JPS6316300Y2 - - Google Patents

Info

Publication number
JPS6316300Y2
JPS6316300Y2 JP557978U JP557978U JPS6316300Y2 JP S6316300 Y2 JPS6316300 Y2 JP S6316300Y2 JP 557978 U JP557978 U JP 557978U JP 557978 U JP557978 U JP 557978U JP S6316300 Y2 JPS6316300 Y2 JP S6316300Y2
Authority
JP
Japan
Prior art keywords
winding
phase
ecos
pole
poles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP557978U
Other languages
Japanese (ja)
Other versions
JPS54111615U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP557978U priority Critical patent/JPS6316300Y2/ja
Publication of JPS54111615U publication Critical patent/JPS54111615U/ja
Application granted granted Critical
Publication of JPS6316300Y2 publication Critical patent/JPS6316300Y2/ja
Expired legal-status Critical Current

Links

Landscapes

  • Induction Machinery (AREA)
  • Synchronous Machinery (AREA)

Description

【考案の詳細な説明】[Detailed explanation of the idea]

本考案は同一鉄心に二つ以上の極数を持つ巻線
が装着される回転電機の改良に関する。 従来例えば18個の溝数を持つ電機子鉄心に4極
と6極の極数を持つ巻線を施す場合、4極巻線の
一極一相は18/(3×4)=1.5となり、いわゆる
分数溝巻となる。 この場合電源電圧が2種類で使用される場合も
多く、一例として200V/400V共用の場合は2×
Y/1×Y等の様に巻線の並列回路数を2倍と1
倍に接続変更可能な構成とするのが一般的であ
る。このため非励磁極の巻線の誘起電圧が回路間
で相違したり、各相間で相違した場合は同相間に
電位差に依り循環電流が流れたり、相巻線相互で
循環電流が流れる等に依つて発熱や損失の増大が
生ずる事となる。 又、上記の他に設計自由度拡大の為並列回路数
を増やす場合もあるが、巻線の巻回数や接続の方
法に依つて同様の問題発生がある為、特に今回の
ごとき励磁極と非励磁極巻線を有する回転機での
分数溝巻の場合、並列回路数は通常1を選定され
ていた。 本考案の目的はこれらの欠点をなくし、4極巻
線に於いても2以上の並列回路数を選定でき、且
つ循環電流による発熱をなくした三相極数変換回
転電機を提供することにある。 以下本考案の一実施例を第1図乃至第3図を参
照して説明する。第1図は18個の溝数を持つ電機
子鉄心に4極と6極の巻線を施した場合で、巻ね
巻方式の−極一相当りのコイル数qが1.5と分数
溝巻きによる4極巻線の接続展開図である。図に
おいて1,2,3…18はスロツト番号を表わ
し、実線で示すu1,u1′,u2,u3,u
3′,u4はU相巻線の巻線、一点鎖線で示すv
1,v1′,v2,v3,v3′,v4はV相巻線
の巻線、点線で示すw1,w1′,w2,w3,
w3′,w4はW相巻線の巻線である。このよう
な各相巻線のスロツトへの収納及び接続方法をU
相巻線を一例として述べる。コイルピツチが#1
から#5であるから、巻線u1はスロツト番号1
に収納した下コイルとスロツト番号5に収納した
上コイルで形成し、これをM1−M5で表示す
る。すると巻線u1′はM2−M6,同u2はM
6−M10,同u3はM10−M14,同u3は
M11−M15,同u4はM15−M1で夫々形
成される。 同様にV相,W相についても行なわれこれを表
1にまとめた。
The present invention relates to an improvement in a rotating electrical machine in which windings having two or more pole numbers are mounted on the same core. Conventionally, for example, when windings with 4 poles and 6 poles are applied to an armature core with 18 grooves, one pole and one phase of the 4 pole winding is 18/(3×4)=1.5, This is what is called fractional groove winding. In this case, two types of power supply voltages are often used; for example, when 200V/400V are shared, 2×
Double the number of parallel circuits of the winding and 1, such as Y/1×Y.
It is common to have a configuration that allows the connection to be changed twice. Therefore, if the induced voltage in the non-excited pole winding differs between circuits or between phases, a circulating current may flow between the same phases due to the potential difference, or between the phase windings. As a result, heat generation and loss increase. In addition to the above, the number of parallel circuits may be increased to increase the degree of design freedom, but similar problems can occur depending on the number of turns of the winding and the connection method, so especially when it comes to excitation poles and In the case of fractional groove winding in a rotating machine with excitation pole windings, the number of parallel circuits was usually selected to be one. The purpose of the present invention is to eliminate these drawbacks, to provide a three-phase pole number conversion rotating electric machine that allows selection of two or more parallel circuits even in a four-pole winding, and eliminates heat generation due to circulating current. . An embodiment of the present invention will be described below with reference to FIGS. 1 to 3. Figure 1 shows the case where 4-pole and 6-pole windings are applied to an armature core with 18 grooves. It is a connection development diagram of a 4-pole winding. In the figure, 1, 2, 3...18 represent slot numbers, and the solid lines indicate u1, u1', u2, u3, u.
3', u4 are the windings of the U-phase winding, v shown by the dashed line
1, v1', v2, v3, v3', v4 are the windings of the V-phase winding, w1, w1', w2, w3, shown by dotted lines
w3' and w4 are W-phase windings. The method of storing and connecting each phase winding to the slot is described below.
A phase winding will be described as an example. Coil pitch is #1
to #5, winding u1 has slot number 1.
It is formed by the lower coil housed in slot number 5 and the upper coil housed in slot number 5, and these are indicated by M1-M5. Then, the winding u1' is M2-M6, and the winding u2 is M2-M6.
6-M10, u3 is formed of M10-M14, u3 is formed of M11-M15, and u4 is formed of M15-M1, respectively. Similar tests were conducted for the V and W phases, and the results are summarized in Table 1.

【表】 続いて巻線u1の巻終りとu1′の巻始め、u
1′の巻終りとu2の巻終りを夫々接続してU相
の第1巻線群を形成し、巻線u3の巻終りとu
3′の巻始め、u3′の巻終りとu4の巻終りを
夫々接続してU相の第2巻線群を形成する。以下
同様にV相についても巻線v3,v3′,v4で
第1巻線群を、巻線v1,v1′,v2で第2巻
線群を形成する。またW相についても同様であ
る。そして巻線u1とu3,v3とv1,w1と
w3の夫々の巻始めを接続してU相,V相,W相
の電源側端子とし、巻線u2,v4,w2の各巻
始め又巻線u4,v2,w4,の各巻始めを夫々
接続して中性点とし、第2図に示す様な4極巻線
の2×Y結線を形成する。 次に6極巻線に於ける接続方法を第3図の接続
展開図を参照して説明する。尚、記号は前記4極
の場合と同様である。即ち重ね巻方式の−極一相
当りのコイル数qが1と整数巻きで、U相巻線を
一例として述べる。コイルピツチが#1から#4
であるから、巻線u1はM1−M4,同u2はM
4−M7,同u3はM7−M10,同u4はM1
0−M13,同u5はM13−M16,u6はM
16−M1で夫々形成される。同様にV相,W相
について行なわれこれを表1にまとめた。続いて
巻線u1の巻終りとu2の巻終り、u2の巻始め
とu3の巻始め,u3の巻終りとu4の巻終り,
u4の巻始めとu5の巻始め、,u5の巻終りと
u6の巻終りを夫々接続する。以下同様の接続方
法でV相,W相についても接続する。そして巻線
u1,v1,w1の夫々の巻始めをU相,V相,
W相の電源接続端子とし、巻線u6,v6,w6
の夫々の巻始めを接続して中性点とし、第2図に
示す様な6極巻線の1×Y結線を形成する。 ここで第3図aの接続展開図において、U相の
電流が+1.0,V相、W相が−0.5の瞬間に於ける
三相起磁力波形を図示したのが第3図bであり、
6極を形成している事が解る。 上述状態、即ち6極にて励磁された状態に於け
る固定子各溝に収納された導体の誘起電圧を求め
てみる。任意の導体の誘起電圧を基準とするに説
明の簡便さから6極起磁力のゼロポイント(第3
図a,bではNo.1の溝)を基準として電気角=0
と仮定する。 No.1溝に収納された4極巻線に発生する誘起電
圧Eeは N:巻回数 kω:巻線係数 Em:2πfφm(最大値) φm:最大磁束密度 で表わされるがこの式における
[Table] Next, the end of winding u1, the beginning of winding u1', and u
The end of the winding 1' and the end of the winding u2 are connected to form the first winding group of the U phase, and the end of the winding u3 and the end of the winding u2 are connected.
The beginning of winding 3', the end of winding u3', and the end of winding u4 are connected to form a U-phase second winding group. Similarly, for the V phase, the windings v3, v3', and v4 form a first winding group, and the windings v1, v1', and v2 form a second winding group. The same applies to the W phase. Then, the respective winding ends of windings u1 and u3, v3 and v1, and w1 and w3 are connected to serve as the power supply side terminals of the U phase, V phase, and W phase, and each winding beginning of windings u2, v4, and w2 and the winding The beginnings of each winding of u4, v2, and w4 are connected to form a neutral point to form a 2×Y connection of a 4-pole winding as shown in FIG. Next, the connection method in the six-pole winding will be explained with reference to the connection development diagram in FIG. Note that the symbols are the same as those for the four poles described above. That is, the U-phase winding will be described as an example in which the number of coils q per one pole of the overlapped winding method is 1, which is an integer number of windings. Coil pitch is #1 to #4
Therefore, the winding u1 is M1-M4, and the winding u2 is M
4-M7, u3 is M7-M10, u4 is M1
0-M13, u5 is M13-M16, u6 is M
16-M1 respectively. Similar tests were conducted for the V and W phases, and the results are summarized in Table 1. Next, the end of winding u1 and the end of winding u2, the beginning of winding u2 and the beginning of winding u3, the end of winding u3 and the end of winding u4,
The beginning of winding u4 and the beginning of winding u5, the end of winding u5 and the end of winding u6 are connected, respectively. Thereafter, the V phase and W phase are also connected using the same connection method. Then, the beginnings of windings u1, v1, w1 are set to U phase, V phase,
W-phase power supply connection terminal, windings u6, v6, w6
The beginnings of each winding are connected to form a neutral point, forming a 1×Y connection of a six-pole winding as shown in FIG. Here, in the connection development diagram of Fig. 3a, Fig. 3b shows the three-phase magnetomotive force waveform at the moment when the current of the U phase is +1.0, and the V and W phases are -0.5. ,
It can be seen that six poles are formed. The induced voltage of the conductor housed in each groove of the stator in the above-mentioned state, that is, the state in which the six poles are excited, will be determined. Based on the induced voltage of any conductor, the zero point (third
Electrical angle = 0 with No. 1 groove in Figures a and b as a reference
Assume that The induced voltage Ee generated in the 4-pole winding housed in the No. 1 groove is N: Number of turns kω: Winding coefficient Em: 2πfφm (maximum value) φm: Expressed as maximum magnetic flux density, but in this formula

【式】は各 溝共共通記号であるので、以降説明の簡略化の為
省略して進める。 第1図に於いてNo.1溝に収納される導体の右側
導体を下導体、左側導体を上導体とすると、No.1
溝の下導体はU相巻線に属するものでそのピツチ
よりNo.5溝の上導体へ渡つている。 この為、この巻線u1に発生する誘起電圧Eu
1は下記で表わされる。 Eu1=Ecosωt +Ecos(ωt+240゜) ここで一溝当り電気角は6極励磁である為3×
360/18=60゜となり、No.1溝に対しNo.5はその間
隔が4溝ある為4×60=240゜隔たり上式が導かれ
る事となる。 同様に巻線u1′(M2−M6)には Eu1′=Ecos(ωt+60) +Ecos(ωt+300) u2(M10−M6)には Eu2=Ecos(ωt+540) −Ecos(ωt+300) =Ecos(ωt+180) −Ecos(ωt+300) 同様に第1図に示す4極巻線に誘起される電圧
は各々次式となる。 Eu1=Ecosωt−Ecos(ωt+240) Eu1′=Ecos(ωt+60) −Ecos(ωt+300) Ew4=Ecosωt−Ecos(ωt+120) Ev1=Ecos(ωt+180) −Ecos(ωt+60) Ev1′=Ecos(ωt+240) −Ecos(ωt+120) Eu2=Ecos(ωt+300) +Ecos(ωt+180) Ew1=Ecosωt−Ecos(ωt+240) Ew1′=Ecos(ωt+60) −Ecos(ωt+300) Ev2=−Ecos(ωt+120) +Ecosωt Eu3=Ecos(ωt+180) −Ecos(ωt+60) Eu3′=Ecos(ωt+240) −Ecos(ωt+120) Ew2=−Ecos(ωt+300) +Ecos(ωt+180) Ev3=Ecosωt−Ecos(ωt+240) Ev3′=Ecos(ωt+60) −Ecos(ωt+300) Eu4=−Ecos(ωt+120) +Ecosωt Ew3=Ecos(ωt+180) −Ecos(ωt+60) Ew3′=Ecos(ωt+240) −Ecos(ωt+120) Ev4=−Ecos(ωt+300) −Ecos(ωt+180) 従つて第2図に示す様な接続を施した場合、4
極巻線のO1−U1間の電位差は Eu1+Eu1′+Eu2=Ecosωt +Ecos(ωt+60) +Ecos(ωt+180) −Ecos(ωt+240) −2Ecos(ωt+300) 同様にO1−V1間の電位差は Ev3+Ev3′+Ev4=Ecosωt +Ecos(ωt+60) +Ecos(ωt+180) −Ecos(ωt+240) −2Ecos(ωt+300) 又O1−W1間は Ew1+Ew1′+Ew2=Ecosωt +Ecos(ωt+60) +Ecos(ωt+180) −Ecos(ωt+240) −2Ecos(ωt+300) 即ち中性点O1−U1とO1−V1とO1−W
1各々の電位差はその大きさ(振幅)も位相も同
一である。 又同様にもう片方の回路に於ける中性点O2と
各端子間の電圧も O2−U2間の電位差は Eu3+Eu3′+Eu4=Ecosωt −Ecos(ωt+60) −2Ecos(ωt+120) +Ecos(ωt+180) +Ecos(ωt+240) O2−V2間、 Ev2+Ev1′+Ev1=Ecosωt −Ecos(ωt+60) −2Ecos(ωt+120) +Ecos(ωt+180) +Ecos(ωt+240) O2−W2間、 Ew4+Ew3′+Ew3=Ecosωt −Ecos(ωt+60) −2Ecos(ωt+120) +Ecos(ωt+180) +Ecos(ωt+240) 即ち中性点O2−U2,O2−V2,O2−W
2各々の電位差はその大きな(振幅)も位相も同
一である。 従つて二つの中性点O1,O2を接続しなけれ
ば、いわゆる循環電流は流れず余分な発熱や損失
を伴うことはない。 但し上述回路での発生電圧とは位相が異なる
為、2回路を並列とする場合中性点どうしは開放
としておく必要がある。 尚、ここで分数溝巻線を採用する利点をあげる
と大体次の三つである。 (a) 同一巻線に属する各極巻線の位相は互いに同
一でなく多少相違しているのでこれを直列に結
線する事によつて、基礎波に対する巻線係数を
あまり変化せずして高調波に対する巻線係数を
かなり小ならしめる事が出来るので、比較的小
数のスロツトの数で正弦波に近い電圧を得る事
となるので工作上利点が多い。 (b) 在来の鉄板型を用い、即ち同一数のスロツト
で極数を異にするものにも共用せんとする場合
に、そのどれか一方の極数に対して毎極毎相当
りのスロツト数が整数とならぬ場合が起る。従
つてこの場合に分数溝巻線を用いれば経済上有
利である。 (c) 特に電圧の高い機械に対しては溝数を小にし
て溝の空間率を大にせんとする場合には、毎極
毎相のスロツト数が1以下にする必要がある。
この場合に分数溝巻線を用いてこれを可能とす
ると同時に電圧波形を良好ならしめる事が出来
る。 一般に分数溝巻線が問題となるのは多極で多相
の場合である。この場合に巻線を挿入しないスロ
ツト所謂遊びスロツトを用いる場合もあるが、こ
れは材料の利用率の点からよくないので、ここに
は全部のスロツトに巻線が挿入される場合につい
てだけ取扱う事とする。 先づ各相の電圧(基礎波)が平衡する為には如
何なる条件が必要かと言えば、今 m=相数 N=スロツト総数 p=極対数 t=pとNとの最大公約数 とすれば相隣るコイル間の電気的位相差αは α=360゜×p/N …(3) 然かるにtはpとNとの最大公約数なる故 p=p0t、N=N0tとすればp0とN0間には約数な
し。よつて(3)式は次の如くなる α=360゜×p0/N0 ∴N0α=360゜×p0 …(4) 従つてスロツトの電気的関係はN0個毎に同一
状態を繰返し、2p0極が通常の整数溝巻線の2極
に対応する事となる。よつてかかる2p0極のN0
のスロツトについて考える。 かかるスロツトに対称m相巻線が挿入される為
にはN0と総数mとの間には次の関係が成立する
事が必要である。 N0/m=整数 …(5) これは対称巻線である為には第1相に関する任
意のスロツトに対しこれと電気に(2π/m)の
位相にあるスロツトが第2相にあり、(4π/m)
の位相にあるスロツトが第3相にあり、一般に第
γ相に関するスロツトに(γ−1)2π/mの位
相のものが存在することを要する。この事から(5)
式の関係は当然成立しなければならぬ。 以上によつて多相巻線の平衡条件をを与えた
が、実際の場合には毎極毎相のスロツト数qより
その判定条件を与えるのが便利である。分数溝巻
線に対してはqは一般に次式で表わす事が出来
る。 q=a+c/b …(6) ここにa,b,c=正の整数、c/bは既約分
数 然る時は2極に対するスロツト数n0は n0=2mq=2ma+(2mc/b) 然かるに、c/bは既約分数なる故2mcとb間
に約数があるとすれば、それは2mとbとの間の
約数である。即ちその最大公約数をrとすれば 2m=rm0b=rb0 …(7) ∴n0=2ma+m0c/b0 …(8) 従つてb0個の極対に対してはじめて整数個のス
ロツトを含む事となる。前記のp0はこのb0に等し
い筈である。よつて全体の極数が2pであるから
次の条件が必要となる。 p/b0=整数 …(9) このb0個の極数の有するスロツト数n0b0は前記
のN0に等しい故(8)式より N0=2mab0+m0c 然かるにこのN0個のスロツトに対して平衡m
相巻線が可能の為には(5)式が成立するを要するか
ら N0/m=2ab0+m0c/m=2ab0+2c/r =整数 …(10) が成立するを要す。然かるにrはbの約数であり
cとbとの間には約数がないからrとcとの間に
は約数は存在しない。したがつて(10)式の2c/rが
整数なる為にはrの値は次の二つの場合以外には
あり得ない。 (i)r=1 (ii)r=2 …(11) 即ち(7)式より2mとbとの間に3以上の約数が
存在する場合は平衡m相巻線を実施する事が出来
ない。今(11)式の成立する場合を更に吟味して
見ると次の通り (i)r=1の場合 この場合はbと2mとの間に1以外の約数はな
い故bは奇数である。よつて(10)式より N0/m=2ab0+2c=偶数 よつて(5)式から平衡m相巻線を実施する事が出
来る。 (ii)r=2の場合 この場合はb=2b0である。従つてbは偶数と
なり、cは奇数となる(bとcとの間には約数が
ないから)よつて次の事実が成立する。 N0/m=2ab0+2c/γ=2ab0+c =偶数+奇数=奇数 よつて二層巻線は実施可能である。 以上の事を約言すれば次の如くなる。 今毎極毎相のスロツト数q=c/bとする。然
らば2mとbとの間に約数がない場合、或いは2m
とbとの間の最大公約数が2なる場合は常に平衡
m相巻線を実施出来る。 次に上述の誘起電圧の関係を一般式で表わす
と、非励磁極の任意の一相(U相)巻線の導体に
発生する誘起電圧を Eu1=Ecosωt …(12) 導体は全て同一ピツチの為、上導体は下導体に
対し(ピツチ×−溝電気角)隔つており、これは
全導体について言える事である為説明簡便上、下
導体のみで表わす。 とすると上記u1導体より電気的にk1極離れた
極(電気角でk1π)のV相巻線(U相巻線より
2/3π電気角で離れた位置)の導体に誘起させ
る電圧は次式で表わされる。 Ev(k1)=Ecos{ωt +(k1π+2/3π)}×Pf/Pe …(13) 〔ここでPeは非励磁極、Pfは励磁極を示す〕 ここでPf/Peを乗ずるのは(k1π+2/3π)は
非励磁巻線での極及び電気角で表わしたものであ
る為、励磁巻線での磁界(例では6極)に換算す
る為のものである。 同様にk2極離れたW相巻線の導体にはU相に
対し電気角でk2π極離れ且つ4/3π離れる事とな
る為(14)式が得られる。 EW(k2)=Ecos{ωt +(k2π+4/3π)}×Pf/Pe …(14) 〔ここでk1,k2は正の整数である〕 即ち(12)式〜(14)式での各相の誘起電圧
Eu1,Ev(k1),Ew(K2)が大きさ(振幅)及び
位相が同一の条件は(13)式から求めれば (k1π+2/3π)×Pf/Pe=2nπ …(15) 即ち左辺( )内は電気角で零若しくは360゜の
倍数となれば成立する訳であり、結果的に Ev(k1)=Ecos(ωt+2nπ) =Ecosωt となり(12)式でのEu1と同一値、同位相とな
る。 同様に(14)式W相について求めると (k2π+4/3π)Pf/Pe=2n′π …(16) となる。上記(15)式より求めたk1及び(16)
式より求めたk2が各相導体の誘起電圧が大きさ、
位相共同一条件となる。 一例としてk1とk2を求めてみると Pe=4(極)Pf=6(極) (15)式より (k1+2/3)=6/4=2n k1=2n×4/6−2/3=2(n=2) (16)式より (k2+4/3)6/4=2n′ k2=2n′×4/6−4/3=0(n′=1) ところがK2=0ということはW相巻線がU相
に対して電気角で0極離れることを意味し、これ
は成立し得ない事であるから、更にn′を変化させ
てU相極とW相極が成立するK2を求めるとn′=
4の時 K2=2n′×4/6−4/3=4 と整数4が得られる。 Pe=8(極)Pf=6(極) (15)式より (k1+2/3)6/8=2n k1=2n×8/6−2/3=2(n=1) (16)式より(k2+4/3)6/8=2n′ (k2=2n′×8/6−4/3=4(n′=2) Pe=4(極)Pf=12(極) (K1+2/3)12/4=2n K1=2n×4/12−2/3=2(n=2) (K2+4/3)12/4=2n′ K2=2n′×4/12−4/3=4(n′=4) Pe=8(極)Pf=12(極) (K1+2/3)12/8=2n K1=2n×8/12−2/3=2(n=2) (K2+4/3)12/8=2n′ K2=2n′×8/12−4/3=4(n′=4) この関係の極数比でのk1,k2をまとめると表
2に示すようになり、K1=2,K2=4となる。
Since [Formula] is a common symbol for each groove, it will be omitted hereafter to simplify the explanation. In Figure 1, if the right conductor of the conductor stored in the No. 1 groove is the lower conductor and the left conductor is the upper conductor, then the No. 1
The lower conductor of the groove belongs to the U-phase winding and extends from its pitch to the upper conductor of the No. 5 groove. Therefore, the induced voltage Eu generated in this winding u1
1 is expressed as below. Eu1=Ecosωt +Ecos(ωt+240°) Here, the electrical angle per groove is 3× because it is 6 pole excitation.
360/18 = 60 degrees, and since there are 4 grooves in No. 5, the distance between No. 1 grooves is 4 x 60 = 240 degrees, and the above formula can be derived. Similarly, for winding u1' (M2-M6), Eu1' = Ecos (ωt+60) +Ecos (ωt+300) For u2 (M10-M6), Eu2 = Ecos (ωt+540) -Ecos (ωt+300) =Ecos (ωt+180) -Ecos (ωt+300) Similarly, the voltages induced in the four-pole winding shown in FIG. 1 are expressed by the following equations. Eu1=Ecosωt−Ecos(ωt+240) Eu1′=Ecos(ωt+60) −Ecos(ωt+300) Ew4=Ecosωt−Ecos(ωt+120) Ev1=Ecos(ωt+180) −Ecos(ωt+60) Ev1′=Ecos(ωt+240) −Ecos(ωt+120 ) Eu2=Ecos(ωt+300) +Ecos(ωt+180) Ew1=Ecosωt−Ecos(ωt+240) Ew1′=Ecos(ωt+60) −Ecos(ωt+300) Ev2=−Ecos(ωt+120) +Ecosωt Eu3=Ecos(ωt+180) −Ecos(ωt+60 ) Eu3′=Ecos(ωt+240) −Ecos(ωt+120) Ew2=−Ecos(ωt+300) +Ecos(ωt+180) Ev3=Ecosωt−Ecos(ωt+240) Ev3′=Ecos(ωt+60) −Ecos(ωt+300) Eu4=−Ecos(ωt+120) +Ecosωt Ew3=Ecos(ωt+180) −Ecos(ωt+60) Ew3′=Ecos(ωt+240) −Ecos(ωt+120) Ev4=−Ecos(ωt+300) −Ecos(ωt+180) Therefore, if the connection is made as shown in Figure 2 , 4
The potential difference between O1 and U1 of the pole winding is Eu1+Eu1′+Eu2=Ecosωt +Ecos(ωt+60) +Ecos(ωt+180) −Ecos(ωt+240) −2Ecos(ωt+300) Similarly, the potential difference between O1 and V1 is Ev3+Ev3′+Ev4=Ecosωt+Ecos( ωt+60) +Ecos(ωt+180) −Ecos(ωt+240) −2Ecos(ωt+300) Also, between O1 and W1, Ew1+Ew1′+Ew2=Ecosωt +Ecos(ωt+60) +Ecos(ωt+180) −Ecos(ωt+240) −2Ecos(ωt+300) Immediately Neutral point O1 -U1 and O1-V1 and O1-W
1. Each potential difference has the same magnitude (amplitude) and phase. Similarly, the voltage between the neutral point O2 and each terminal in the other circuit is: The potential difference between O2 and U2 is Eu3 + Eu3' + Eu4 = Ecosωt - Ecos (ωt + 60) -2Ecos (ωt + 120) + Ecos (ωt + 180) + Ecos (ωt + 240) ) Between O2 and V2, Ev2+Ev1′+Ev1=Ecosωt −Ecos(ωt+60) −2Ecos(ωt+120) +Ecos(ωt+180) +Ecos(ωt+240) Between O2 and W2, Ew4+Ew3′+Ew3=Ecosωt −Ecos(ωt+60) −2Ecos(ωt+ 120)+Ecos (ωt+180) +Ecos (ωt+240) That is, neutral point O2-U2, O2-V2, O2-W
2. The potential differences of each of them are the same in size (amplitude) and phase. Therefore, unless the two neutral points O1 and O2 are connected, a so-called circulating current will not flow and no extra heat generation or loss will occur. However, since the phase is different from the voltage generated in the above-mentioned circuit, when the two circuits are connected in parallel, the neutral points must be left open. Here, the advantages of adopting fractional groove winding are roughly the following three. (a) Since the phases of each pole winding belonging to the same winding are not the same but slightly different, by connecting them in series, harmonics can be achieved without changing the winding coefficient for the fundamental wave much. Since the winding coefficient for waves can be made considerably small, a voltage close to a sine wave can be obtained with a relatively small number of slots, which has many advantages in terms of construction. (b) When using a conventional iron plate type, that is, when the same number of slots is to be shared with different numbers of poles, the number of slots for each pole is equal to one of the number of poles. There are cases where a number is not an integer. Therefore, it is economically advantageous to use fractional groove windings in this case. (c) In order to increase the space ratio of the grooves by reducing the number of grooves especially for high voltage machines, it is necessary to keep the number of slots per pole and phase to one or less.
In this case, a fractional groove winding can be used to make this possible and at the same time provide a good voltage waveform. Generally, fractional groove windings become a problem when the winding is multi-pole and multi-phase. In this case, slots in which no windings are inserted, so-called idle slots, may be used, but this is not good in terms of material utilization, so we will only deal with the case where windings are inserted into all slots. shall be. First, what conditions are necessary for the voltages (fundamental waves) of each phase to be balanced? If m = number of phases, N = total number of slots, p = number of pole pairs, and t = greatest common divisor of p and N. The electrical phase difference α between adjacent coils is α=360°×p/N…(3) However, since t is the greatest common divisor of p and N, p=p 0 t, N=N 0 t Then, there is no divisor between p 0 and N 0 . Therefore, equation (3) becomes as follows: α=360°×p 0 /N 0 ∴N 0 α=360°×p 0 …(4) Therefore, the electrical relationship of the slots is the same for every N 0 slots. Repeating this, the 2p 0 pole corresponds to the 2 poles of a normal integer groove winding. Consider N 0 slots with 2p 0 poles leaning against each other. In order to insert a symmetrical m-phase winding into such a slot, the following relationship needs to hold between N 0 and the total number m. N 0 /m = integer...(5) Since this is a symmetrical winding, for any slot related to the first phase, there is a slot in the second phase that is in electrical phase (2π/m) with respect to this, and (4π/m)
There is a slot in the third phase with a phase of (γ-1)2π/m, and it is generally required that a slot with a phase of (γ-1)2π/m exists in a slot related to the γ-phase. From this (5)
Naturally, the relationship in the equation must hold true. Although the equilibrium conditions for the polyphase winding have been given above, in actual cases it is convenient to give the judgment conditions from the number of slots q for each pole and each phase. For fractional groove windings, q can generally be expressed as: q=a+c/b...(6) where a, b, c=positive integers, c/b is an irreducible fraction In that case, the number of slots for two poles n 0 is n 0 = 2mq = 2ma + (2mc/b ) However, since c/b is an irreducible fraction, if there is a divisor between 2mc and b, it is a divisor between 2m and b. That is, if the greatest common divisor is r, then 2m=rm 0 b=rb 0 …(7) ∴n 0 =2ma+m 0 c/b 0 …(8) Therefore, b is an integer number for 0 pole pairs. This will include slots. The above p 0 should be equal to this b 0 . Therefore, since the total number of poles is 2p, the following conditions are required. p/b 0 = integer...(9) Since the number of slots n 0 b 0 of this b 0 pole number is equal to the above N 0 , from equation (8), N 0 = 2mab 0 + m 0 c However, this Equilibrium m for N0 slots
In order for phase winding to be possible, equation (5) must hold, so N 0 /m=2ab 0 +m 0 c/m=2ab 0 +2c/r = integer...(10) needs to hold. However, since r is a divisor of b and there is no divisor between c and b, there is no divisor between r and c. Therefore, in order for 2c/r in equation (10) to be an integer, the value of r can only be in the following two cases. (i) r=1 (ii) r=2 (11) That is, from equation (7), if there is a divisor of 3 or more between 2m and b, balanced m-phase winding can be implemented. do not have. Now, if we take a closer look at the cases in which equation (11) holds, we find the following: (i) When r=1 In this case, there is no divisor other than 1 between b and 2m, so b is an odd number. . Therefore, from equation (10), N 0 /m = 2ab 0 + 2c = even number. Therefore, from equation (5), a balanced m-phase winding can be implemented. (ii) When r=2 In this case, b=2b 0 . Therefore, b is an even number and c is an odd number (because there is no divisor between b and c), so the following fact holds true. N 0 /m=2ab 0 +2c/γ=2ab 0 +c = even+odd=odd Therefore, a two-layer winding is possible. Summarizing the above, we get the following. Now assume that the number of slots for each pole and each phase is q=c/b. If there is no divisor between 2m and b, or 2m
Balanced m-phase winding can be implemented whenever the greatest common divisor between and b is 2. Next, expressing the above-mentioned induced voltage relationship in a general formula, the induced voltage generated in the conductor of any one phase (U phase) winding of the non-excited pole is Eu1=Ecosωt...(12) All conductors are of the same pitch. Therefore, the upper conductor is separated from the lower conductor by (pitch x - groove electrical angle), and since this applies to all conductors, only the lower conductor is shown for ease of explanation. Then, the voltage induced in the conductor of the V-phase winding (located 2/3π electrical angle away from the U-phase winding) at a pole electrically k1 poles away from the u1 conductor (k1π in electrical angle) is as follows: It is expressed as Ev (k1) = Ecos {ωt + (k1π + 2/3π)} × Pf / Pe ... (13) [Here, Pe is the non-excited pole and Pf is the excited pole] Here, multiplying Pf / Pe is (k1π + 2 /3π) is expressed in terms of poles and electrical angles in the non-excited winding, so it is used to convert to the magnetic field in the excitation winding (6 poles in the example). Similarly, the conductor of the W-phase winding, which is separated by k2 poles, is separated by k2π poles and 4/3π in electrical angle from the U phase, so equation (14) is obtained. EW (k2) = Ecos {ωt + (k2π + 4/3π)} × Pf / Pe … (14) [Here, k1 and k2 are positive integers] In other words, each phase in equations (12) to (14) induced voltage of
The condition that Eu1, Ev (k1), and Ew (K2) have the same magnitude (amplitude) and phase can be found from equation (13): (k1π+2/3π)×Pf/Pe=2nπ...(15) That is, the left side ( ) This holds if the inside is an electrical angle of zero or a multiple of 360°, and as a result, Ev (k1) = Ecos (ωt + 2nπ) = Ecosωt, which is the same value and phase as Eu1 in equation (12). . Similarly, when formula (14) is calculated for the W phase, it becomes (k2π+4/3π)Pf/Pe=2n′π (16). k1 and (16) obtained from equation (15) above
k2 obtained from the formula is the magnitude of the induced voltage in each phase conductor,
The phase joint condition is one condition. As an example, when calculating k1 and k2, Pe = 4 (pole) Pf = 6 (pole) From formula (15) (k1 + 2/3) = 6/4 = 2n k1 = 2n × 4/6 - 2/3 = 2 (n=2) From equation (16), (k2 + 4/3) 6/4 = 2n' k2 = 2n' x 4/6 - 4/3 = 0 (n' = 1) However, K2 = 0 means W This means that the phase winding is 0 poles apart in electrical angle from the U phase, which cannot be true, so by further changing n', we can find K2 where the U phase pole and the W phase pole are true. If you ask, n′=
4, we obtain the integer 4, K2=2n'×4/6-4/3=4. Pe=8 (pole) Pf=6 (pole) From equation (15) (k1+2/3)6/8=2n k1=2n×8/6-2/3=2(n=1) From equation (16) (k2+4/3)6/8=2n'(k2=2n'×8/6-4/3=4(n'=2) Pe=4 (pole) Pf=12 (pole) (K1+2/3)12 /4=2n K1=2n×4/12-2/3=2(n=2) (K2+4/3)12/4=2n'K2=2n'×4/12-4/3=4(n' = 4) Pe = 8 (pole) Pf = 12 (pole) (K1 + 2/3) 12/8 = 2n K1 = 2n x 8/12 - 2/3 = 2 (n = 2) (K2 + 4/3) 12/ 8=2n'K2=2n'×8/12-4/3=4(n'=4) Table 2 summarizes k1 and k2 at the pole number ratio in this relationship, and K1=2, K2=4.

【表】 即ち(15)(16)式より求めた各相導体どうし
にて並列回路の一方の回路を形成すれば、中性点
と各相端子間の電位差が全て同一大きさで、同位
相の為三相共平衡し端子間電位差は零となる。 例では U相はU1巻線U1′巻線U1巻線で V相はV3巻線V3′巻線V4巻線で W相はW1巻線W1′巻線W2巻線で 各々構成され一つの回路(第2図、4極のU1,
V1,W1口出しの回路)を形成する。 同様にもう一方の回路は下記で形成される。 U相はU2巻線U2′巻線U4巻線で V相はV1巻線V1′巻線V2巻線で W相はW2巻線W2′巻線W4巻線で いずれの回路も中性点と端子間の電位差は同一
であり端子間電位は零である。即ちこの様に形成
された2つの回路を互いに接続(第2図U1とU
2,V1とV2,W1とW2)しても両回路内に
は電位差は発生せず従つて循環電流は流れず過度
の発熱や損失の増加は伴わない事となる。 又Pfについて条件を求めるのに(15)式を代
表して説明すると (k1π+2/3π)Pf/Pe=2nπ 両辺をπで除すれば (k1π+2/3π)Pf/Pe=2n 式が得られ、ここでk1は正の整数、nも整数故
この式が成立する為にはPfは3の倍数極すなわ
ち6の倍数極が条件となる。 そして、前記Pe/Pf=8/6の時の巻線展開
図を第4図a,cに示し、接続回路図を第4図
b,dに示した。又、巻線とスロツト配置の関係
を表3に示した。 Pe/Pf=8/6になるとスロツト数が36個と
Pe/Pf=4/6の時の18個に対し倍増となり、
6極での−極一相当りのコイル数がPe/Pf=
4/6の時の1個から2個となるが巻線構成及び
作用効果は同様である。 次にPe/Pf=4/12の場合とPe/Pf=8/12
の場合の巻線展開図を夫々第5図a,cと第6図
a,cに示し、接続回路図を第5図b,dと第6
図b,dに夫々示した。又巻線とスロツト配置の
関係を表4及び表5に示した。この場合も巻線構
成及び作用効果Pe/Pf=4/6の場合と同様で
ある。
[Table] In other words, if one circuit of a parallel circuit is formed using the conductors of each phase obtained from equations (15) and (16), the potential differences between the neutral point and each phase terminal are all the same size, and the phase is the same. Therefore, all three phases are balanced and the potential difference between the terminals is zero. In the example, the U phase is made up of U1 winding, U1' winding, and U1 winding, the V phase is made up of V3 winding, V3' winding, and V4 winding, and the W phase is made up of W1 winding, W1' winding, and W2 winding, forming one circuit. (Fig. 2, 4-pole U1,
V1, W1 output circuit) is formed. Similarly, the other circuit is formed as follows. The U phase is U2 winding, U2' winding, and U4 winding. The V phase is V1 winding, V1' winding, and V2 winding. The W phase is W2 winding, W2' winding, and W4 winding. Both circuits have a neutral point. The potential difference between the terminals is the same, and the potential between the terminals is zero. That is, the two circuits formed in this way are connected to each other (U1 and U in Fig. 2).
2, V1 and V2, and W1 and W2), no potential difference is generated in both circuits, so no circulating current flows and no excessive heat generation or increase in loss occurs. Also, to find the conditions for Pf, we can use formula (15) as a representative: (k1π+2/3π)Pf/Pe=2nπ If we divide both sides by π, we get the formula (k1π+2/3π)Pf/Pe=2n, Here, k1 is a positive integer and n is also an integer, so in order for this equation to hold, Pf must be a multiple pole of 3, that is, a multiple pole of 6. The developed winding diagrams when Pe/Pf=8/6 are shown in FIGS. 4a and 4c, and the connection circuit diagrams are shown in FIGS. 4b and d. Table 3 shows the relationship between the windings and the slot arrangement. When Pe/Pf=8/6, the number of slots becomes 36.
This is double the 18 pieces when Pe/Pf=4/6,
The number of coils per -pole in 6 poles is Pe/Pf=
Although the number of wires is changed from one in the case of 4/6 to two, the winding configuration and operation and effect are the same. Next, when Pe/Pf=4/12 and Pe/Pf=8/12
The winding development diagrams in the case of are shown in Fig. 5 a, c and Fig. 6 a, c, respectively, and the connection circuit diagrams are shown in Fig. 5 b, d and Fig. 6.
They are shown in Figures b and d, respectively. Tables 4 and 5 show the relationship between the windings and the slot arrangement. In this case as well, the winding configuration and effect are the same as in the case where Pe/Pf=4/6.

【表】【table】

【表】【table】

【表】【table】

【表】【table】 【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本考案の一例を示す4極巻線での巻線
展開図、第2図は接続回路図、第3図は6極巻線
での巻線展開図と起磁力波形図、第4図はPe/
Pfが8/6の時で第4図a,cは6極と8極の
巻線展開図を示し同図b,dは夫々接続回路図、
第5図はPe/Pfが4/12の時で第5図a,cは
12極と4極の巻線展開図を示し同図b,dは夫々
接続回路図、第6図はPe/Pfが8/12の時で第
6図a,cは12極と8極の巻線展開図を示し同図
b,dは夫々接続回路図である。 Pf…励磁極数、Pe…遊び巻線の極数、n,
n′…整数、1,2,3…18…スロツト番号。
Fig. 1 is a winding development diagram of a four-pole winding showing an example of the present invention, Fig. 2 is a connection circuit diagram, Fig. 3 is a winding development diagram and magnetomotive force waveform diagram of a six-pole winding, and Fig. 3 is a winding development diagram of a six-pole winding. Figure 4 is Pe/
When Pf is 8/6, Figure 4 a and c show the developed winding diagrams of 6-pole and 8-pole windings, and Figure 4 b and d are connection circuit diagrams, respectively.
Figure 5 is when Pe/Pf is 4/12, and Figure 5 a and c are
The winding diagrams of 12 poles and 4 poles are shown, b and d are the connection circuit diagrams respectively, Figure 6 is when Pe/Pf is 8/12, and Figure 6 a and c are the winding diagrams of 12 poles and 8 poles. The winding development diagram is shown, and b and d in the figure are connection circuit diagrams, respectively. Pf...Number of excitation poles, Pe...Number of idle winding poles, n,
n'...Integer, 1, 2, 3...18...Slot number.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 6の整数倍の極数Pfを持つ電機子巻線と同一
電機子鉄心に装着された隣極で接続された分数溝
巻きで極数Peを持つ電機子巻線において、任意
のU相巻線と、この任意の巻線より(2+2/
3)Pf/Pe=2n(但しnは正の整数)を満足する
電気角2π離れたV相巻線と、前記任意の巻線よ
り(4+4/3)Pf/Pe=2n′(但しn′は正の整
数)を満足する電気角4π離れたW相巻線を一つ
の中性点で接続して2個以上の並列回路としたこ
とを特徴とする三相極数変換回転電機。
In the armature winding with the number of poles Pf which is an integral multiple of 6, and the armature winding with the number of poles Pe with fractional groove winding connected by adjacent poles installed on the same armature core, any U-phase winding And from this arbitrary winding (2+2/
3) A V-phase winding separated by an electrical angle of 2π that satisfies Pf/Pe=2n (where n is a positive integer) and (4+4/3) Pf/Pe=2n' (where n' is a positive integer) W-phase windings separated by an electrical angle of 4π are connected at one neutral point to form two or more parallel circuits.
JP557978U 1978-01-23 1978-01-23 Expired JPS6316300Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP557978U JPS6316300Y2 (en) 1978-01-23 1978-01-23

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP557978U JPS6316300Y2 (en) 1978-01-23 1978-01-23

Publications (2)

Publication Number Publication Date
JPS54111615U JPS54111615U (en) 1979-08-06
JPS6316300Y2 true JPS6316300Y2 (en) 1988-05-10

Family

ID=28811567

Family Applications (1)

Application Number Title Priority Date Filing Date
JP557978U Expired JPS6316300Y2 (en) 1978-01-23 1978-01-23

Country Status (1)

Country Link
JP (1) JPS6316300Y2 (en)

Also Published As

Publication number Publication date
JPS54111615U (en) 1979-08-06

Similar Documents

Publication Publication Date Title
Cros et al. Synthesis of high performance PM motors with concentrated windings
Demir et al. A novel asymmetric and unconventional stator winding configuration and placement for a dual three-phase surface PM motor
US3321653A (en) Alternating current electric motor rotor
GB2175751A (en) Improvements in or relating to pole changeable, three phase windings
JP2001238388A (en) Armature winding of rotating electric machine, and rotating electric machine
Rawcliffe et al. Close-ratio two-speed single-winding induction motors
CN105743257A (en) Magnetic flux switching brushless motor adopting single-layer stacked winding
US2905840A (en) Three phase induction motor winding
JPS6316300Y2 (en)
JPH04347566A (en) Brushless synchronous machine
Fong et al. Two-speed single-winding salient-pole synchronous machines
US20210288539A1 (en) Torque density pseudo six-phase induction machine
Alteheld et al. Analytical calculation model of an induction machine with combined star-delta windings taking into account multiple armature reaction and slotting
US3450971A (en) Pole-changing synchronous rotary electric machines
JPH0447551B2 (en)
JPS6120220B2 (en)
JPH0340064Y2 (en)
Liu et al. Comparison of dual-stator 6/4 FSPM machine with overlapping and non-overlapping winding
JPS5986445A (en) 3-phase armature winding
Barton et al. The theory and characteristics of the 3: 1 pole-changing induction motor
JP2518206B2 (en) Winding method of brushless DC linear motor
Vandana et al. A new excitation scheme for polyphase segmented switched reluctance motor
JPH09154247A (en) Multiphase armature winding
JPS6327939B2 (en)
Bhashini et al. A Method for Minimizing Subharmonics in Stator MMF of PMSM