JPS6321416B2 - - Google Patents

Info

Publication number
JPS6321416B2
JPS6321416B2 JP2191179A JP2191179A JPS6321416B2 JP S6321416 B2 JPS6321416 B2 JP S6321416B2 JP 2191179 A JP2191179 A JP 2191179A JP 2191179 A JP2191179 A JP 2191179A JP S6321416 B2 JPS6321416 B2 JP S6321416B2
Authority
JP
Japan
Prior art keywords
coils
coil
circuit
pole
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP2191179A
Other languages
Japanese (ja)
Other versions
JPS55117445A (en
Inventor
Kimiaki Mori
Toshihiro Furusawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP2191179A priority Critical patent/JPS55117445A/en
Publication of JPS55117445A publication Critical patent/JPS55117445A/en
Publication of JPS6321416B2 publication Critical patent/JPS6321416B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/04Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
    • H02K3/28Layout of windings or of connections between windings

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Windings For Motors And Generators (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は4n+2極(但しnは整数とする)の
3相交流機において、シングルターンの半ターン
型巻コイルを用い、平衡度の良好な4並列回路を
構成する電機子巻線に関する。 一般に交流機電機子回路では、多重並列回路構
成の場合、並列各回路間にはその発生電圧の位相
差、及び絶対値に相違が生じないこと、つまり平
衡度の良い事が要求される。今3相交流機の2層
電機子巻線に於いて、極数をP、1極1相当りの
溝数をab/c(但しa、b、cは整数とする)と すると、各相各並列回路が完全に平衡な多重並列
回路3相電機子巻線を得る為の一般的条件は、並
列回路数がP/cの約数であるとされている。こ
の為、普通に行なわれている結線では平衡度が良
好なP/cの約数以外の並列回路数を得る事は困
難とされていたので、極数によつては、設計の自
由度が非常に制約されていた。例えば1極1相当
りの溝数が整数の場合、12極機で1、2、3、
4、6、12の並列回路が選べる(並列回路1は実
際は並列ではないが並列の特別の場合と考えるこ
とにする。以下のものも同様)のに対し、14極機
では1、2、7、14の並列回路しか選べず、
250MVA級の大容量機に最適な4並列回路近傍
の回路数が選べない欠点があつた。 すなわち、一般にシングルターンの半ターン型
巻コイルが採用される150〜350MVA級の大容量
14極同期発電機に於いて、1相当りの並列回路数
を4に選ぶことが出来れば、定格電圧も、定格電
流も、電磁装荷量も溝数も妥当な値になり、同期
発電機自身のみならず、相分離母線をはじめ、こ
れと接続されるプラント内の他の電気機器の設計
製作上有利となる場合が多い。 3相交流機では、nを任意の整数とすると、
4n極機と4n+2極機の2種類に分類されるが、
4n極機で1極1相当りの溝数が整数の場合は、
従来の結線法によつて、完全に平衡な4並列回路
電機子巻線が容易に得られるが、4n+2極機の
場合は、特殊の工夫をして4並列回路を選ぶこと
が要望されていた。 本発明は4n+2極の3相交流機において、普
通のシングルターンの半ターン型巻コイルを用
い、1極1相の溝数が偶数の場合に、平衡度の良
好な4並列回路3相電機子巻線を提供する事を目
的とする。 本発明においては、まず従来から行なわれてい
る普通の巻線の場合と同様に、電気角1/3π毎に
各コイルが所属する相を決める。今総溝数をNと
すれば、シングルターンの半ターン型巻コイルの
本数は2層巻である故に2N本であり、この本数
が各相に1/3ずつ配分されるから、1相当りの本
数は2/3N本となる。これを1相当りの並列回路
数4で割つて、シリーズになる本数1/6N本を求
めこれを1群とする。このとき溝に収納される半
ターン型巻コイルは磁極との位置関係によつて電
気角を異にしているので、それらをシリーズに接
続すると、各群の回路に発生する電圧は半ターン
型巻コイルに発生する電圧のベクトルの和になる
ので、各群毎の和電圧のベクトル差が最小になる
ようにコイル群を構成して4並列回路に接続す
る。 以下、本発明の一実施例について第1図を参照
して説明する。これは252溝、14極、3相で1極
1相当りの溝数が6で短節率が100%である全節
巻の電機子巻線の或る1相に属する半ターン型巻
コイル各1本に発生する電圧のベクトルA1〜A6
を図示したものである。ここで一般的に1極1相
当りの溝数をqをすれば、前記したように半ター
ン型巻コイルは磁極との位置関係によつて電気角
を異にするが、この電気角を異にする半ターン型
巻コイルは3q種類あり、短節率が100%のときは
1相当りq種類のベクトルを考えれば良い訳であ
る。従つて電気角が同じである半ターン型巻コイ
ルの本数は2N/3q本となる。これを第1図のも
のに当てはめると、q=6であるから、ベクトル
はA1〜A6の6種類となり、各ベクトル間の位相
差はπ/18であり、電気角が同じである半ターン
型巻コイルの本数は2N/3q=28から、28本であ
るので、第1図の各ベクトルA1〜A6の絶対値は
28倍となる。即ち完全に平衡な4並列回路を得る
為には、各ベクトルA1〜A6の半ターン型巻コイ
ルに属する本数のうち、1/4ずつ選択する際、28
本は4の7倍であるから、7本ずつ選び、シリー
ズに接続する。このとき、極数Pと1極1相当り
の溝数の積が4の倍数でないと、平衡した巻線と
ならないが、14極のような4n+2極機では極数
を2で割ると奇数になつてしまうので、1極1相
当りの溝数は偶数であることが必要条件となる。
本実施例によると、A1〜A6のベクトルの各電圧
をVA1,VA2,…,VA6とすると、各並列回路の電
圧は、すべて7(VA1+VA2+VA3+VA4+VA5
VA6)となり、各並列回路の電圧、位相共等しく
なり、並列回路間に循環電流が流れるようなこと
はない。 このように短節率が100%であれば、溝に収納
される2層、即ち上コイルと下コイルは必ず位相
が同じである為、1極1相当りの溝数qと極数P
の値に無関係に完全に平衡な4並列回路3相電機
子巻線が得られる。 次に、他の実施例として、一般にシングルター
ンコイルを採用する同期機に於いては、高調波を
除去し、電圧波形を改善出来る利点をもつ短節巻
を用いた電機子巻線にするものが多いので、この
場合について説明する。 短節巻を用いた場合は、定められた巻線の短節
率β(βはラジアン表示とする)に応じ、同じ溝
に収納されている上コイルと下コイルの相とが異
相になる溝が必ずあり、この異相コイルの溝数は
次式によつて決定される。 異相コイルの溝数=2×3Pq(1−β/π) 即ち、1相の上コイル及び下コイルがそれぞれ異
相の下コイル及び上コイルと一緒に収納される半
ターン型巻コイルの本数は各々{3pq(1−β/π)} 本で、1相を形成する半ターン型巻きコイルに発
生する電圧の電気角の異なるベクトルの種類も
{q+3q(1−β/π)}=m種類となる。 第2図は第1図と同様に252溝、14極、3相で、
1極1相当りの溝数が6で短節率β=17/18πであ る電機子の或る1相に属する半ターン型巻コイル
に発生する電圧のベクトル図である。各ベクトル
間の電気角の差は第1図を同様にπ/18である。
電気角の異なるベクトルは{q+3q(1−β/π)} =mにq=6、β=17/18πを代入すれば7種類と なることが分る。即ち、A1〜A7のベクトルとな
る。そして、第3図に示すように、このうちA2
〜A6のベクトルは上コイルと下コイルが同相に
収納されているところの半ターン型巻コイル2
6に発生する電圧のベクトルで、上コイル14
本、下コイル14本で計28本となり、ベクトルの絶
対値は各々28倍となる。しかしA1及びA7のベク
トルは、いずれか一方が上コイルに配置された半
ターン型巻コイル例えば1に発生する電圧のベ
クトルであり、他方が下コイルに配置された半タ
ーン型巻コイル7である為、A1及びA7の電気角
に属する半ターン型巻コイルの本数はいずれも14
本ずつしかない。ここで第2図のベクトルA1
0ラジアンと置けば、各ベクトルA1〜A7の電気
角差はπ/18であるから、ベクトルA2は1/18π、
ベクトルA3は1/9π、ベクトルA4は1/6π、ベク
トルA5は2/9π、ベクトルA6は5/18π、ベクトル
A7は1/3πとなる。これを各相4群に分けて、42
本シリーズの4並列回路を作るのであるが、今、
ある1相1回路の半ターン型巻コイルに発生する
電圧をE=εj〓(θはラジアン表示とする)とすれ
ば、1相1回路の発生電圧Vは V=εj1+εj2+…+εj41+εj42 となり、他の回路も同様にとり得るので、平衡度
の良好な4並列回路を得るには、1相1回路の発
生電圧Vを比較すれば良い訳である。又、溝に収
納される半ターン型巻コイルは2層巻である故
に、4回路のうち、2回路は完全に平衡なものが
選べるけれども、残る2回路は、先の2回路とは
電圧位相差及び絶対値の異なつたものにしかなら
ない為、ある並列回路間には循環電流が生じてし
まう。本発明は平衡度の良好な4並列回路を得る
事が目的であるから、ベクトルA1〜A7の電気角
に属する本数の1/4を1回路として、シリーズに
接続し、並列回路間の循環電流を最小とすれば良
い。下表は、ある1回路Aと別の1回路Bが、そ
れぞれπ/18ずつの電気角を有する半ターン型巻
コイルを各ベクトルA1〜A7から何体ずつ抽出す
れば良いかを表わしたものである。
The present invention relates to an armature winding in a 4n+2 pole (where n is an integer) three-phase alternating current machine that uses a single-turn half-turn coil to form a well-balanced four-parallel circuit. In general, in the case of an AC machine armature circuit having a multiple parallel circuit configuration, it is required that there be no difference in the phase difference and absolute value of the generated voltage between the parallel circuits, that is, a good balance is required. Now, in the two-layer armature winding of a three-phase alternating current machine, if the number of poles is P and the number of grooves per pole is ab/c (where a, b, and c are integers), each phase A general condition for obtaining a multi-parallel circuit three-phase armature winding in which each parallel circuit is perfectly balanced is that the number of parallel circuits is a divisor of P/c. For this reason, it has been difficult to obtain a number of parallel circuits other than a divisor of P/c with good balance using conventional wiring connections, so depending on the number of poles, the degree of freedom in design is limited. It was very restricted. For example, if the number of grooves per pole is an integer, 1, 2, 3,
4, 6, and 12 parallel circuits can be selected (parallel circuit 1 is not actually parallel, but it will be considered a special case of parallel. The same applies to the following), whereas the 14-pole machine has 1, 2, and 7 parallel circuits. , only 14 parallel circuits can be selected,
The drawback was that the number of circuits near the 4-parallel circuit, which is optimal for 250MVA class large capacity machines, could not be selected. In other words, a large capacity of 150 to 350 MVA class generally uses a single-turn half-turn type wound coil.
In a 14-pole synchronous generator, if you can choose the number of parallel circuits per equivalent to 4, the rated voltage, rated current, electromagnetic load, and number of grooves will be appropriate values, and the synchronous generator itself In addition, it is often advantageous in designing and manufacturing other electrical equipment in the plant that is connected to the phase separation bus, including the phase separation bus. In a three-phase alternating current machine, if n is an arbitrary integer,
It is classified into two types: 4n pole machine and 4n + 2 pole machine,
If the number of grooves per pole is an integer in a 4n pole machine,
A perfectly balanced 4-parallel circuit armature winding can be easily obtained using conventional wiring methods, but in the case of a 4n + 2-pole machine, special measures were required to select a 4-parallel circuit. . The present invention uses an ordinary single-turn half-turn winding coil in a 4n + 2-pole 3-phase AC machine, and when the number of grooves per pole and 1 phase is an even number, a 4-parallel circuit 3-phase armature with good balance is applied. The purpose is to provide winding wire. In the present invention, first, the phase to which each coil belongs is determined for each electrical angle of 1/3π, as in the conventional case of ordinary winding. Now, if the total number of grooves is N, the number of single-turn half-turn winding coils is 2N because it is a two-layer winding, and this number is distributed to each phase by 1/3, so it is equivalent to 1. The number of pieces is 2/3N. Divide this by the number of parallel circuits per circuit, 4, to find the number of 1/6N circuits in a series, and use this as one group. At this time, the half-turn coils housed in the grooves have different electrical angles depending on their positional relationship with the magnetic poles, so if they are connected in series, the voltage generated in each group of circuits will vary depending on the half-turn coil. Since this is the sum of the vectors of the voltages generated in the coils, the coil groups are configured and connected to four parallel circuits so that the vector difference in the sum voltage for each group is minimized. Hereinafter, one embodiment of the present invention will be described with reference to FIG. This is a half-turn coil that belongs to one phase of a full-pitch armature winding with 252 grooves, 14 poles, 3 phases, 6 grooves per pole, and a short knot ratio of 100%. Vector of voltage generated in each line A 1 to A 6
This is an illustration. Generally speaking, if the number of grooves per pole is q, then as mentioned above, the electrical angle of a half-turn coil varies depending on the positional relationship with the magnetic pole. There are 3q types of half-turn winding coils, and when the short section ratio is 100%, it is sufficient to consider q types of vectors per one. Therefore, the number of half-turn coils with the same electrical angle is 2N/3q. Applying this to the one in Figure 1, since q = 6, there are six types of vectors, A 1 to A 6 , and the phase difference between each vector is π/18, which means that the electrical angle is the same. Since the number of turn-wound coils is 28 since 2N/3q=28, the absolute value of each vector A 1 to A 6 in Figure 1 is
28 times more. That is, in order to obtain a perfectly balanced 4-parallel circuit, when selecting 1/4 of the number of half-turn winding coils of each vector A 1 to A 6 , 28
Since the number of books is 7 times 4, select 7 books at a time and connect them into a series. At this time, if the product of the number of poles P and the number of grooves per pole is not a multiple of 4, the winding will not be balanced, but in a 4n+2 pole machine such as 14 poles, dividing the number of poles by 2 will result in an odd number. Therefore, it is necessary that the number of grooves per pole be an even number.
According to this embodiment, if the voltages of the vectors A 1 to A 6 are V A1 , V A2 , ..., V A6 , the voltages of each parallel circuit are all 7 (V A1 + V A2 + V A3 + V A4 + V A5 +
V A6 ), the voltage and phase of each parallel circuit are equal, and no circulating current flows between the parallel circuits. In this way, if the short section ratio is 100%, the two layers stored in the groove, that is, the upper coil and the lower coil, are always in the same phase, so the number of grooves q and the number of poles P per one pole are
A perfectly balanced four-parallel circuit three-phase armature winding is obtained irrespective of the value of . Next, as another example, in a synchronous machine that generally uses a single turn coil, the armature winding is changed to a short pitch winding, which has the advantage of removing harmonics and improving the voltage waveform. Since there are many cases, this case will be explained. When short-pitch winding is used, the phase of the upper coil and lower coil housed in the same groove are different from each other depending on the determined short-pitch ratio β (β is expressed in radians) of the winding. The number of grooves in this out-of-phase coil is determined by the following equation. Number of grooves in different-phase coils = 2 x 3Pq (1-β/π) In other words, the number of half-turn winding coils in which one-phase upper and lower coils are housed together with different-phase lower and upper coils is {3pq (1-β/π)} In this book, there are also {q+3q(1-β/π)}=m types of vectors with different electrical angles of the voltage generated in the half-turn wound coil forming one phase. Become. Figure 2 is the same as Figure 1, with 252 grooves, 14 poles, and 3 phases.
FIG. 2 is a vector diagram of voltage generated in a half-turn coil belonging to one phase of an armature in which the number of grooves per pole is 6 and the short section ratio β=17/18π. The difference in electrical angle between each vector is π/18 as in FIG. 1.
It can be seen that there are seven types of vectors with different electrical angles by substituting q=6 and β=17/18π for {q+3q(1-β/π)}=m. That is, it becomes a vector of A 1 to A 7 . As shown in Figure 3, A 2 of these
~A 6 vector is half-turn type winding coil 2 where the upper coil and lower coil are housed in the same phase.
The vector of voltages generated at ~ 6 , upper coil 14
The main coil and 14 lower coils make a total of 28 coils, and the absolute value of each vector is 28 times. However, the vectors A 1 and A 7 are vectors of voltage generated in the half-turn coil 7 placed in the upper coil, and the other is the voltage vector generated in the half-turn coil 7 placed in the lower coil. Therefore, the number of half-turn type winding coils belonging to electrical angles A 1 and A 7 are both 14.
I only have one book at a time. Here, if vector A 1 in Figure 2 is set at 0 radian, the electrical angle difference between each vector A 1 to A 7 is π/18, so vector A 2 is 1/18π,
Vector A 3 is 1/9π, vector A 4 is 1/6π, vector A 5 is 2/9π, vector A 6 is 5/18π, vector
A 7 becomes 1/3π. Divide this into 4 groups for each phase, 42
I will create a 4-parallel circuit for this series, but now,
If the voltage generated in a half-turn coil of one phase and one circuit is E = ε j 〓 (θ is expressed in radians), the generated voltage V of one phase and one circuit is V = ε j1 + ε j2 +…+ε j41j42 , and other circuits can be taken in the same way, so to obtain a 4-parallel circuit with good balance, it is enough to compare the generated voltage V of 1 phase and 1 circuit. It is. In addition, since the half-turn type wound coil stored in the groove is a two-layer winding, two of the four circuits can be selected to be completely balanced, but the remaining two circuits have a different voltage level from the previous two circuits. Since the phase differences and absolute values are different, a circulating current will occur between certain parallel circuits. Since the purpose of the present invention is to obtain 4 parallel circuits with good balance, 1/4 of the number belonging to the electrical angle of vectors A 1 to A 7 is connected in series as one circuit, and the distance between the parallel circuits is It is sufficient to minimize the circulating current. The table below shows how many half-turn coils each circuit A and another circuit B should extract from each vector A 1 to A 7 , each having an electrical angle of π/18. It is something that

【表】 抽出のしかたは種々あるが、上記表にはそのう
ちの3種の案を示してある。このうち実施例は(1)
の組合せとした。即ちこの構成はA回路とB回路
の半ターン型巻コイルをA1〜A7のベクトル毎に
7本を4本と3本に、又、14本を8本と6本に振
分けてA1ベクトルではA回路に多く4本、B回
路には少なく3本割当て、A2ベクトルでは逆に
A回路に少なく6本、B回路には多く8本割当
て、A3ベクトルでは、再びA回路に多く8本、
B回路には少なく6本割当て、以下A4〜A6ベク
トルにおいても、A回路とB回路と交互に多いコ
イル数、少ないコイル数を割当てて、これらを直
列に接続して巻線を組立てた。実際のコイル接続
を第3図に示す。本図では、V相の一部のみに
A,B,12,…7と説明をつけたが、A,
Bは各々、A回路、B回路を示している。それぞ
れ2回路ずつ1極おきに接続して構成し、合計4
回路が並列接続されている。12,…7は、
A1,A2,…A7の各ベクトルの電圧を誘起する半
ターン型巻コイルを示している。図中の1、3、
5、…251はスロツト番号を奇数のみ示したもの
で、その間の無印の半ターン型巻コイル2本分は
その間の偶数番号スロツトを示している。例え
ば、A回路の248番スロツトには、1コイルが挿
入されA1ベクトルの電圧を誘起し、15番スロツ
トに挿入され、A2ベクトルの電圧を誘起する2
コイルに接続され、更に、32番スロツトに挿入さ
れ、A1ベクトルの電圧を誘起する1コイルに接
続されることを示す。以下同様にして、V相の
A,B回路をたどつていくと、口出Yに到達し、
その間に接続された各コイルのベクトルを数える
と表の(1)の組合せとなつていることが確認される
が、以下の説明は省略する。但し、この組合せを
達成する為に、例えば1コイルを4本接続した
ところの104番スロツトの1コイルは、123番ス
ロツトの2コイルではなく、124番スロツト3
コイルに接続して、更に141番スロツトの2コイ
ルに接続し、以下同様に232番スロツトの3コイ
ルを250番スロツトの3コイルに接続している。
本実施例のA回路、B回路の電圧を計算してみる
に、εj〓はオイラーの式から εj〓=cosθ+jsinθ と変換出来るので、余弦関数と正弦関数をそれぞ
れ求めて、差電圧を比較すれば良い。 ここでA回路の発生電圧をVA,B回路の発生電圧
をVBとすれば、表の中の(1)の分類に於いては、 (VA−VB2=(cos0−2cos1/18π+2cos1/9π−2
cos1/6π+2cos2/9π−2cos5/18π+cos1/3
π)2 +(sin0−2sin1/18π+2sin1/9π−2sin1/6
π+2sin2/9π−2sin5/18π+sin1/3π)2=0.
00765427 となる。比較のために表の中の(2)、(3)の組合せに
ついても求めると、(2)は (VA−VB2=0.192933 (3)は (VA−VB2=0.483173 となつて、これから明らかなように、組合せ(1)の
配列をもつたA回路、B回路にすれば、循環電流
は最小である。 この実施例について、循環電流が電機子電流を
1PUとした時にどれだけ流れるかを計算してみる
と、|VA|≒|VB|=40であるから、差電圧は |VA−VB|/40=0.00218722PU で、発電機の漏れリアクタンスをxl=0.12PUとす
れば、循環電流Icは Ic=0.00218722÷(0.12×4×2)=0.00227835PU で、電機子電流の1%以下にしかならず、実用上
支障なく、極めて平衡度の良好な4並列回路3相
電機子巻線が得られる。そして短節率βの値はπ
に近い程、溝数Nと極数Pの値が大きい程、平衡
度が良好な4並列回路となる。即ち並列回路間に
流れる循環電流は少なくなるのである。 以上は14極機について述べてきたが、4n+2
極数に属する10極機、18極機なども、前述した技
術手段によつて平衡度の良好な4並列回路が得ら
れる事は勿論である。 以上述べた如く、本発明によれば、4n+2極
の3相交流機において、短節率100%の全節巻に
於いては1相当りの溝数と極数の値に無関係に、
完全に平衡した4並列回路の電機子巻線が得ら
れ、短節率が100%でない短節巻に於いても、平
衡度の良好な4並列回路の電機子巻線が得られる
ので、設計の自由度が大きくなり、プラント内の
他の電気機器の設計上極めて有利である。
[Table] There are various extraction methods, but the table above shows three of them. Examples of these are (1)
A combination of In other words, this configuration divides the half-turn type winding coils of A circuit and B circuit into 7 coils for each vector of A 1 to A 7 and 4 and 3 coils, and 14 coils into 8 coils and 6 coils. For vectors, 4 wires are assigned to the A circuit, and 3 wires are assigned to the B circuit. Conversely, for A 2 vectors, 6 wires are assigned to the A circuit, and 8 wires are assigned to the B circuit. For A 3 vectors, more wires are assigned to the A circuit. 8 pieces,
Assign at least 6 coils to the B circuit, and in the following A 4 to A 6 vectors, alternately assign more and less coils to the A circuit and B circuit, and connect them in series to assemble the winding. . The actual coil connection is shown in Figure 3. In this figure, only part of the V phase is labeled as A, B, 1 , 2 ,... 7 , but A,
B indicates the A circuit and the B circuit, respectively. Two circuits each connected to every other pole, totaling 4
The circuits are connected in parallel. 1 , 2 ,… 7 are
A half-turn type winding coil is shown that induces voltages of each vector A 1 , A 2 , ...A 7 . 1, 3 in the diagram
5, . . . 251 indicate only odd numbered slot numbers, and the two unmarked half-turn coils between them indicate even numbered slots. For example, 1 coil is inserted into slot 248 of A circuit, which induces a voltage of A 1 vector, and a coil inserted into slot 15 induces a voltage of 2 vectors, A 2 .
It is connected to a coil, and is further inserted into slot No. 32 to induce a voltage of A1 vector. In the same way, following the V-phase A and B circuits, you will reach outlet Y,
When the vectors of each coil connected between them are counted, it is confirmed that the combinations shown in (1) in the table are obtained, but the following explanation is omitted. However, in order to achieve this combination, for example, when 4 coils are connected, 1 coil in slot 104 is connected to 3 coils in slot 124 instead of 2 coils in slot 123.
Connect to the coil, then connect to the 2 coils in the 141st slot, and in the same way, connect the 3 coils in the 232nd slot to the 3 coils in the 250th slot.
When calculating the voltages of circuits A and B in this example, ε j 〓 can be converted from Euler's equation as ε j 〓 = cos θ + jsin θ, so we calculate the cosine function and sine function, respectively, and compare the difference voltages. Just do it. Here, if the voltage generated by circuit A is V A, and the voltage generated by circuit B is V B , then in the classification (1) in the table, (V A − V B ) 2 = (cos0−2cos1 /18π+2cos1/9π−2
cos1/6π+2cos2/9π−2cos5/18π+cos1/3
π) 2 + (sin0−2sin1/18π+2sin1/9π−2sin1/6
π+2sin2/9π−2sin5/18π+sin1/3π) 2 =0.
00765427. For comparison, we also calculate the combination of (2) and (3) in the table. (2) is (V AV B ) 2 = 0.192933 (3) is (V A − V B ) 2 = 0.483173 Therefore, as is clear from this, if circuit A and circuit B have the arrangement of combination (1), the circulating current will be minimized. For this example, the circulating current
Calculating how much flow will flow when 1 PU is used, |V A |≒|V B |=40, so the differential voltage is |V A −V B |/40=0.00218722 PU , and the generator If the leakage reactance is xl = 0.12 PU , the circulating current Ic is Ic = 0.00218722 ÷ (0.12 x 4 x 2) = 0.00227835 PU , which is less than 1% of the armature current, which has no practical problems and has an extremely balanced balance. A four-parallel circuit three-phase armature winding with good quality can be obtained. And the value of short clause rate β is π
The closer to , the larger the values of the number of grooves N and the number of poles P, the better the balance will be in the 4-parallel circuit. That is, the circulating current flowing between parallel circuits is reduced. The above has described the 14-pole machine, but 4n+2
Of course, a well-balanced 4-parallel circuit can be obtained for 10-pole machines, 18-pole machines, etc. by using the above-mentioned technical means. As described above, according to the present invention, in a 4n+2-pole three-phase alternating current machine, in a full-pitch winding with a short-pitch ratio of 100%, regardless of the values of the number of grooves per section and the number of poles,
A perfectly balanced 4-parallel circuit armature winding can be obtained, and even with short-pitch windings where the short-pitch ratio is not 100%, a 4-parallel circuit armature winding with good balance can be obtained. This increases the degree of freedom, and is extremely advantageous in designing other electrical equipment within the plant.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の電機子巻線の一実施例を示す
ベクトル図、第2図は他の実施例を示すベクトル
図、第3図はその電機子巻線の結線図である。 A1〜A7……ベクトル、17……ベクトル
A1〜A7に対応する半ターン型巻コイル。
FIG. 1 is a vector diagram showing one embodiment of the armature winding of the present invention, FIG. 2 is a vector diagram showing another embodiment, and FIG. 3 is a wiring diagram of the armature winding. A 1 to A 7 ... vector, 1 to 7 ... vector
Half-turn type winding coil corresponding to A 1 to A 7 .

Claims (1)

【特許請求の範囲】 1 nを整数として4n+2極の3相交流機の1
極1相当りの溝数qを偶数に選び、これにシング
ルターンの半ターン型巻コイルを用いて2層巻を
行う電機子巻線において、各溝に納められたコイ
ルを3相に分け、電圧ベクトルが短節率βにより
{q+3q(1−β/π)}=m種類となる同一相に接続 すべきコイルの各電圧ベクトルを端からA1,A2
…,Anとし、これらを誘起するコイル12
…,nを一極おきにとると、3q(1−β/π)が1 の場合は1コイルとnコイルが2n+1本ずつと
なるので、各々をn+1本とn本の2群に分け、
23,…,n-1コイルが4n+2本ずつとな
るので、各々を2n+2本と2n本の2群に分け、
1コイルをn+1本、2コイルを2n本、3
イルを2n+2本、4コイルを2n本、…と1コイ
ルを多くとり、次に2コイルを少なくとり、3
コイルを多くとり、以下同一ベクトルのコイルを
多、又は少と交互にとつて、これらを直列に接続
して1回路を構成し、残つたコイルを直列に接続
して他の1回路を構成し、他の一極おきにとつた
コイルを同様に2群に分け、それぞれ1回路ずつ
を構成し、3q(1−β/π)が2の場合は、12 コイルとn-1nコイルが2n+1本ずつとなる
ので、各々をn+1本とn本の2群に分け、3
4,…,n-2コイルが4n+2本ずつとなるの
で、各々を2n+2本と2n本の2群に分け、同一
ベクトルのコイルを多、又は少と順次くり返し交
互にとつて、これらを直列に接続して1回路を構
成し、残つたコイルを直列に接続して他の1回路
を構成し、他の1極おきにとつたコイルにより2
回路を構成し、3q(1−β/π)が3以上の場合も 同様な手段で各回路を構成して4並列回路に接続
したことを特徴とする電機子巻線。
[Claims] 1 of a 4n+2-pole three-phase AC machine, where 1 n is an integer.
The number of grooves q per pole is selected to be an even number, and the armature winding is wound in two layers using a single-turn half-turn coil, and the coils housed in each groove are divided into three phases. The voltage vectors become {q+3q(1-β/π)}=m types due to the short node ratio β.The voltage vectors of the coils to be connected to the same phase are A 1 , A 2 ,
..., A n , and the coils 1 , 2 , inducing these,
..., taking n every other pole, if 3q(1-β/π) is 1, there will be 1 coil and 2n+1 coils for n , so divide each into 2 groups of n+1 and n coils,
A 2 , 3 ,..., n-1 coils are each 4n + 2, so divide each into 2 groups of 2n + 2 and 2n,
A 1 coil is n + 1, 2 coil is 2n, 3 coil is 2n + 2, 4 coil is 2n, etc. 1 coil is taken more, then 2 coils are taken less, 3
Take many coils, then alternately take more or less coils with the same vector, connect them in series to form one circuit, and connect the remaining coils in series to form another circuit. Similarly, the coils installed at every other pole are divided into two groups, each forming one circuit. If 3q (1-β/π) is 2, then 1 , 2 coils and n-1 , n Since there are 2n+1 coils each, divide each into two groups, n+1 and n, 3 ,
A 4 ,..., n-2 There are 4n + 2 coils each, so divide them into 2 groups of 2n + 2 and 2n, repeat alternately with more or less coils with the same vector, and connect them in series. Connect the remaining coils to form one circuit, connect the remaining coils in series to form another circuit, and connect the remaining coils to every other pole to form two circuits.
An armature winding characterized in that each circuit is configured in a similar manner and connected to four parallel circuits even when 3q (1-β/π) is 3 or more.
JP2191179A 1979-02-28 1979-02-28 Armature winding Granted JPS55117445A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2191179A JPS55117445A (en) 1979-02-28 1979-02-28 Armature winding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2191179A JPS55117445A (en) 1979-02-28 1979-02-28 Armature winding

Publications (2)

Publication Number Publication Date
JPS55117445A JPS55117445A (en) 1980-09-09
JPS6321416B2 true JPS6321416B2 (en) 1988-05-06

Family

ID=12068266

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2191179A Granted JPS55117445A (en) 1979-02-28 1979-02-28 Armature winding

Country Status (1)

Country Link
JP (1) JPS55117445A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0600837D0 (en) 2006-01-14 2006-02-22 Alstom Stators and electrical machines incorporating such stators

Also Published As

Publication number Publication date
JPS55117445A (en) 1980-09-09

Similar Documents

Publication Publication Date Title
US3949253A (en) Electric motors
US5654602A (en) Generator winding
US4672251A (en) Pole changeable, three phase windings
US2015562A (en) Winding with two parallels per pole
US3949254A (en) Winding for dynamoelectric machine
TW313717B (en)
US3348084A (en) Graded concentric winding dynamoelectric machine
JPH02151235A (en) Ac generator having plurality of phase-displaced wave-winding multilayer winding
US2947894A (en) Winding for polyphase alternating current dynamoelectric machine
US4348606A (en) Polyphase armature windings
JPS6321416B2 (en)
US3299337A (en) Pole-changing, three-phase, alternating current, electric motors and generators
JPH0447551B2 (en)
US3255368A (en) Armature winding for alternating current commutator machine
US1356936A (en) Induction-motor
US2447647A (en) Motor winding
US1563474A (en) Cascade machine
USRE19433E (en) Dynamo-electric machine winding
SU959224A1 (en) Three-phase winding for ac electric machines
JPH0348741B2 (en)
JPS6120220B2 (en)
JP2637103B2 (en) Armature winding
Fong Polyphase windings with multiparallel circuits
JPH0732559B2 (en) Multi-phase armature winding
JPS6316300Y2 (en)