Manufacture of copper or copper alloy foil for tape carrier Pending JPS63215306A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62047451A JPS63215306A (en) 1987-03-04 1987-03-04 Manufacture of copper or copper alloy foil for tape carrier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62047451A JPS63215306A (en) 1987-03-04 1987-03-04 Manufacture of copper or copper alloy foil for tape carrier

Publications (1)

Publication Number Publication Date
JPS63215306A true JPS63215306A (en) 1988-09-07

Family

ID=12775517

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62047451A Pending JPS63215306A (en) 1987-03-04 1987-03-04 Manufacture of copper or copper alloy foil for tape carrier

Country Status (1)

Country Link
JP (1) JPS63215306A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008086999A (en) * 2006-09-29 2008-04-17 Hitachi Cable Ltd Rolled copper foil, its manufacturing method, and flexible printed board using the rolled copper foil

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008086999A (en) * 2006-09-29 2008-04-17 Hitachi Cable Ltd Rolled copper foil, its manufacturing method, and flexible printed board using the rolled copper foil

Similar Documents

Publication Publication Date Title
KR910001420B1 (en) Film carrier and method of manufacturing same
JP2002124533A (en) Electrode material, semiconductor device and mounting device
US10811376B2 (en) Cu column, Cu core column, solder joint, and through-silicon via
JPS63215044A (en) Copper alloy foil for tape carrier
JPH09296237A (en) Metallic substrate material for semiconductor packaging
JPS63215306A (en) Manufacture of copper or copper alloy foil for tape carrier
JPH0616523B2 (en) Film carrier and manufacturing method thereof
JPH0815170B2 (en) Method of manufacturing film carrier
JPH02170951A (en) Production of copper or copper alloy foil having improved heat resistance
JPS6223454B2 (en)
JPH02100354A (en) Ic lead member
JPS6365633A (en) Film carrier for semiconductor device
JPH02100355A (en) Ic lead member
JP3689234B2 (en) Micro gold ball for bump and semiconductor device
JP3213923B2 (en) Underbarrier metal ribbon for bump formation and bump formation method
JP2001015630A (en) Bga-semiconductor package and its manufacture
JPH11264038A (en) Copper alloy foil
CN105161476B (en) A kind of bonding brass wire and its manufacturing method for thin space IC package
JPH0770567B2 (en) Carrier tape and method for manufacturing the same
JP3346458B2 (en) Wiring board having semiconductor chip bonding leads and semiconductor device
JPH01316951A (en) Film carrier and manufacture thereof
JPS63169754A (en) Semiconductor device
JPH06338535A (en) Tape automated bonding method utilizing solder bupm
JP2902020B2 (en) Semiconductor device and mounting method thereof
JPH04357847A (en) Tape for tcp