JPH04347566A - Brushless synchronous machine - Google Patents

Brushless synchronous machine

Info

Publication number
JPH04347566A
JPH04347566A JP21816891A JP21816891A JPH04347566A JP H04347566 A JPH04347566 A JP H04347566A JP 21816891 A JP21816891 A JP 21816891A JP 21816891 A JP21816891 A JP 21816891A JP H04347566 A JPH04347566 A JP H04347566A
Authority
JP
Japan
Prior art keywords
winding
armature
rotor
magnetic field
stator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP21816891A
Other languages
Japanese (ja)
Other versions
JP3165968B2 (en
Inventor
Takayuki Fujikawa
隆幸 藤川
Kenji Inoue
猪上 憲治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHINDAIWA KOGYO KK
Original Assignee
SHINDAIWA KOGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHINDAIWA KOGYO KK filed Critical SHINDAIWA KOGYO KK
Priority to JP21816891A priority Critical patent/JP3165968B2/en
Publication of JPH04347566A publication Critical patent/JPH04347566A/en
Application granted granted Critical
Publication of JP3165968B2 publication Critical patent/JP3165968B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Synchronous Machinery (AREA)

Abstract

PURPOSE:To provide only an armature coil as a coil of a stator core by connecting an impedance element of 3-phase star connection to a leading end of an armature coil of 3-phase star connection and then connecting a power supply at the intermediate point between the leading end and impedance element. CONSTITUTION:Armature coils U, V, W of the centralized full node winding or a winding profile conforming thereto are wound around an iron core in the 3-phase star connection mode, an impedance element 8 of the 3-phase star connection is connected to the leading end thereof and a stator excitation power supply 7 is connected between the neural point (n) of the impedance element 8 and the neutral point N of the armature coils U, V, W to form a closed circuit. A rotor coil is provided with rotor exciting coils 6a to 6c which are magnetically connected with as many poles as three times or five times the number of the poles of the armature coils. Electromotive forces of these coils are converted into DC by rectifiers 9a to 9c and thereafter supplied to a rotor field coil 5. Thereby, only the armature windings U, V, W are provided as the coils of stator iron core.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明はブラシレス同期機、特に
ブラシレス同期発電機およびブラシレス同期電動機に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to brushless synchronous machines, and more particularly to brushless synchronous generators and brushless synchronous motors.

【0002】0002

【従来の技術】従来の同期機においてはそのブラシレス
化を図る技術として、同期機本体の回転軸に励磁機を設
ける構造のものが主流であったが、近年においては小型
化,軽量化や構造の簡素化等を目的としてこの励磁機を
省略する方式のものが出現している。
[Prior Art] Conventional synchronous machines have a structure in which an exciter is installed on the rotating shaft of the main body of the synchronous machine as a technique for making the machine brushless. A system has emerged in which this exciter is omitted for the purpose of simplifying the system.

【0003】例えば第一の方式として、固定子鉄心に主
電機子巻線とこの電機子巻線とは極数を異にする固定子
励磁巻線を巻装し、回転子鉄心には主電機子巻線と同一
の極数を有する回転子界磁巻線と、固定子励磁巻線と磁
気的結合をなす回転子励磁巻線を巻装することにより、
固定子励磁巻線による磁界によって誘導した回転子励磁
巻線の電圧を、回転子鉄心に備えた整流器で直流に変換
して回転子界磁巻線に供与する方式がある。
For example, in a first method, a main armature winding and a stator excitation winding having a different number of poles from the armature winding are wound around the stator core, and the main armature winding is wound around the rotor core. By winding a rotor field winding having the same number of poles as the child winding and a rotor excitation winding that is magnetically coupled to the stator excitation winding,
There is a method in which the voltage in the rotor excitation winding induced by the magnetic field of the stator excitation winding is converted into direct current by a rectifier provided in the rotor core, and then supplied to the rotor field winding.

【0004】この種の方式が同期発電機に利用されたも
のとして、特開昭62−23348号公報,特開昭63
−220746号公報,英国特許第941482号公報
,英国特許第1038472号公報に記載されたものが
知られている。
[0004] This type of system is used in synchronous generators as disclosed in Japanese Patent Application Laid-open Nos. 62-23348 and 1983.
Those described in British Patent No. 220746, British Patent No. 941482, and British Patent No. 1038472 are known.

【0005】また、第二の方式として、第一の方式にお
ける固定子励磁巻線の作用を主電機子巻線に兼ねさせる
ことにより固定子励磁巻線を省略した構成が特開昭55
−2327号公報に開示されている。
[0005] As a second method, a structure in which the stator excitation winding is omitted by having the main armature winding also serve as the function of the stator excitation winding in the first method is disclosed in Japanese Patent Laid-Open No. 55
It is disclosed in Japanese Patent No.-2327.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、上記従
来のブラシレス同期機においては以下のような問題があ
る。
However, the conventional brushless synchronous machine described above has the following problems.

【0007】第一の方式に属するものにおいては固定子
鉄心に主電機子巻線と固定子励磁巻線という2種類の巻
線を巻装しなければならず、このように巻装巻線の種類
が多いことは巻線の配置を複雑化させ、製造コストを上
昇させることになる。
In the first system, two types of windings, the main armature winding and the stator excitation winding, must be wound around the stator core. The large number of types complicates the arrangement of the windings and increases manufacturing costs.

【0008】第二の方式に属するものにおいては巻装巻
線の種類は減じ得ても、一方で電機子巻線が中間点を有
する二重星形接続という特異なものとなり、このため、
上記特開昭55−2327号公報に示されるように、電
機子巻線の巻線ピッチの設定に特別の設計的配慮を必要
とすることなどの問題がある。
In those belonging to the second system, although the types of windings can be reduced, on the other hand, the armature winding has a unique double star connection with a midpoint, and therefore,
As shown in the above-mentioned Japanese Patent Laid-Open No. 55-2327, there are problems such as the need for special design consideration in setting the winding pitch of the armature winding.

【0009】本発明は上記問題点に鑑みて創案されたも
のであり、固定子鉄心の巻装巻線を、製造上きわめて能
率的な巻線態様とした電機子巻線のみとし、製造コスト
の低廉なブラシレス同期機の提供を目的としている。
The present invention has been devised in view of the above-mentioned problems, and the stator core windings are only armature windings that are extremely efficient in manufacturing, thereby reducing manufacturing costs. The aim is to provide an inexpensive brushless synchronous machine.

【0010】0010

【課題を解決するための手段】本発明は上記の目的を達
成するために、固定子鉄心に集中全節巻または集中全節
巻に準ずる巻線態様の電機子巻線を三相スター結線をな
して巻装し、この電機子巻線からの引出し端に三相スタ
ー結線をなすインピーダンス素子を接続し、このインピ
ーダンス素子の中性点と上記電機子巻線の中性点との間
に固定子励磁電源を接続してこれらの固定子励磁電源と
上記電機子巻線と上記インピーダンス素子とによる閉回
路を形成する。
[Means for Solving the Problems] In order to achieve the above object, the present invention provides a three-phase star connection for an armature winding in a winding mode similar to concentrated full-pitch winding or concentrated full-pitch winding in a stator core. An impedance element forming a three-phase star connection is connected to the lead-out end of this armature winding, and fixed between the neutral point of this impedance element and the neutral point of the armature winding. Sub-excitation power supplies are connected to form a closed circuit including these stator excitation power supplies, the armature winding, and the impedance element.

【0011】回転子鉄心には上記電機子巻線の極数の3
倍および5倍の極数と磁気的結合をなす回転子励磁巻線
と、この回転子励磁巻線の起電力が直流に変換された後
に供与され、かつ上記電機子巻線と同一極数の回転子界
磁巻線を巻装するとともに、回転子鉄心には上記回転子
励磁巻線の起電力を直流に変換するための整流器を備え
る構成とするものである。
[0011] The rotor core has three poles, which is the number of poles of the armature winding.
A rotor excitation winding that is magnetically coupled with twice and five times the number of poles, and a rotor excitation winding that is provided after the electromotive force of this rotor excitation winding is converted into DC and has the same number of poles as the armature winding. The rotor field winding is wound around the rotor core, and the rotor core is provided with a rectifier for converting the electromotive force of the rotor excitation winding into direct current.

【0012】0012

【作  用】以下、本発明を同期発電機に適用した場合
の作用を説明する。
[Operation] The operation when the present invention is applied to a synchronous generator will be explained below.

【0013】先ず、無負荷時において上記固定子励磁電
源から、わずかな直流の固定子励磁電流を電機子巻線の
各相に供与すると、固定子励磁電流は上記インピーダン
ス素子の中性点に合流して再び固定子励磁電源に戻る。 この時、三相の電機子巻線を流れる固定子励磁電流によ
って生じる磁界(以下、これを固定子励磁磁界と称する
)は、電機子巻線の集中全節巻または集中全節巻に準ず
る巻線態様から電機子巻線の極数の3倍の極数を形成す
る。ここで回転子を回転させると、上記電機子巻線の極
数の3倍の極数との磁気的結合によって回転子励磁巻線
に起電力が誘導する。この起電力は整流器を介して回転
子界磁巻線に直流の回転子界磁電流を供与し、主磁界を
発生させる。回転子界磁巻線には電機子巻線が磁気的に
結合させてあることから電機子巻線に出力電圧が誘導す
る。
First, when a small amount of direct current stator excitation current is applied to each phase of the armature winding from the stator excitation power source during no load, the stator excitation current joins the neutral point of the impedance element. Then return to the stator excitation power supply again. At this time, the magnetic field generated by the stator excitation current flowing through the three-phase armature winding (hereinafter referred to as stator excitation magnetic field) is generated by the concentrated full-pitch winding or the similar concentrated full-pitch winding of the armature winding. Due to the wire configuration, the number of poles is three times that of the armature winding. When the rotor is rotated here, an electromotive force is induced in the rotor excitation winding due to magnetic coupling with the number of poles three times the number of poles of the armature winding. This electromotive force supplies a DC rotor field current to the rotor field winding through a rectifier, thereby generating a main magnetic field. Since the armature winding is magnetically coupled to the rotor field winding, an output voltage is induced in the armature winding.

【0014】この出力電圧によって三相スター結線をな
すインピーダンス素子に三相交流電流(以下、これをイ
ンピーダンス電流と称する)が流れる。電機子巻線を流
れるインピーダンス電流によって生ずる電機子反作用磁
界は電機子巻線の集中全節巻または集中全節巻に準ずる
巻線態様から第5空間高調波磁界、すなわち電機子巻線
の極数の5倍の極数を含むものとなる。この第5空間高
調波磁界は回転子の回転方向に対し逆方向に回転する磁
界となって磁気的に結合する回転子励磁巻線に起電力を
誘導する。
[0014] This output voltage causes a three-phase alternating current (hereinafter referred to as an impedance current) to flow through the impedance elements forming a three-phase star connection. The armature reaction magnetic field generated by the impedance current flowing through the armature winding is the fifth spatial harmonic magnetic field, that is, the number of poles of the armature winding due to the concentrated full-pitch winding or the winding mode similar to concentrated full-pitch winding. It contains five times the number of poles. This fifth spatial harmonic magnetic field becomes a magnetic field that rotates in the opposite direction to the rotation direction of the rotor, and induces an electromotive force in the rotor excitation winding that is magnetically coupled.

【0015】結局、回転子励磁巻線に誘導する起電力お
よび回転子界磁電流は固定子励磁電流による固定子励磁
磁界によるものに、インピーダンス電流による電機子反
作用磁界中の第5空間高調波磁界によるものが加えられ
て増大し、主磁界が増強、延いては電機子巻線に誘導し
た出力電圧が上昇する。出力電圧が上昇すると、インピ
ーダンス電流、第5空間高調波磁界、回転子励磁巻線の
起電力、主磁界等が増大増強し、これを繰返して自励的
に出力電圧が確立する。この時、固定子励磁電流を可変
とすれば、無負荷時の出力電圧を任意に調整できる。
As a result, the electromotive force and rotor field current induced in the rotor excitation winding are due to the stator excitation magnetic field due to the stator excitation current, and the fifth spatial harmonic magnetic field in the armature reaction magnetic field due to the impedance current. The main magnetic field is strengthened, which in turn increases the output voltage induced in the armature winding. When the output voltage increases, the impedance current, the fifth spatial harmonic magnetic field, the electromotive force of the rotor excitation winding, the main magnetic field, etc. increase and strengthen, and this is repeated to establish the output voltage in a self-excited manner. At this time, if the stator excitation current is made variable, the output voltage under no load can be adjusted as desired.

【0016】次に、三相負荷時にはインピーダンス電流
と負荷電流との合成電流が電機子電流として電機子巻線
を流れる。この電機子電流によって生ずる電機子反作用
磁界も電機子巻線の集中全節巻または集中全節巻に準ず
る巻線態様から第5空間高調波磁界を含み、無負荷時と
同様の作用で回転子励磁巻線に起電力を誘導する。した
がって、回転子励磁巻線の起電力は無負荷時における起
電力に負荷電流による第5空間高調波磁界による起電力
が加えられて増大し、回転子界磁電流が増加する。負荷
時における第5空間高調波磁界の強さは負荷電流の大き
さに比例するから、負荷電流の増減にともなって回転子
界磁電流も増減し、出力電圧の変動を抑制する。すなわ
ち、同期発電機に不可欠の出力電圧補償作用が自動的に
行われ、出力電圧は一定に保たれる。
Next, when a three-phase load is applied, a composite current of the impedance current and the load current flows through the armature winding as an armature current. The armature reaction magnetic field generated by this armature current also includes a fifth spatial harmonic magnetic field due to the concentrated full-pitch winding or the winding mode similar to the concentrated full-pitch winding of the armature winding. Induces an electromotive force in the excitation winding. Therefore, the electromotive force of the rotor excitation winding is increased by adding the electromotive force due to the fifth spatial harmonic magnetic field due to the load current to the electromotive force under no load, and the rotor field current increases. Since the strength of the fifth spatial harmonic magnetic field under load is proportional to the magnitude of the load current, the rotor field current also increases or decreases as the load current increases or decreases, suppressing fluctuations in the output voltage. That is, the output voltage compensation function essential to a synchronous generator is automatically performed, and the output voltage is kept constant.

【0017】単相負荷の場合も単相交流負荷電流による
交番電機子反作用磁界中に含まれる第5空間高調波磁界
を利用するので、三相負荷の場合と同じである。
In the case of a single-phase load, the fifth spatial harmonic magnetic field contained in the alternating armature reaction magnetic field due to the single-phase AC load current is utilized, so it is the same as in the case of a three-phase load.

【0018】本発明は電機子巻線に外部より電力を供与
する場合には同期電動機として動作させ得る。
The present invention can be operated as a synchronous motor when power is supplied to the armature winding from the outside.

【0019】なお、固定子励磁電源が交流の場合でも上
記作用は同じである。また、固定子励磁電流は、固定子
励磁電源,電機子巻線,インピーダンス素子からなる閉
回路を還流するのみで負荷に影響を及ぼさない。固定子
励磁磁界,第5空間高調波磁界および主磁界の極数はそ
れぞれ異なるため互いに及ぼし合う影響は極めて小さく
、所望の出力が得られる。
Note that the above-mentioned effect is the same even when the stator excitation power source is alternating current. Further, the stator excitation current only circulates through a closed circuit consisting of the stator excitation power source, the armature winding, and the impedance element, and does not affect the load. Since the numbers of poles of the stator excitation magnetic field, the fifth spatial harmonic magnetic field, and the main magnetic field are different from each other, their influence on each other is extremely small, and the desired output can be obtained.

【0020】[0020]

【実施例】本発明を同期発電機に適用した場合の一実施
例を図面に基づき説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment in which the present invention is applied to a synchronous generator will be described with reference to the drawings.

【0021】図1において、U,V,Wは三相電機子巻
線のU相,V相,W相である。電機子巻線U,V,Wは
図2に示すように固定子鉄心1の内周部に形成した固定
子スロット2内に集中全節巻の巻線態様にて、2極三相
に巻装し、図1に示すようにスター結線して各相の引出
し端を出力端子10〜12を介して負荷に接続するよう
になっている。さらに電機子巻線U,V,Wの引出し端
に三相スター結線をなすインピーダンス素子8を接続す
る。電機子巻線U,V,Wの中性点Nとインピーダンス
素子8の中性点nとの間に直流の固定子励磁電源7を接
続し、この固定子励磁電源7と電機子巻線U,V,Wと
インピーダンス素子8とによる閉回路を形成する。
In FIG. 1, U, V, and W are U, V, and W phases of a three-phase armature winding. As shown in Fig. 2, the armature windings U, V, and W are wound in a two-pole, three-phase manner in a concentrated full-pitch winding manner within stator slots 2 formed on the inner circumference of the stator core 1. As shown in FIG. 1, the lead-out ends of each phase are connected to the load via output terminals 10 to 12 in a star connection. Further, an impedance element 8 forming a three-phase star connection is connected to the lead-out ends of the armature windings U, V, and W. A DC stator excitation power source 7 is connected between the neutral point N of the armature windings U, V, W and the neutral point n of the impedance element 8, and this stator excitation power source 7 and the armature winding U , V, W and the impedance element 8 form a closed circuit.

【0022】一方、回転子Rにおいては図2に示すよう
に、回転子鉄心3に回転子スロット4を形成し、この回
転子スロット4内に回転子界磁巻線5および回転子励磁
巻線6a,6b,6cを巻装する。回転子界磁巻線5は
電機子巻線U,V,Wと同数の極数(2極)を形成する
ように巻装する。回転子励磁巻線6aは電機子巻線U,
V,Wの極数の3倍(6極)および5倍(10極)の極
数のそれぞれと磁気的結合をなす巻線ピッチで巻装して
整流器9aの交流入力側に接続する。また、回転子励磁
巻線6b,6cについても同様にした後、整流器9a.
9b,9cの直流出力側を互いに並列に接続し、直流出
力端に回転子界磁巻線5を接続する。整流器9a,9b
,9cはそれぞれ回転子鉄心3に付設させてあり、回転
子鉄心3とともに回転する回転整流器形式になっている
On the other hand, in the rotor R, as shown in FIG. 2, a rotor slot 4 is formed in the rotor core 3, and the rotor field winding 5 and the rotor excitation winding 6a, 6b, and 6c are wound. The rotor field winding 5 is wound so as to form the same number of poles (two poles) as the armature windings U, V, and W. The rotor excitation winding 6a is the armature winding U,
It is wound with a winding pitch that magnetically couples with the number of poles 3 times (6 poles) and 5 times (10 poles) the number of poles of V and W, respectively, and connected to the AC input side of the rectifier 9a. Further, after the rotor excitation windings 6b and 6c are similarly applied, the rectifier 9a.
The DC output sides of 9b and 9c are connected in parallel to each other, and the rotor field winding 5 is connected to the DC output end. Rectifier 9a, 9b
, 9c are each attached to the rotor core 3, and are in the form of a rotating rectifier that rotates together with the rotor core 3.

【0023】次に、上記構成のブラシレス同期発電機の
動作を説明する。先ず、無負荷時において、固定子励磁
電源7から、わずかな直流の固定子励磁電流iou,i
ov,iowを電機子巻線U,V,Wに供与する。この
固定子励磁電流iou,iov,iowはインピーダン
ス素子8の中性点nに合流し固定子励磁電源7に戻る。 この時、三相電機子巻線U,V,Wを流れる固定子励磁
電流iou,iov,iowによって生ずる固定子励磁
磁界Hoは、電機子巻線U,V,Wが集中全節巻にして
あることから、電機子巻線U,V,Wの極数の3倍、す
なわち、6極を形成する。これを以下に解析する。
Next, the operation of the brushless synchronous generator having the above configuration will be explained. First, when there is no load, a small DC stator excitation current iou,i is supplied from the stator excitation power supply 7.
ov and iow are provided to armature windings U, V, and W. The stator excitation currents iou, iov, and iow join the neutral point n of the impedance element 8 and return to the stator excitation power source 7. At this time, the stator excitation magnetic field Ho generated by the stator excitation currents iou, iov, and iow flowing through the three-phase armature windings U, V, and W is caused by the concentrated full-pitch winding of the armature windings U, V, and W. Therefore, the number of poles is three times the number of poles of the armature windings U, V, and W, that is, six poles are formed. This is analyzed below.

【0024】図4は電機子巻線各相の配列および固定子
励磁電流iou,iov,iowの方向を示している。 また、この図4に示す電機子巻線U,V,Wをθ方向に
展開し、U相についてフーリエ級数で表した方形波磁界
分布を示せば図3のようになる。この図3においては固
定子Sと回転子R間のギャップを省略してある。
FIG. 4 shows the arrangement of each phase of the armature winding and the directions of stator excitation currents iou, iov, and iow. Further, if the armature windings U, V, and W shown in FIG. 4 are expanded in the θ direction, and the square wave magnetic field distribution expressed in a Fourier series for the U phase is shown as shown in FIG. 3. In FIG. 3, the gap between the stator S and the rotor R is omitted.

【0025】上記のように、集中全節巻の電機子巻線U
による磁界分布は、電機子巻線Uの巻数をn(T),電
機子巻線Uに流れる固定子励磁電流をiou(A),比
例定数をkとすると、振幅をkioun(AT/m)と
する方形波になる。ただし、磁路の磁気飽和は無視する
As mentioned above, the armature winding U with concentrated full-pitch winding
The magnetic field distribution according to It becomes a square wave. However, the magnetic saturation of the magnetic path is ignored.

【0026】方形波の中心点0を基点とし、この0点か
ら電気角でθ(rad)の距離における任意の点Pにお
ける磁界の強さHouをフーリエ級数で表すと、となる
。固定子励磁電流iou,iov,iowは今の場合、
直流であるから、iou≡Io(A)〈平均値〉とし■
式に代入すると、 となる。さらに、固定子Sに2π/3(rad)ずつず
らした位置に巻装した集中全節巻の電機子巻線V,W(
巻数はU相と同じ)に、 (V相)    iov≡Io(A) (W相)    iow≡Io(A) が流れたとき、各相の磁界の強さをそれぞれHov,H
owとすると、 となる。固定子励磁磁界Hoは■,■,■式の和である
から次式が得られる。 Ho=Hou+Hov+How ■式より固定子励磁磁界Hoは第一項の−Hom  c
os3θ、すなわち6極を形成することがわかる。図5
は以上の解析を図で表したものである。
Using the center point 0 of the square wave as a base point, the magnetic field strength Hou at an arbitrary point P at a distance of θ (rad) in electrical angle from this 0 point is expressed in a Fourier series as follows. In this case, the stator excitation currents iou, iov, iow are
Since it is a direct current, iou≡Io(A)〈average value〉■
Substituting into the formula yields . Furthermore, concentrated full-pitch winding armature windings V and W (
When (V phase) iov≡Io(A) (W phase) iow≡Io(A) flows in (the number of turns is the same as U phase), the magnetic field strength of each phase is expressed as Hov and H, respectively.
When ow is assumed, it becomes . Since the stator excitation magnetic field Ho is the sum of the equations (1), (2), and (2), the following equation is obtained. Ho=Hou+Hov+How ■From the formula, the stator excitation magnetic field Ho is the first term -Hom c
It can be seen that os3θ, that is, six poles are formed. Figure 5
is a graphical representation of the above analysis.

【0027】ここで回転子Rを回転させると、固定子励
磁磁界Hoの上記6極と磁気的結合をなす回転子励磁巻
線6a,6b,6cのそれぞれに起電力er3が誘導す
る。この起電力er3は整流器9a,9b,9cを介し
て、回転子界磁巻線5に回転子界磁電流をifを供与し
、2極の主磁界を発生させる。回転子界磁巻線5には電
機子巻線U,V,Wが磁気的に結合させてあるから電機
子巻線U,V,Wにわずかな出力電圧が誘導する。この
出力電圧により電機子巻線U,V,Wとインピーダンス
素子8とからなる回路に三相交流のインピーダンス電流
izu,izv,izwが無負荷時における電機子電流
iau,iav,iawとして流れて、電機子反作用磁
界が生ずる。この電機子反作用磁界は電機子巻線U,V
,Wが集中全節巻であることから第5空間高調波磁界す
なわち10極成分を含むものとなる。これを以下に解析
する。
When the rotor R is rotated, an electromotive force er3 is induced in each of the rotor excitation windings 6a, 6b, and 6c, which are magnetically coupled to the six poles of the stator excitation magnetic field Ho. This electromotive force er3 provides a rotor field current if to the rotor field winding 5 through the rectifiers 9a, 9b, and 9c, thereby generating a two-pole main magnetic field. Since the armature windings U, V, W are magnetically coupled to the rotor field winding 5, a small output voltage is induced in the armature windings U, V, W. Due to this output voltage, three-phase AC impedance currents izu, izv, izw flow through the circuit consisting of the armature windings U, V, W and the impedance element 8 as armature currents iau, iav, iaw under no load, An armature reaction magnetic field is generated. This armature reaction magnetic field is generated by the armature windings U and V.
, W are concentrated full-pitch windings, so they contain a fifth spatial harmonic magnetic field, that is, a ten-pole component. This is analyzed below.

【0028】電機子巻線Uを流れる電機子電流iau(
A)によって生ずる磁界をHauとすると、■式は次の
ように書き換えられる。
Armature current iau (
Letting the magnetic field generated by A) be Hau, the equation (2) can be rewritten as follows.

【他6/】[Other 6/]

【他11/】[Other 11/]

【他7/】さらに、固定子Sに2π/3(rad)ずつ
ずらした位置に巻装された集中全節巻の電機子巻線V,
Wに次式で示される電機子電流、
[Other 7/] Furthermore, the armature winding V of concentrated full-pitch winding is wound around the stator S at positions shifted by 2π/3 (rad),
W is the armature current shown by the following formula,

【他8/】が流れたとき、各相の磁界をそれぞれHav
,Hawとすると、
When [Other 8/] flows, the magnetic field of each phase is Hav
, Haw, then

【他9/】となる。集中全節巻の三相電機子巻線による
磁界Haは■,■,■式の和であるから、次式が得られ
る。
[Other 9/] becomes. Since the magnetic field Ha due to the three-phase armature winding with concentrated full-pitch winding is the sum of formulas ■, ■, and ■, the following formula is obtained.

【他10/】▲10▼式より電機子電流iau,iav
,iawによる電機子反作用磁界Haは、第1項の基本
波磁界3/2Hamsin(ωt−θ)と、第2項の第
5空間高調波磁界,第3項の第7空間高調波磁界等の奇
数次空間高調波磁界から成り立っており、位相角の符号
から、第5空間高調波磁界は基本波磁界とは逆の方向に
、第7空間高調波磁界は基本波磁界と同じ方向に回転す
ることもわかる。
[Other 10/] From the formula ▲10▼, armature current iau, iav
, iaw, the armature reaction magnetic field Ha is composed of the fundamental wave magnetic field 3/2 Hamsin (ωt-θ) in the first term, the fifth spatial harmonic magnetic field in the second term, the seventh spatial harmonic magnetic field in the third term, etc. It consists of odd-numbered spatial harmonic magnetic fields, and based on the sign of the phase angle, the 5th spatial harmonic magnetic field rotates in the opposite direction to the fundamental wave magnetic field, and the 7th spatial harmonic magnetic field rotates in the same direction as the fundamental wave magnetic field. I understand that.

【0029】本発明は以上の解析結果から導出される第
5空間高調波磁界を利用するものである。すなわち、電
機子巻線U,V,Wの極数の5倍の極数(10極)と磁
気的結合をなすように巻装した回転子励磁巻線6a,6
b,6cのそれぞれに電機子反作用磁界中の第5空間高
調波磁界(10極)によって起電力er5が誘導する。 この起電力er5は整流器9a,9b,9cを介して回
転子界磁巻線5に印加される。
The present invention utilizes the fifth spatial harmonic magnetic field derived from the above analysis results. That is, the rotor excitation windings 6a, 6 are wound so as to be magnetically coupled with the number of poles (10 poles) that is five times the number of poles of the armature windings U, V, W.
An electromotive force er5 is induced in each of b and 6c by the fifth spatial harmonic magnetic field (10 poles) in the armature reaction magnetic field. This electromotive force er5 is applied to the rotor field winding 5 via rectifiers 9a, 9b, and 9c.

【0030】結局、回転子界磁電流ifは、起電力er
3によるものに起電力er5によるものが加えられて増
大し、主磁界が増強、延いては電機子巻線に誘起した出
力電圧が上昇する。出力電圧が上昇すると、インピーダ
ンス電流izu,izv,izw、第5空間高調波磁界
、起電力er5、主磁界等が増大増強し、これを繰り返
して自励的に出力電圧が確立される。このとき、固定子
励磁電流iou,iov,iowを可変とすれば無負荷
時の出力電圧を任意に調整できる。
As a result, the rotor field current if is equal to the electromotive force er
The electromotive force er5 is added to the electromotive force er5, which increases the main magnetic field, which in turn increases the output voltage induced in the armature winding. When the output voltage increases, the impedance currents izu, izv, izw, the fifth spatial harmonic magnetic field, the electromotive force er5, the main magnetic field, etc. increase and strengthen, and this is repeated to establish the output voltage in a self-exciting manner. At this time, if the stator excitation currents iou, iov, and iow are made variable, the output voltage during no-load can be arbitrarily adjusted.

【0031】次に、三相負荷時には、インピーダンス電
流iou,iov,iowと負荷電流iu,iv,iw
との合成電流が電機子電流iau,iav,iawとし
て電機子巻線U,V,Wを流れる。三相負荷時における
電機子電流iau,iav,iawによる第5空間高調
波磁界の発生およびその作用については上記無負荷の場
合と同様であるが、回転子励磁巻線6a,6b,6cの
起電力er5は負荷電流iu,iv,iwによる第5空
間高調波磁界の作用がインピーダンス電流izu,iz
v,izwによる第5空間高調波磁界の作用に加わって
上昇し、回転子界磁電流ifが無負荷時よりも増大する
。負荷時における第5空間高調波磁界の強さは負荷電流
iu,iv,iwの大きさに比例するから、負荷電流の
増減に伴って回転子界磁電流ifも増減し、出力電圧の
変動を抑制する。すなわち、固定子励磁電流iou,i
ov,iowを一定に保ったままでも、同期発電機に不
可欠の出力電圧補償作用が自動的に行われ、出力電圧は
一定に保たれる。この時、固定子励磁電流がiou,i
ov,iowを可変とすれば無負荷時と同様に負荷時に
おいても出力電圧を任意に調整することができる。
Next, when a three-phase load is applied, the impedance currents iou, iov, iow and the load currents iu, iv, iw
The combined current flows through the armature windings U, V, and W as armature currents iau, iav, and iaw. The generation and effect of the fifth spatial harmonic magnetic field due to the armature currents iau, iav, and iaw during three-phase loads are the same as in the case of no load, but the generation of the fifth spatial harmonic magnetic field by the armature currents iau, iav, and iaw is the same as in the case of no load, but the The power er5 is the impedance current izu, iz due to the action of the fifth spatial harmonic magnetic field due to the load currents iu, iv, iw.
It increases in addition to the action of the fifth spatial harmonic magnetic field caused by v, izw, and the rotor field current if increases compared to when there is no load. The strength of the fifth spatial harmonic magnetic field under load is proportional to the magnitude of the load currents iu, iv, iw, so as the load current increases or decreases, the rotor field current if also increases or decreases, suppressing fluctuations in the output voltage. suppress. That is, stator excitation current iou,i
Even if ov and iow are kept constant, the output voltage compensation function, which is essential for a synchronous generator, is automatically performed and the output voltage is kept constant. At this time, the stator excitation current is iou,i
By making ov and iow variable, the output voltage can be arbitrarily adjusted under load as well as under no load.

【0032】単相負荷の場合も出力端子10〜12から
選択された2つの端子に単相負荷を接続する出力形態に
おいて、単相交流負荷電流による交番電機子反作用磁界
中の第5空間高調波磁界を利用するので上記三相の場合
と同じになる。
Even in the case of a single-phase load, in the output mode in which the single-phase load is connected to two terminals selected from output terminals 10 to 12, the fifth spatial harmonic in the alternating armature reaction magnetic field due to the single-phase AC load current Since it uses a magnetic field, it is the same as the three-phase case described above.

【0033】固定子励磁電流iou,iov,iowは
、固定子励磁電源7、電機子巻線U,V,W、インピー
ダンス素子8等からなる閉回路を還流するのみで負荷に
影響を及ぼさない。
The stator excitation currents iou, iov, iow only circulate through a closed circuit consisting of the stator excitation power supply 7, the armature windings U, V, W, the impedance element 8, etc., and do not affect the load.

【0034】また、本発明における回転子励磁巻線の巻
線態様は上記実施例に限るものではない。図6は電機子
巻線U,V,Wが2極の場合に適用する回転子励磁巻線
のさまざまな実施例を展開図として示したものであり、
図1,図2に示した実施例は図6(d)を採用したもの
である。図6(a),(b),(c)(d)はそれぞれ
8極,8極,10極,6極巻線を、巻線ピッチをそのま
まにして適宜分割し、整流器に接続したもので、いずれ
も固定子励磁磁界(6極)および第5空間高調波磁界(
10極)という極数の異なる2種類の磁界と磁気的結合
をなして回転子界磁電流ifを供与し得る代表的な実施
例である。その他、10極巻線と、6極巻線という巻線
ピッチの異なる2種類の回転子励磁巻線を巻装し、それ
ぞれを整流器に接続するという方法も可能であり、所望
する特性および製造コスト等を勘案して選択すればよい
Furthermore, the winding mode of the rotor excitation winding in the present invention is not limited to the above embodiment. FIG. 6 shows developed diagrams of various embodiments of rotor excitation windings that are applied when the armature windings U, V, and W are two poles.
The embodiment shown in FIGS. 1 and 2 adopts FIG. 6(d). Figures 6(a), (b), (c), and (d) show 8-pole, 8-pole, 10-pole, and 6-pole windings, respectively, divided as appropriate without changing the winding pitch, and connected to a rectifier. , both stator excitation magnetic field (6 poles) and 5th spatial harmonic magnetic field (
This is a typical example in which a rotor field current if can be provided by magnetically coupling with two types of magnetic fields having different numbers of poles (10 poles). In addition, it is also possible to wind two types of rotor excitation windings with different winding pitches, a 10-pole winding and a 6-pole winding, and connect each to a rectifier, which can achieve the desired characteristics and manufacturing cost. You can make a selection by taking these factors into consideration.

【0035】さらに図1,図2に示した実施例において
、電機子巻線U,V,Wは集中全節巻がなされているも
のとして説明してきたが、本発明における電機子巻線の
巻線態様はこれに限るものではない。すなわち、集中全
節巻に準じた巻線態様も実際的見地からとり得る。ここ
に言う集中全節巻に準じた巻線態様とは電機子電流によ
る電機子反作用磁界中に第5空間高調波磁界を含ませる
と同時に、固定子励磁磁界Hoに電機子巻線の極数の3
倍の極数を形成させる意図で、電機子巻線の巻線係数を
適宜選択したあらゆる巻線態様を指す。たとえば、図7
は本発明における電機子巻線の巻線態様についての他の
実施例の一つを示したものであり、ここでは隣合う2つ
の固定子スロットに分布させた分布全節巻としたもので
ある。電機子反作用磁界中の第5空間高調波磁界および
固定子励磁磁界Hoは、電機子巻線U,V,Wを広く分
布させるほど弱くなるが、図7に示す実施例においては
両磁界の強さを実用に供し得る範囲に選択した場合にお
いては分布巻も可能であることを示している。
Further, in the embodiment shown in FIGS. 1 and 2, the armature windings U, V, and W have been described as having concentrated full-pitch windings, but the armature windings in the present invention are The line form is not limited to this. That is, from a practical standpoint, a winding mode similar to concentrated full-pitch winding can be adopted. The winding mode according to the concentrated full-pitch winding described here is to include the fifth spatial harmonic magnetic field in the armature reaction magnetic field due to the armature current, and at the same time to increase the number of poles of the armature winding in the stator excitation magnetic field Ho. No. 3
Refers to any winding configuration in which the winding coefficient of the armature winding is appropriately selected with the intention of forming twice the number of poles. For example, Figure 7
1 shows another embodiment of the winding mode of the armature winding according to the present invention, in which distributed full-pitch winding is distributed over two adjacent stator slots. . The fifth spatial harmonic magnetic field in the armature reaction magnetic field and the stator excitation magnetic field Ho become weaker as the armature windings U, V, and W are distributed more widely, but in the embodiment shown in FIG. This shows that distributed winding is also possible when the thickness is selected within a practical range.

【0036】本発明はまた、電機子巻線U,V,Wに外
部より三相電力を供与する場合には同期電動機として動
作させることができる。
The present invention can also be operated as a synchronous motor when three-phase power is externally supplied to the armature windings U, V, and W.

【0037】なお、固定子励磁電源を交流とした場合に
は、固定子励磁磁界Hoが交番磁界となるが、上記作用
は同じである。
Note that when the stator excitation power source is an alternating current, the stator excitation magnetic field Ho becomes an alternating magnetic field, but the above effect is the same.

【0038】固定子励磁磁界Ho,第5空間高調波磁界
および主磁界等の極数はそれぞれ異なるため、互いに及
ぼす影響は極めて小さく、所望の出力が得られる。
Since the numbers of poles of the stator excitation magnetic field Ho, the fifth spatial harmonic magnetic field, the main magnetic field, etc. are different, their influence on each other is extremely small, and the desired output can be obtained.

【0039】[0039]

【発明の効果】以上説明のように、本発明によれば、固
定子鉄心の巻装巻線を電機子巻線のみとしたブラシレス
同期機の実現が可能となる。しかも、電機子巻線は集中
全節巻または集中全節巻に準ずるという製造上極めて能
率的な巻線態様を有するものであるから製造コストの低
廉化を図り得る。この効果は、特に電機子巻線が必然的
に複雑化する多極機(4極以上)において著しいものと
なる。
As described above, according to the present invention, it is possible to realize a brushless synchronous machine in which only the armature winding is used as the winding around the stator core. Furthermore, since the armature winding has a winding mode that is extremely efficient in terms of manufacturing, such as concentrated full-pitch winding or similar to concentrated full-pitch winding, manufacturing costs can be reduced. This effect is particularly remarkable in multi-pole machines (four poles or more) where the armature winding is inevitably complicated.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本発明の一実施例を示す電気回路図である。FIG. 1 is an electrical circuit diagram showing one embodiment of the present invention.

【図2】本発明の一実施例を示す図であり、鉄心部分の
断面図を示す図である。
FIG. 2 is a diagram showing an embodiment of the present invention, and is a diagram showing a cross-sectional view of an iron core portion.

【図3】図4に示す電機子巻線U,V,Wをθ方向に展
開しU相についてフーリエ級数で表した方形波磁界分布
を示す図である。
3 is a diagram showing a square wave magnetic field distribution expressed in a Fourier series for the U phase when the armature windings U, V, and W shown in FIG. 4 are expanded in the θ direction; FIG.

【図4】電機子巻線各相の配列および固定子励磁電流i
ou,iov,iowの方向を示す図である。
[Figure 4] Arrangement of each phase of armature winding and stator excitation current i
It is a diagram showing the directions of ou, iov, and iow.

【図5】集中全節巻の電機子巻線による磁界分布を示す
図である。
FIG. 5 is a diagram showing the magnetic field distribution due to the armature winding of concentrated full-pitch winding.

【図6】電機子巻線U,V,Wが2極の場合に適用する
回転子励磁巻線のさまざまな実施例を展開図として示し
た図である。
FIG. 6 is a diagram illustrating various embodiments of rotor excitation windings applied when the armature windings U, V, and W are two poles, as developed views.

【図7】本発明における他の実施例を示す図である。FIG. 7 is a diagram showing another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

U・・U相 V・・V相 W・・W相 1・・鉄心 2・・固定子スロット 3・・回転子鉄心 4・・回転子スロット 5・・回転子界磁巻線 6a・回転子励磁巻線 6b・回転子励磁巻線 6C・回転子励磁巻線 7・・固定子励磁電源 8・・インピーダンス素子 9a・整流器 9b・整流器 9C・整流器 10・出力端 11・出力端 12・出力端 U...U phase V...V phase W...W phase 1. Iron core 2. Stator slot 3. Rotor core 4. Rotor slot 5. Rotor field winding 6a・Rotor excitation winding 6b・Rotor excitation winding 6C/rotor excitation winding 7. Stator excitation power supply 8. Impedance element 9a/rectifier 9b・Rectifier 9C/rectifier 10・Output end 11・Output end 12・Output end

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  固定子鉄心に集中全節巻または集中全
節巻に準ずる巻線態様の電機子巻線を三相スター結線を
なして巻装し、該電機子巻線からの引出し端に三相スタ
ー結線をなすインピーダンス素子を接続し、該インピー
ダンス素子の中性点と上記電機子巻線の中性点との間に
固定子励磁電源を接続して該固定子励磁電源と上記電機
子巻線と上記インピーダンス素子とによる閉回路を形成
し、回転子鉄心には上記電機子巻線の極数の3倍および
5倍の極数のそれぞれと磁気的結合をなす回転子励磁巻
線と該回転子励磁巻線の起電力が直流に変換された後に
供与されかつ上記電機子巻線と同一極数の回転子界磁巻
線とを巻装するとともに、回転子鉄心には上記回転子励
磁巻線の起電力を直流に変換するための整流器を備えて
なることを特徴とするブラシレス同期機。
Claim 1: An armature winding having a concentrated full-pitch winding or a winding style similar to concentrated full-pitch winding is wound around a stator core in a three-phase star connection, and the lead-out end from the armature winding is Impedance elements forming a three-phase star connection are connected, and a stator excitation power source is connected between the neutral point of the impedance element and the neutral point of the armature winding, and the stator excitation power source and the armature winding are connected. A closed circuit is formed by the winding and the impedance element, and the rotor core includes a rotor excitation winding that is magnetically coupled to pole numbers three times and five times the number of poles of the armature winding. After the electromotive force of the rotor excitation winding is converted into direct current, the rotor field winding is provided and has the same number of poles as the armature winding, and the rotor field winding is wound around the rotor core. A brushless synchronous machine characterized by being equipped with a rectifier for converting the electromotive force of an excitation winding into direct current.
JP21816891A 1991-05-22 1991-05-22 Brushless synchronous machine Expired - Fee Related JP3165968B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21816891A JP3165968B2 (en) 1991-05-22 1991-05-22 Brushless synchronous machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21816891A JP3165968B2 (en) 1991-05-22 1991-05-22 Brushless synchronous machine

Publications (2)

Publication Number Publication Date
JPH04347566A true JPH04347566A (en) 1992-12-02
JP3165968B2 JP3165968B2 (en) 2001-05-14

Family

ID=16715695

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21816891A Expired - Fee Related JP3165968B2 (en) 1991-05-22 1991-05-22 Brushless synchronous machine

Country Status (1)

Country Link
JP (1) JP3165968B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2207255A4 (en) * 2007-10-29 2012-06-27 Toyota Motor Co Ltd Rotary electric machine and drive controller
WO2013123531A3 (en) * 2012-02-16 2014-04-10 Genrh8 Limited Synchronous electric machine
WO2014083687A1 (en) * 2012-11-30 2014-06-05 株式会社日立製作所 Rotating electrical machine system and wind power generation system
CN105164903A (en) * 2013-03-21 2015-12-16 菲艾姆股份有限公司 Synchronous machine
CN106537758A (en) * 2014-07-24 2017-03-22 Ntn株式会社 Generator
KR20200099774A (en) * 2019-02-15 2020-08-25 한양대학교 에리카산학협력단 Motor
CN112136269A (en) * 2018-04-17 2020-12-25 密歇根大学董事会 Brushless self-excitation synchronous field winding machine
KR20210093822A (en) * 2019-02-15 2021-07-28 한양대학교 에리카산학협력단 Motor
WO2023117242A1 (en) * 2021-12-20 2023-06-29 Robert Bosch Gmbh Inductive transformer system for transmitting electrical energy into an excitation winding of a rotor

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6479168B2 (en) * 2001-04-03 2002-11-12 The Regents Of The University Of Michigan Alloy based laser welding

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2207255A4 (en) * 2007-10-29 2012-06-27 Toyota Motor Co Ltd Rotary electric machine and drive controller
WO2013123531A3 (en) * 2012-02-16 2014-04-10 Genrh8 Limited Synchronous electric machine
WO2014083687A1 (en) * 2012-11-30 2014-06-05 株式会社日立製作所 Rotating electrical machine system and wind power generation system
JP5852750B2 (en) * 2012-11-30 2016-02-03 株式会社日立製作所 Rotating electrical machine system and wind power generation system
JPWO2014083687A1 (en) * 2012-11-30 2017-01-05 株式会社日立製作所 Rotating electrical machine system and wind power generation system
CN105164903A (en) * 2013-03-21 2015-12-16 菲艾姆股份有限公司 Synchronous machine
CN106537758A (en) * 2014-07-24 2017-03-22 Ntn株式会社 Generator
CN112136269A (en) * 2018-04-17 2020-12-25 密歇根大学董事会 Brushless self-excitation synchronous field winding machine
KR20200099774A (en) * 2019-02-15 2020-08-25 한양대학교 에리카산학협력단 Motor
KR20210093822A (en) * 2019-02-15 2021-07-28 한양대학교 에리카산학협력단 Motor
WO2023117242A1 (en) * 2021-12-20 2023-06-29 Robert Bosch Gmbh Inductive transformer system for transmitting electrical energy into an excitation winding of a rotor

Also Published As

Publication number Publication date
JP3165968B2 (en) 2001-05-14

Similar Documents

Publication Publication Date Title
Xu et al. Transient model of a doubly excited reluctance motor
Magnussen et al. Winding factors and Joule losses of permanent magnet machines with concentrated windings
El-Refaie et al. Optimal flux weakening in surface PM machines using fractional-slot concentrated windings
US8400044B2 (en) Electromotive machines
Hunt 406 HUNT: THE" CASCADE" INDUCTION MOTOR.
US4038575A (en) Multi-phase generator
Dajaku et al. An improved fractional slot concentrated winding for low-poles induction machines
US20100117461A1 (en) Electromotive machines
Bitsi et al. An induction machine with wound independently-controlled stator coils
US5783891A (en) Brushless synchronous machine
JPH04347566A (en) Brushless synchronous machine
JPS5837799B2 (en) electric motor device
JPH0865976A (en) Brushless self-excited three-phase synchronous generator
JP3564252B2 (en) Armature winding
Li et al. Quantitive harmonic analysis and force ripple suppression of a parallel complementary modular linear reluctance machine
JP2939914B2 (en) Brushless self-excited synchronous generator
US10770999B2 (en) Brushless, self-excited synchronous field-winding machine
Muteba et al. Dual-Stator Five-Phase Permanent Magnet Synchronous Machine with Hybrid Spoke-Vernier Type Rotor for Electric Vehicles
JP3539148B2 (en) Cylindrical synchronous generator
JPH077900A (en) Brushless three-phase synchronous generator
JPS6223348A (en) Brushless generator
Zhang et al. Self-Excited Wound Field Flux Modulated Machine using fractional-slot concentrated winding
Subbiah et al. Certain design aspects of single-winding three-phase inductor alternators
Spas Fractional-Slot Concentrated Windings–Analytical Modelling using Fourier's Series
Jiang et al. Torque Improvement of a Hybrid-Excited Vernier Reluctance Machine with High-order-harmonic Winding Design for Electric Vehicle Application

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20010116

LAPS Cancellation because of no payment of annual fees