JP3539148B2 - Cylindrical synchronous generator - Google Patents

Cylindrical synchronous generator Download PDF

Info

Publication number
JP3539148B2
JP3539148B2 JP22094297A JP22094297A JP3539148B2 JP 3539148 B2 JP3539148 B2 JP 3539148B2 JP 22094297 A JP22094297 A JP 22094297A JP 22094297 A JP22094297 A JP 22094297A JP 3539148 B2 JP3539148 B2 JP 3539148B2
Authority
JP
Japan
Prior art keywords
winding
rotor
windings
field
main
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP22094297A
Other languages
Japanese (ja)
Other versions
JPH1155912A (en
Inventor
覺 佐竹
幸男 大野木
憲治 猪上
幸男 保坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Satake Corp
Original Assignee
Satake Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Satake Corp filed Critical Satake Corp
Priority to JP22094297A priority Critical patent/JP3539148B2/en
Publication of JPH1155912A publication Critical patent/JPH1155912A/en
Application granted granted Critical
Publication of JP3539148B2 publication Critical patent/JP3539148B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、円筒型同期発電機に関する。
【0002】
従来、特開平3−245755号公報に開示されたブラシレス自励同期発電機が知られており、これを図9を参照して説明する。
【0003】
図9に示すブラシレス自励同期発電機は、固定子鉄心20に集中全節巻乃至集中全節巻に準ずる巻線態様の2極(実施例)の主発電巻線U,V,Wと該主発電巻線の極数の5倍(実施例)の極数を有する10極(実施例)の固定子界磁巻線21とが巻装される一方、固定子鉄心22には前記主発電巻線U,V,Wの極数と同じ極数を有する2極(実施例)の回転子界磁巻線23と前記固定子界磁巻線の極数と同じ極数を有し、かつ、前記主発電巻線U,V,Wの電流が作る電機子反作用磁界の第5次空間高調波成分(10極磁界)とも磁気的結合をなす10極(実施例)の回転子励磁巻線24とを巻装するものである。そして、前記固定子界磁巻線21は、制御整流装置 VR (三相全波整流器25及び可変抵抗器 Rf )を介して主発電巻線 U V R の各相に設けた中間タップ u v w に接続する一方、前記回転子励磁巻線24は、4個のダイオードからなるダイオードブリッジ回路26を介して回転子界磁巻線23に接続する。
【0004】
この構成のブラシレス自励同期発電機の作用を以下に説明する。回転子を回転させると回転子鉄心22の残留磁気によって主発電巻線U,V,Wに起電力が誘導される。起電力が誘導されると、主発電巻線には交流電流が流れるとともに、三相全波整流器25によって整流された後、固定子界磁巻線21に直流電流が流れる。回転子励磁巻線24には、主発電巻線に流れる交流電流によって形成される電機子反作用磁界に基づく第5次空間高調波成分の起電力と、固定子界磁巻線21に流れる直流電流 I fs によって形成される静止磁界に基づく起電力とが重畳することによって、起電力が誘導される。この重畳された誘導起電力ダイオードブリッジ回路26によって整流されて回転子界磁巻線23に直流電流Iが流れる。その結果、主磁界が増加されるとともに、主発電巻線の誘導起電力が増加される。そしてこの動作を繰り返すことにより出力電圧が自己確立されることになる。このとき回転子鉄心22の残留磁気が不足する場合にはバッテリーBによって初期励磁を行うとよい。
【0005】
上記ブラシレス自励同期発電機は三相の抵抗または誘導性負荷(遅れ力率)においてそれぞれの負荷が増減すると、負荷電流の増減に比例して電気子反作用磁界の第5次空間高調波成分が増減することとなり、結果的に回転子界磁巻線23の直流電流Iが増減して出力電圧の変動が抑制され、負荷の増減に対して平複巻特性の出力電圧が得られる。
また、上記発電機に三相不平衡負荷または単相負荷を接続した場合は、電機子反作用磁界の第5次空間高調波成分による直巻励磁効果三相平衡負荷を接続した場合に比べて減少する。しかし、電機子反作用磁界の逆相分の空間基本波成分によって回転子巻線23には起電力が誘導される。この誘導された起電力は、ダイオードブリッジ回路26によって半波整流され回転子界磁巻線23の直流電流Iの減少分を補償するものとなる。以上のように、発電機に三相不平衡負荷または単相負荷を接続した場合であっても、出力電圧は発電機に三相平衡負荷を接続した場合と同様に平複巻特性となるのである。
【0006】
【発明が解決しようとする課題】
上記従来のブラシレス自励同期発電機にあっては、発電機の負荷を三相負平衡負荷としたとき、電機子反作用磁界の逆相分の空間基本波成分によって回転子巻線23には起電力が誘導されるが、同時に界磁に2倍周波数の交流を誘起して電機子誘起電圧を歪ませ、回転子に渦電流を誘起して回転子を加熱するなどの種々の悪影響を及ぼすことが知られている。
【0007】
つまり、高調波電流が自在に流れるままにしておくと、電機子巻線には基本波のほかに3倍、5倍、7倍等の高周波の電圧、電流を誘起し、界磁巻線には直流のほかに2倍、4倍、6倍、8倍等の高調波電流を発生するものである。
【0008】
【0009】
本発明の目的は、主発電巻線の逆相回転磁界により回転子の回転方向とは逆方向に逆相回転磁界が回転した場合であっても、多種類の負荷に対応することができる円筒型同期発電機を提供することにある。
【0010】
【課題を解決するための手段】
上記課題を解決するため本発明は、主発電巻線(3)及び固定子界磁巻線(4)が巻装された固定子(2)と、ダイオード(8)で短絡した少なくとも6個の回転子巻線(7),(9)を全節集中巻に巻装するとともに、回転子励磁巻線(5)及び該回転子励磁巻線(5)の起電力を直流に変換する回転整流器(6)を備えた円筒型の回転子(10)と、から構成された円筒型同期発電機であって、
前記円筒型の回転子(10)に巻装された回転子巻線(7),(9)のうち、隣接する4個の回転子巻線は主界磁巻線(7)に形成するとともに、他の2個の回転子巻線はダンパ巻線(9)に形成する一方、前記4個の主界磁巻線(7)には前記回転整流器(6)の出力を接続する、という技術的手段を講じた。
【0011】
以上の構成の発電機において、正常な三相平衡負荷時は従来のものと同様に動作し、単相負荷が三相負荷に混在して三相不平衡負荷時は直流電流によるダンパ巻線の起磁力により界磁束を増加させる作用を有するので、単相負荷やインバータ等の高調波を発生する負荷を接続した場合であっても、多種類の負荷に対応することができる。しかも負荷接続時には主界磁巻線(7)及びダンパ巻線(9)にダイオード(8)による半波整流電流が流れてその直流分が界磁を増磁させるので、AVRによる励磁電力を減少し、損失が少なくなる。
【0012】
また、前記4個の主界磁巻線(7)は、2つの主界磁巻線(7)を直列に接続して回路を一対形成し、該一対の回路の両端をそれぞれ並列に接続して単一の回路に形成し、該単一の回路両端に前記回転整流器(6)の出力を接続するとよい。
【0013】
【0014】
【0015】
【0016】
【0017】
【0018】
【発明の実施の形態】
本発明一例として三相仕様による同期発電機1を以下に示す。図1は第1の実施例を示すもので、固定子2には、三相4極主発電巻線38極の固定子界磁巻線4が巻装されている。また回転子10には三相8極の回転子励磁巻線5を巻装するとともに、回転子巻線としてのダイオード8で短絡した4個の主界磁巻線7とダイオード8で短絡した2個のダンパ巻線9を巻装し、さらに、前記回転子励磁巻線5の起電力を直流に変換する回転整流器6を備えている。4個の主界磁巻線7と2個のダンパ巻線9は、図2に示すように、全節集中巻で円筒型回転子に形成してある。つまり、4個の主界磁巻線7と2個のダンパ巻線9からなる6個の巻線を1組の回転子巻線として円筒型の回転子に巻装するのであるが、前記三相4極の主発電巻線3と同じ極数を構成するために、回転子は24個のスロットとし、全スロットを用いて全節集中巻により巻装するのである。そして、前記固定子界磁巻線4には任意の直流電源11が接続される。ここで、全節集中巻というのは主発電巻線3の極数と同じ極数で、回転子に巻装した主界磁巻線7及びダンパ巻線9のコイルピッチを電気角πで集中二層巻にすることである。
【0019】
図1に示すように、ダイオード8で短絡した4個の主界磁巻線7は、2つの主界磁巻線7を直列に接続して回路を一対形成し、この一対の回路の両端をそれぞれ並列に接続して単一の回路に形成したもので、この単一の回路両端に回転整流器6の出力を接続してある。
【0020】
【0021】
次に三相平衡負荷時の運転状況について、図1を参照して説明する。原動機(図示せず)により回転子10を回転させるとともに、固定子界磁巻線4に直流電源11を接続して直流電流を流すと、固定子2及び回転子10に8極の磁界が形成され、回転子励磁巻線5に起電力が生じて補償電流が流れ、この電流が回転整流器6により直流に変換されて主界磁巻線7に流れ、該主界磁巻線7では4極の界磁磁束生じ、これにより主発電巻線3に起電力が生じて負荷12に電力を供給するものとなる。
【0022】
前記固定子界巻線4は8極であるが、このとき、回転子10が回転すると、8極の静止磁界の基本波には4個の主界磁巻線7と2個のダンパ巻線9が鎖交し、巻線の導体部にe1,e2,e3,及びe4の電圧が誘起される。その総和ダイオード8に供与される電圧Vであり(1)式のように0Vになる。
【0023】
【数1】

Figure 0003539148
従ってダイオード8は点弧されず、本発明の発電機は従来のものと同様に動作することになる。なお固定子界磁巻線4と回転子励磁巻線5は従来の励磁機と同様の電力増幅作用があるのでAVR(自動電圧調整装置)の容量を小さくできる利点がある。
【0024】
次に単相負荷を含む三相不平衡負荷時について説明する。発電機1に三相不平衡負荷を接続すると、主発電巻線3に逆相電流が流れる。この逆相電流により主発電巻線3は4極の逆相回転磁界を作り回転子10に巻装してある主界磁巻線7及びダンパ巻線9と鎖交し電圧を誘起する。
【0025】
図5に示すように、回転子10が回転し、主発電巻線3の逆相回転磁界と、4個の主界磁巻線7及び2個のダンパ巻線9が鎖交すると、その主界磁巻線7及びダンパ巻線9の導体部にe1,e2,e3,及びe4の電圧が誘起される。その総和ダイオード8に供与される電圧Vであり(2)式のように4E’となる。従って、ダイオード8には電圧4E’が供与されて、主界磁巻線7及びダンパ巻線9に半波整流電流が流れる。
【0026】
【数2】
Figure 0003539148
この半波整流電流は直流分と交流分に分解することができ、直流成分は回転整流器6の直流出力電流に重畳されて、界磁電流が増加するように作用する。
つまり、図6(a)に示すように回転整流器6からの直流出力電流Iは主界磁巻線7のWを通じて流れるが、逆極性となるダイオード8には流れない。また、図6(b)に示すように、逆相回転磁界と回転子10の主界磁巻線7の鎖交により誘起された電圧eによる半波整流電流中の直流ダイオード8の極性によって のように流れる。従って図6(c)のようにIとIは重畳されて(I+I)となり界磁電流が増加するように作用する。
【0027】
同様に、逆相回転磁界と回転子10のダンパ巻線9の鎖交により誘起された電圧eによる半波整流電流中の直流成分I はダイオード8の極性によって図6(b)のように流れる。この直流電流によるダンパ巻線9の起磁力は図7のように界磁束を増加させる作用を有する。なお界磁束の増加が大き過ぎて支障がある場合はダイオード8を使用しない短絡としてもよい。
【0028】
【0029】
ダイオード8による半波整流電流の交流分は、主界磁巻線7とダンパ巻線9が多相に巻装されているので、逆相回転磁界を打ち消すように磁束が作用することになる。すなわち主界磁巻線7とダンパ巻線9が全てダンパ作用をすることになる。また、逆相回転磁界はダイオード8の作用によって主界磁巻線7とダンパ巻線9によって吸収され、界磁電流に変換されることで増磁作用をすることになる。
【0030】
次にインバータのような高調波電流を含む負荷が接続された場合を説明する。高調波電流によって主発電巻線3が作る磁界は時間高調波であるから、図5に示す主界磁巻線7及びダンパ巻線9に誘起される電圧e1,e2,e3,及びe4は(3)式のようになる。
【0031】
【数3】
Figure 0003539148
従ってダイオード8に供与される電圧Vは(4)式のようになる。
【0032】
【数4】
Figure 0003539148
すなわち電圧Vの大きさは4E’’であり、ダイオード8を通じて半波整流電流が流れる。従って主発電巻線3に高調波電流が流れたときも、主界磁巻線7とダンパ巻線9がダイオード8によってダンパ作用と増磁作用をすることに変わりはない。
【0033】
図8は第2の実施例を示すものであり、これを参照して大型の発電機に本発明を適用した場合を説明する。なお、図1と同じ構成については同符号を付している。
【0034】
図8において、符号14は発電部を示し、符号15は励磁部を示す。発電部14は、固定子側三相4極主発電巻線3が巻装され、回転子側前記主発電巻線3と同一極数である4個の主界磁巻線7と2個のダンパ巻線9を巻装するとともに、それぞれの巻線をダイオード8で短絡する。このダイオード8で短絡された4個の主界磁巻線7は、2個の主界磁巻線7を直列に接続して回路を一対形成し、この一対の回路の両端をそれぞれ並列に接続して単一の回路に形成してある。励磁部15は、固定子側固定子界磁巻線4が巻装され、また回転子側には前記固定子界磁巻線4と磁気的結合をなす三相の回転子励磁巻線5を巻装するとともに、前記回転子励磁巻線5の起電力を直流に変換する回転整流器6を備えている。さらに、励磁部15の回転子側の回転整流器6の出力を、発電部14の回転子側の主界磁巻線7に接続してある。すなわち、ダイオード8で短絡した4個の主界磁巻線7を、2個の主界磁巻線7を直列に接続して2つの回路を形成し、この2つの回路の両端をそれぞれ並列に接続して1つの回路に形成し、この回路の両端に回転整流器6の出力を接続してある。ここで、全節集中巻というのは主発電巻線3の極数を基本に、回転子に巻装した主界磁巻線7及びダンパ巻線のコイルピッチを電気角でπとすることである。
【0035】
【0036】
以上のように構成した第2の実施例の作用は、第1の実施例とほぼ同様であるが、低出力から出力の発電機において適用することができるものであり、不平衡負荷や高調波を発生する負荷に対して十分に適用範囲を拡大することができる。
【0037】
【発明の効果】
以上のように本発明によれば、主発電巻線(3)及び固定子界磁巻線(4)が巻装された固定子(2)と、ダイオード(8)で短絡した少なくとも6個の回転子巻線(7),(9)を全節集中巻に巻装するとともに、回転子励磁巻線(5)及び該回転子励磁巻線(5)の起電力を直流に変換する回転整流器(6)を備えた円筒型の回転子(10)と、から構成された円筒型同期発電機であって、前記円筒型の回転子(10)に巻装された回転子巻線(7),(9)のうち、隣接する4個の回転子巻線は主界磁巻線(7)に形成するとともに、他の2個の回転子巻線はダンパ巻線(9)に形成する一方、前記4個の主界磁巻線(7)には前記回転整流器(6)の出力を接続したので、正常な三相平衡負荷時は従来のものと同様に動作し、単相負荷を含む三相不平衡負荷時には直流電流によるダンパ巻線の起磁力により界磁束を増加させる作用を有するので、単相負荷やインバータ等の高調波負荷を接続した場合であっても、対応することができる。しかも、負荷接続時には、主界磁巻線(7)及びダンパ巻線(9)にダイオード(8)による半波整流電流が流れてその直流分が界磁を増磁させるので、AVRによる励磁電力を減少し、損失が少なくなる。
【0038】
【0039】
【0040】
【図面の簡単な説明】
【図1】本発明による円筒型同期発電機の回路図である。
【図2】円筒型回転子と回転子巻線の分布を示す図である。
【図3】回転子スロットを展開した図である。
【図4】正常運転時における主界磁巻線及びダンパ巻線の誘起電圧を示した図である。
【図5】不平衡負荷時における主界磁巻線及びダンパ巻線の誘起電圧を示した図である。
【図6】主界磁巻線及びダンパ巻線を短絡したダイオードの増磁作用を示した図である。
【図7】主界磁巻線及びダンパ巻線の起磁力分布を示した図である。
【図8】本発明の別の実施例を示した図である。
【図9】従来の同期発電機の回路図を示した図である。
【符号の説明】
円筒型同期発電機
2 固定子
3 主発電巻線
4 固定子界磁巻線
5 固定子励磁巻線
6 回転整流器
7 主界磁巻線
8 ダイオード
9 ダンパ巻線
10 回転子
11 直流電源
12 負荷
13 円筒型同期発電機
14 発電部
15 励磁部[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a cylindrical synchronous generator.
[0002]
2. Description of the Related Art A brushless self-excited synchronous generator disclosed in Japanese Patent Application Laid-Open No. 3-245755 is conventionally known, and will be described with reference to FIG.
[0003]
Brushless self励同phase generator shown in Figure 9, the stator core 20, the primary generating windings U centralized all pitch winding to concentrate all pitch winding the equivalent winding mode two-pole (Example), V, W and while the stator field winding 21 of five times the number of poles of the main power generation winding 10 poles (example) having a number of poles of the (embodiment) Ru is wound, the stator core 22, the main power generation winding U, V, and the rotor field winding 23 of the two-pole having the same number of poles as the W number of poles (example), the same number of poles as the number of poles of said stator field winding a, and rotation of the main power generation winding U, V, 5th space harmonic component (10-pole magnetic field) of the armature reaction magnetic fields created by the currents will of W with 10 poles that form a magnetic coupling (example) The secondary excitation winding 24 is wound. The stator field winding 21 is connected to an intermediate tap u provided in each phase of the main generator windings U , V , and R via a control rectifier VR (a three-phase full-wave rectifier 25 and a variable resistor Rf ). , V , w , while the rotor excitation winding 24 is connected to the rotor field winding 23 via a diode bridge circuit 26 composed of four diodes.
[0004]
The operation of the brushless self-excited synchronous generator having this configuration will be described below. Rotation of the rotor, the primary generating windings U by the residual magnetism of the rotor core 22, V, the electromotive force is induced in W. When the electromotive force is induced, an AC current flows through the main power generation winding and a DC current flows through the stator field winding 21 after being rectified by the three-phase full-wave rectifier 25. The rotor excitation winding 24 has an electromotive force of a fifth spatial harmonic component based on an armature reaction magnetic field formed by an alternating current flowing through the main power generation winding, and a DC current flowing through the stator field winding 21. The electromotive force is induced by the superposition of the electromotive force based on the static magnetic field formed by Ifs . The superimposed induced electromotive force is rectified by the diode bridge circuit 26, the DC current I f is Ru flows in the rotor field winding 23. As a result, the main magnetic field is increased, and the induced electromotive force of the main power generation winding is increased . Then, the output voltage value by repeating Succoth This operation is to be self-established. At this time, when the residual magnetism of the rotor iron core 22 is insufficient, it may perform initial excitation by a battery B.
[0005]
The brushless self励同phase generator, the three-phase resistor or inductive loads (lagging power factor), the respective load is increased or decreased, 5th space harmonics of armature reaction magnetic field in proportion to the increase or decrease of the load current As a result, the DC current If of the rotor field winding 23 increases and decreases, and the fluctuation of the output voltage is suppressed. Can be
Further, when connecting the three-phase unbalanced loads or single-phase loads to the generator, compared to the case where the fifth-order spatial harmonic series-wound excitation effect component of the armature reaction magnetic field is connected to three-phase balanced load Decrease . However, an electromotive force is induced in the rotor winding 23 by the spatial fundamental wave component of the opposite phase of the armature reaction magnetic field . The induced electromotive force is half-wave rectified by the diode bridge circuit 26, and compensates for the decrease of the DC current I f in the rotor field winding 23. As described above, even when a three-phase unbalanced load or a single-phase load is connected to the generator, the output voltage has a flat compound winding characteristic as in the case where the three-phase balanced load is connected to the generator . is there.
[0006]
[Problems to be solved by the invention]
In the conventional brushless self-excited synchronous generator described above, when the load of the generator is a three-phase negatively balanced load, the rotor winding 23 is caused by the spatial fundamental wave component of the negative phase of the armature reaction magnetic field. Electricity is induced, but at the same time it induces double frequency alternating current in the field to distort the armature induced voltage, induce eddy currents in the rotor, and heat up the rotor. It has been known.
[0007]
In other words, if the harmonic current is allowed to flow freely, in addition to the fundamental wave, a high-frequency voltage, current, such as 3, 5, or 7 times, is induced in the armature winding, and it is induced in the field winding. Generates harmonic currents of 2, 4, 6, 8, etc. in addition to DC.
[0008]
[0009]
An object of the present invention is to provide a cylinder capable of coping with various types of loads even when a reversed-phase rotating magnetic field is rotated in a direction opposite to a rotating direction of a rotor by a reversed-phase rotating magnetic field of a main power generation winding. It is to provide a type synchronous generator.
[0010]
[Means for Solving the Problems]
In order to solve the above problems, the present invention provides a stator (2) on which a main power generation winding (3) and a stator field winding (4) are wound, and at least six short-circuited by a diode (8). A rotor rectifier that winds the rotor windings (7) and (9) in a concentrated winding of all sections, and that converts the electromotive force of the rotor excitation winding (5) and the electromotive force of the rotor excitation winding (5) into DC. A cylindrical rotor (10) provided with (6), and a cylindrical synchronous generator comprising:
Of the rotor windings (7) and (9) wound around the cylindrical rotor (10), four adjacent rotor windings are formed on the main field winding (7). And the other two rotor windings are formed in a damper winding (9), while the outputs of the rotary rectifier (6) are connected to the four main field windings (7). Tactics were taken.
[0011]
In a generator with the above configuration, it operates in the same way as a conventional one under normal three-phase balanced load, and a single-phase load is mixed with three-phase load, and during three-phase unbalanced load, the damper winding by DC current is used. Since it has the effect of increasing the field magnetic flux by the magnetomotive force, it is possible to cope with various types of loads even when a single-phase load or a load that generates harmonics such as an inverter is connected. Moreover, the load connection sometimes because the DC component is Zo磁the field with half-wave rectified current flows main field winding (7) and the damper winding (9) by a diode (8), excitation by AVR power And losses are reduced.
[0012]
The four main field windings (7) are connected in series to form a pair of circuits, and both ends of the pair of circuits are connected in parallel. To form a single circuit, and connect the output of the rotary rectifier (6) to both ends of the single circuit.
[0013]
[0014]
[0015]
[0016]
[0017]
[0018]
BEST MODE FOR CARRYING OUT THE INVENTION
As an example of the present invention , a synchronous generator 1 according to a three-phase specification will be described below. Figure 1 shows a first embodiment, the stator 2, a three-phase four-pole primary generating windings 3 and 8-pole stator field winding 4 is wound. Further, the rotor 10, to together when wound around the rotor excitation winding 5 of the three-phase 8-pole, with four main field winding 7 and the diode 8 shorted diode 8 as the rotor winding wound two damper windings 9 shorted, further includes a rotating rectifier 6 for converting the electromotive force of the rotor excitation winding 5 to a DC. As shown in FIG. 2, the four main field windings 7 and the two damper windings 9 are formed on a cylindrical rotor by concentrated winding of all sections. In other words, six windings consisting of four main field windings 7 and two damper windings 9 are wound around a cylindrical rotor as one set of rotor windings. In order to configure the same number of poles as the phase four-pole main power generation winding 3, the rotor is made up of 24 slots, and all the slots are wound by concentrated winding using all the slots. Then, the the stator field winding 4 is connected to any of the DC power supply 11. Here, the whole section concentrated winding means the same number of poles of the main power generation winding 3 and the coil pitch of the main field winding 7 and the damper winding 9 wound on the rotor is represented by an electrical angle π. It is to make a concentrated two-layer winding .
[0019]
As shown in FIG. 1, the four main field windings 7 short-circuited by the diode 8 form a pair of circuits by connecting the two main field windings 7 in series. These are connected in parallel to form a single circuit, and the output of the rotary rectifier 6 is connected to both ends of the single circuit .
[0020]
[0021]
Next , an operation state at the time of a three-phase balanced load will be described with reference to FIG. Motor Rutotomoni rotating the rotor 10 (not shown), when a DC current by connecting a DC power source 11 to the stator field winding 4, the magnetic field of 8-pole stator 2 and the rotor 10 is formed, the compensation current flows electromotive force is generated in the rotor excitation windings 5, flows the current is converted into a direct current to the rotating rectifier 6 to the main field winding 7, the main field winding 7 A four-pole field magnetic flux is generated, thereby generating an electromotive force in the main power generation winding 3 and supplying power to the load 12.
[0022]
The stator field winding 4 has eight poles. At this time, when the rotor 10 rotates , the four fundamental field windings 7 and two damper windings are added to the fundamental wave of the eight-pole static magnetic field . 9 , the voltages e1, e2, e3, and e4 are induced in the conductor of the winding. The sum is the voltage V that is provided to the diode 8 becomes 0V as in (1).
[0023]
(Equation 1)
Figure 0003539148
Accordingly, the diode 8 will not be ignited, the generator of the present invention will operate in the same manner as the conventional. Since the stator field winding 4 and the rotor excitation winding 5 have the same power amplifying action as a conventional exciter, there is an advantage that the capacity of an AVR (automatic voltage regulator) can be reduced.
[0024]
Next , three-phase unbalanced load including single-phase load will be described. When a three-phase unbalanced load is connected to the generator 1, a negative-phase current flows through the main generator winding 3. The by reverse-phase current primary generating windings 3 creates a reverse-phase rotating magnetic field of the four-pole, induces wound mainly field winding 7 and a damper winding 9 and chains are interlinked voltage to the rotor 10.
[0025]
As shown in FIG. 5, when the rotor 10 rotates and the anti-phase rotating magnetic field of the main generator winding 3 and the four main field windings 7 and the two damper windings 9 are linked , the main Voltages e1, e2, e3, and e4 are induced in the conductors of the field winding 7 and the damper winding 9 . The sum is the voltage V that is provided to the diode 8, the 4E 'as shown in (2) below. Therefore , the voltage 4E 'is supplied to the diode 8, and a half-wave rectified current flows through the main field winding 7 and the damper winding 9 .
[0026]
(Equation 2)
Figure 0003539148
The half-wave rectified current can be decomposed into an AC Ingredient a DC Ingredient, DC component is superimposed on the DC output current of the rotary rectifier 6, which acts as the field current increases.
That is, as shown in FIG. 6 (a), DC output current I 1 from rotating rectifier 6 flows through the W of main field winding 7, does not flow through the diode 8 to an opposite polarity. Further, as shown in FIG. 6 (b), DC Ingredients in half-wave rectified current by the voltage e induced by interlinking of the main field winding 7 of the reverse-phase rotating magnetic field and the rotor 10 of the diode 8 It flows like I 2 by the polarity. Thus acting as I 1 and I 2 as shown in FIG. 6 (c) is superimposed (I 1 + I 2), and the field current is increased.
[0027]
Similarly, the direct current component I 2 of the half-wave rectified current in accordance with the voltage e induced by interlinking of the damper winding 9 of the reverse-phase rotating magnetic field and the rotor 10, as shown in FIG. 6 (b) by the polarity of the diode 8 Flows. The magnetomotive force of the damper winding 9 due to this DC current has the effect of increasing the field magnetic flux as shown in FIG. If the increase in the field flux is too large to cause a problem, a short circuit without using the diode 8 may be used.
[0028]
[0029]
AC Ingredients half-wave rectified current by the diode 8, the main field winding 7 and a damper winding 9 is wound in a multi-phase, magnetic flux so as to cancel the reverse-phase rotating magnetic field will act . That is , the main field winding 7 and the damper winding 9 all act as a damper. Further, the reverse-phase rotating magnetic field is absorbed by the main field winding 7 and the damper winding 9 by the action of the diode 8, and is converted into a field current to perform a magnetizing action.
[0030]
Next , a case where a load including a harmonic current such as an inverter is connected will be described. Since the magnetic field generated by the main power generation winding 3 by the harmonic current is a time harmonic, the voltages e1, e2, e3, and e4 induced in the main field winding 7 and the damper winding 9 shown in FIG. Equation 3) is obtained.
[0031]
[Equation 3]
Figure 0003539148
Therefore , the voltage V applied to the diode 8 is as shown in the equation (4) .
[0032]
(Equation 4)
Figure 0003539148
That is , the magnitude of the voltage V is 4E ″, and a half-wave rectified current flows through the diode 8. Therefore , even when a harmonic current flows through the main power generation winding 3 , the main field winding 7 and the damper winding 9 are still subjected to the damping action and the magnetizing action by the diode 8.
[0033]
FIG. 8 shows a second embodiment, and a case where the present invention is applied to a large-sized generator will be described with reference to FIG. The same components as those in FIG. 1 are denoted by the same reference numerals.
[0034]
In FIG. 8, reference numeral 14 denotes a power generation unit, and reference numeral 15 denotes an excitation unit. Power generation unit 14 is wound around the three-phase four Gokuomo generator winding 3 to a stator side, and the main power generation winding 3 on the rotor side and four main field winding 7 is same poles number 2 While winding the damper windings 9 , each winding is short-circuited by the diode 8 . The four main field windings 7 short-circuited by the diode 8 form a pair of circuits by connecting the two main field windings 7 in series, and both ends of the pair of circuits are connected in parallel. To form a single circuit. Excitation portion 15 is wound is the stator field winding 4 in the stator side and rotor excitation windings of a three-phase forming a magnetic coupling with the stator field winding 4 in the rotor side 5 together when wound around, and a rotary rectifier 6 for converting the electromotive force of the rotor excitation winding 5 to a DC. Further, the output of the rotary rectifier 6 on the rotor side of the excitation unit 15 is connected to the main field winding 7 on the rotor side of the power generation unit 14. That is, two main field windings 7 short-circuited by the diode 8 are connected in series to form two circuits, and both ends of the two circuits are respectively connected in parallel. The output of the rotary rectifier 6 is connected to both ends of this circuit . Here, the whole-section concentrated winding means that the coil pitch of the main field winding 7 and the damper winding wound on the rotor is π in electrical angle based on the number of poles of the main power generation winding 3. It is.
[0035]
[0036]
Operation of the second embodiment constructed as described above is Ru substantially similar der the first embodiment, which can be applied in the generator of the high output from the low output, Ya unbalanced load The range of application can be sufficiently expanded for loads that generate harmonics.
[0037]
【The invention's effect】
As described above , according to the present invention, the stator (2) on which the main power generation winding (3) and the stator field winding (4) are wound, and at least six short-circuited by the diode (8). A rotor rectifier that winds the rotor windings (7) and (9) in a concentrated winding of all sections, and that converts the electromotive force of the rotor excitation winding (5) and the electromotive force of the rotor excitation winding (5) into DC. A cylindrical synchronous generator comprising a cylindrical rotor (10) provided with (6), wherein the rotor winding (7) is wound around the cylindrical rotor (10). , (9), four adjacent rotor windings are formed on the main field winding (7), and the other two rotor windings are formed on the damper winding (9). Since the outputs of the rotary rectifier (6) are connected to the four main field windings (7), the operation is the same as that of the conventional one under normal three-phase balanced load, and the single-phase negative In the case of a three-phase unbalanced load, which has the effect of increasing the field magnetic flux by the magnetomotive force of the damper winding due to the DC current, it is necessary to respond even when a single-phase load or a harmonic load such as an inverter is connected. Can be. In addition, when a load is connected, a half-wave rectified current by the diode (8) flows through the main field winding (7) and the damper winding (9), and the DC component increases the field. And losses are reduced.
[0038]
[0039]
[0040]
[Brief description of the drawings]
FIG. 1 is a circuit diagram of a cylindrical synchronous generator according to the present invention.
FIG. 2 is a diagram showing distribution of a cylindrical rotor and rotor windings .
3 is a diagram developed a slot of the rotor.
FIG. 4 is a diagram showing induced voltages of a main field winding and a damper winding during normal operation.
FIG. 5 is a diagram showing induced voltages of a main field winding and a damper winding during an unbalanced load.
FIG. 6 is a diagram showing a magnetizing action of a diode in which a main field winding and a damper winding are short-circuited.
FIG. 7 is a diagram showing a magnetomotive force distribution of a main field winding and a damper winding.
FIG. 8 is a diagram showing another embodiment of the present invention.
FIG. 9 is a diagram showing a circuit diagram of a conventional synchronous generator.
[Explanation of symbols]
1 Cylindrical synchronous generator 2 Stator 3 Main generator winding 4 Stator field winding 5 Stator excitation winding 6 Rotary rectifier 7 Main field winding 8 Diode 9 Damper winding 10 Rotor 11 DC power supply 12 Load 13 Cylindrical synchronous generator 14 Power generation unit 15 Excitation unit

Claims (2)

主発電巻線(3)及び固定子界磁巻線(4)が巻装された固定子(2)と、ダイオード(8)で短絡した少なくとも6個の回転子巻線(7),(9)を全節集中巻に巻装するとともに、回転子励磁巻線(5)及び該回転子励磁巻線(5)の起電力を直流に変換する回転整流器(6)を備えた円筒型の回転子(10)と、から構成された円筒型同期発電機であって、A stator (2) on which a main generator winding (3) and a stator field winding (4) are wound, and at least six rotor windings (7), (9) short-circuited by a diode (8); ) Is wound in a concentrated winding of all sections, and is provided with a rotor excitation winding (5) and a rotary rectifier (6) for converting the electromotive force of the rotor excitation winding (5) into DC. (10) a cylindrical synchronous generator comprising:
前記円筒型の回転子(10)に巻装された回転子巻線(7),(9)のうち、隣接する4個の回転子巻線は主界磁巻線(7)に形成するとともに、他の2個の回転子巻線はダンパ巻線(9)に形成する一方、前記4個の主界磁巻線(7)には前記回転整流器(6)の出力を接続したことを特徴とする円筒型同期発電機。Among the rotor windings (7) and (9) wound around the cylindrical rotor (10), four adjacent rotor windings are formed on the main field winding (7). The other two rotor windings are formed as damper windings (9), while the four main field windings (7) are connected to the output of the rotary rectifier (6). And a cylindrical synchronous generator.
前記4個の主界磁巻線(7)は、2つの主界磁巻線(7)を直列に接続して回路を一対形成し、該一対の回路の両端をそれぞれ並列に接続して単一の回路に形成し、該単一の回路両端に前記回転整流器(6)の出力を接続してなる請求項1記載の円筒型同期発電機。The four main field windings (7) are connected in series to form a pair of circuits by connecting the two main field windings (7) in series, and both ends of the pair of circuits are connected in parallel to form a single circuit. 2. A cylindrical synchronous generator according to claim 1, wherein the generator is formed in one circuit, and the output of the rotary rectifier is connected to both ends of the single circuit.
JP22094297A 1997-07-31 1997-07-31 Cylindrical synchronous generator Expired - Fee Related JP3539148B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22094297A JP3539148B2 (en) 1997-07-31 1997-07-31 Cylindrical synchronous generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22094297A JP3539148B2 (en) 1997-07-31 1997-07-31 Cylindrical synchronous generator

Publications (2)

Publication Number Publication Date
JPH1155912A JPH1155912A (en) 1999-02-26
JP3539148B2 true JP3539148B2 (en) 2004-07-07

Family

ID=16758977

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22094297A Expired - Fee Related JP3539148B2 (en) 1997-07-31 1997-07-31 Cylindrical synchronous generator

Country Status (1)

Country Link
JP (1) JP3539148B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006149148A (en) * 2004-11-24 2006-06-08 Ntt Data Ex Techno Corp Generator
DE112006001916B4 (en) * 2005-07-19 2016-11-24 Denso Corporation AC motor and control unit of the same
DE102011112924A1 (en) * 2011-09-08 2013-03-14 Theresia Heil-Ostovic Double excited synchronous machine

Also Published As

Publication number Publication date
JPH1155912A (en) 1999-02-26

Similar Documents

Publication Publication Date Title
US8076814B2 (en) Brushless high-frequency alternator and excitation method for DC, single-phase and multi-phase AC power-frequency generation
CA2673578C (en) Brushless high-frequency alternator and excitation method for three-phase ac power-frequency generation
US5694027A (en) Three-phase brushless self-excited synchronous generator with no rotor excitation windings
JPS59129558A (en) Variable speed rotary electric machine
JP3489105B2 (en) Brushless self-excited three-phase synchronous generator
JP3788494B2 (en) Brushless three-phase synchronous generator
JPS5837799B2 (en) electric motor device
JP3165968B2 (en) Brushless synchronous machine
US5545965A (en) Three phase motor operated from a single phase power supply and phase converter
JP3539148B2 (en) Cylindrical synchronous generator
JP2939914B2 (en) Brushless self-excited synchronous generator
JPH03245755A (en) Brushless self-excitation synchronous electric motor
JPH077900A (en) Brushless three-phase synchronous generator
Udema et al. Rotary transformer for contactless excitation of synchronous machines fed through neutral conductor
JPH0217900A (en) Permanent magnet excited electric machine
KR860000925B1 (en) Self-excited generator
JPH06269151A (en) Brushless synchronous generator
Shibata et al. A brushless, self-excited single-phase synchronous generator operating with load and exciting currents flowing in armature
JPS6223348A (en) Brushless generator
JPH06253513A (en) Synchronuous motor
JP2753721B2 (en) Brushless self-excited synchronous generator
JPH0724930Y2 (en) Brushless single phase alternator
JPH0317600Y2 (en)
JPH0312451Y2 (en)
Fukami et al. A new self‐excitation scheme for three‐phase synchronous generators

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040302

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040315

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080402

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090402

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090402

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090402

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090402

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees