WO2014083687A1 - Rotating electrical machine system and wind power generation system - Google Patents

Rotating electrical machine system and wind power generation system Download PDF

Info

Publication number
WO2014083687A1
WO2014083687A1 PCT/JP2012/081104 JP2012081104W WO2014083687A1 WO 2014083687 A1 WO2014083687 A1 WO 2014083687A1 JP 2012081104 W JP2012081104 W JP 2012081104W WO 2014083687 A1 WO2014083687 A1 WO 2014083687A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
rotating electrical
electrical machine
stator
power
Prior art date
Application number
PCT/JP2012/081104
Other languages
French (fr)
Japanese (ja)
Inventor
大地 川村
順弘 楠野
守 木村
雅寛 堀
佐藤 大祐
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to JP2014549732A priority Critical patent/JP5852750B2/en
Priority to PCT/JP2012/081104 priority patent/WO2014083687A1/en
Publication of WO2014083687A1 publication Critical patent/WO2014083687A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K16/00Machines with more than one rotor or stator
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/04Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection for rectification
    • H02K11/042Rectifiers associated with rotating parts, e.g. rotor cores or rotary shafts
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/18Structural association of electric generators with mechanical driving motors, e.g. with turbines
    • H02K7/1807Rotary generators
    • H02K7/1823Rotary generators structurally associated with turbines or similar engines
    • H02K7/183Rotary generators structurally associated with turbines or similar engines wherein the turbine is a wind turbine
    • H02K7/1838Generators mounted in a nacelle or similar structure of a horizontal axis wind turbine
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K99/00Subject matter not provided for in other groups of this subclass
    • H02K99/10Generators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Definitions

  • the present invention relates to a rotating electrical machine system and a wind power generation system, and in particular, is installed in a first rotating electrical machine (main generator) and a second rotating electrical machine (auxiliary generator), and rotates together with a rotor.
  • the present invention relates to a rotating electrical machine system and a wind power generation system suitable for a device including a power converter.
  • the AC excitation type rotating electrical machine is installed in a nacelle on the tower of the windmill, and it is necessary to perform regular maintenance in a limited space in the nacelle. Maintenance reduction such as was demanded.
  • Patent Document 1 As a brushless AC excitation synchronous rotating electrical machine, for example, there is one described in Patent Document 1.
  • a rotary exciter and a power converter are provided coaxially with an AC excitation synchronous generator to rectify the electric power of the power system to DC, and energize the stator of the rotary exciter. After the power is supplied to the rotor, the power converted by the power converter is supplied to the rotor of the AC excitation synchronous generator to perform the power generation operation.
  • the power converter since the power converter is attached to the rotor, the power converter rotates as the rotor rotates.
  • Patent Document 1 power can be supplied from the power system to the AC excitation synchronous generator, but the voltage of the power system is rectified by the rectifier and then supplied to the rotary exciter, so that the rectifier is installed. Therefore, electric power cannot be supplied from the AC excitation synchronous generator to the power system. Therefore, the operation range becomes narrower than that of a conventional general AC excitation synchronous generator. That is, both power supply from the power system to the generator and power supply from the generator to the power system cannot be performed.
  • the present invention has been made in view of the above-described points, and an object of the present invention is to provide a rotating electrical machine system in which the operating range is not narrowed, and the power converter can be sufficiently cooled and performance is not deteriorated. It is to provide a wind power generation system.
  • a rotating electrical machine system of the present invention has a first stator having a first stator winding and a stator core, a first rotor winding and a rotor core, A first rotating electric machine comprising a first rotor disposed on an inner diameter side of the first stator with a predetermined gap, a second stator winding and a second core having a stator core; A second rotating electrical machine comprising a second rotor having a stator, a second rotor winding, and a rotor iron core, and disposed on the inner diameter side of the second stator via a predetermined gap; A power converter that is electrically connected to the first and second rotating electrical machines and that is installed on one of the first and second rotor cores so as to rotate during rotation.
  • the first stator having the first stator winding and the stator core, the first rotor winding and the rotor core, and a predetermined gap on the inner diameter side of the first stator.
  • a first rotating electric machine composed of a first rotor, a second stator winding and a second stator having a stator core, a second rotor winding and a rotor core
  • a second rotating electrical machine comprising a second rotor disposed on the inner diameter side of the second stator via a predetermined gap, and electrically with the first and second rotating electrical machines
  • a power converter connected to and installed in any one of the first and second rotors so as to rotate during these rotations, the first and second rotor cores,
  • Each of the first and second shafts is connected to the rotary shaft via a first arm extending in the radial direction.
  • the power converter is installed on the inner diameter side of the portion extending in the axial direction of the second arm, or the first or second rotor core Is connected to the rotating shaft through a first arm extending in the radial direction, and one end is connected to the middle of the first arm, and extends in the axial direction from the connecting portion, and the first or
  • the second rotor iron core is supported, has a second arm that is bent in the middle of extending from the support portion and is connected to the rotating shaft at the other end, and extends in the axial direction of the second arm.
  • the power converter is installed on the inner diameter side of the portion. .
  • a radially extending protrusion is formed on the outer diameter side of the portion extending in the axial direction of the second arm, and the protrusion is adjacent to one of the first and second rotor windings.
  • the protrusion is a heat radiating fin, and the heat radiating fin has a shape obtained by warping a thin plate.
  • the power converter includes a power forward converter that converts alternating current to direct current and a power reverse converter that converts direct current to alternating current, and the power forward converter and the power reverse converter are alternately arranged in the circumferential direction. It is characterized by being installed in.
  • the forward power converter and the reverse power converter are alternately arranged in the axial direction.
  • a plurality of the power forward converter and the power reverse converter are installed in the radial direction.
  • the power forward converter and the power reverse converter are installed at equal intervals.
  • a door for parts replacement is formed on a side surface of the rotating electrical machine frame that houses the first and second rotating electrical machines and the power converter.
  • the wind power generation system of the present invention includes a rotor that rotates by receiving wind to achieve the above object, the rotating electrical machine system according to any one of the above that is connected to the rotor via a main shaft, and the rotation A nacelle that houses the electric system and a tower that supports the nacelle, and the first and second rotating electric machines are rotated by the rotational force of the rotor, and the first and second rotating electric machines
  • the stator winding is connected to the power system side.
  • the present invention there is an effect that the operating range is not narrowed, and the power converter can be sufficiently cooled and performance is not deteriorated.
  • Embodiment 1 of the rotating electrical machine system of the present invention show Embodiment 1 of the rotating electrical machine system of the present invention.
  • a rotating electrical machine system 100 of the present embodiment includes a main generator 1 that is a first rotating electrical machine that functions as a generator for sending generated power to an electric power system, an exciter and a generator depending on operating conditions.
  • Auxiliary generator 2, which is a second rotating electrical machine that performs the two functions, and main generator 1 and auxiliary generator 2 are electrically connected to convert an AC signal into a DC signal or convert a DC signal into an AC signal.
  • the power converter 3 is provided.
  • the main generator 1 includes a main generator stator core 4 and a three-phase main generator stator winding 6 wound in a slot (not shown) provided in the main generator stator core 4.
  • a main generator rotor 1B composed of a three-phase main generator rotor winding 7 wound in a slot (not shown).
  • the auxiliary generator 2 has a three-phase auxiliary generator wound around an auxiliary generator stator core 8 and a slot (not shown) provided in the auxiliary generator stator core 8.
  • Auxiliary generator stator 2A composed of stator winding 10, auxiliary generator rotor core 9 arranged with a predetermined gap on the inner diameter side of auxiliary generator stator core 8, and this auxiliary generator rotor core 9 includes an auxiliary generator rotor 2 ⁇ / b> B including a three-phase auxiliary generator rotor winding 11 wound in a slot (not shown) provided in 9.
  • FIG. 1 shows a state in which a rotating electrical machine system 100 according to the present embodiment is mounted on a wind power generation system.
  • the rotor 12 rotates by receiving wind, and is connected to the rotor 12 and is also connected to the main generator rotor.
  • a shaft 13 serving as a rotation axis of the iron core 5 and the auxiliary generator rotor core 9 and a speed increaser 17 are illustrated, and the power converter 3 is an example mounted on the main generator rotor core 5. (The power converter 3 may be mounted on the auxiliary generator rotor core 9).
  • the power converter 3 includes a power forward converter 3a that converts an alternating current signal into a direct current signal and a power reverse converter 3b that converts the direct current signal into an alternating current signal.
  • the power generator 3a and the power reverse converter 3b are alternately arranged in the rotation axis circumferential direction at equal intervals on the main generator rotor core 5 (the power forward converter 3a and the power reverse converter 3b).
  • the converters 3b may be arranged on the auxiliary generator rotor core 9 alternately in the circumferential direction of the rotation axis and at equal intervals).
  • the amount of current to be conducted and the number of times of switching are different, so that the amount of generated heat differs.
  • the power conversion is performed by arranging the power forward converter 3a and the power reverse converter 3b alternately in the circumferential direction of the rotation axis on the main generator rotor core 5 at equal intervals. Since the heat generated from the generator 3 is uniformly dispersed in the rotating electrical machine via the rotor core and the refrigerant, local heat stagnation in the apparatus due to the mounting arrangement of the power converter 3 is reduced. Thus, performance degradation due to heat of the power converter 3 can be suppressed.
  • the power forward converter 3a and the power reverse converter 3b are alternately arranged on the main generator rotor core 5 in the circumferential direction of the rotation axis, and the like. By disposing at intervals, the performance deterioration of the power converter 3 can be suppressed.
  • both the power supply from the power system to the generator and the power supply from the generator to the power system are possible.
  • the power forward converter and the power reverse converter are alternately arranged at equal intervals in the circumferential direction of the rotation axis, the heat generated from the power converter is uniformly distributed in the rotating electrical machine. Therefore, it is possible to obtain an effect that the power converter can be sufficiently cooled and performance is not deteriorated.
  • FIG 3 and 4 show a second embodiment of the rotating electrical machine system of the present invention.
  • the rotating electrical machine system 200 of the present embodiment shown in the figure is different from the first embodiment in the installation position of the power converter 3, and the other configuration is substantially the same as the first embodiment.
  • the second rotor is provided via the main generator arm (I) 14a, which is the first arm, in which the main generator rotor core 5, which is the first rotor core, extends in the radial direction.
  • the auxiliary generator rotor core 9, which is an iron core, is connected to the shaft 13 via an auxiliary generator arm 16, which is a first arm extending in the radial direction, and one end is connected to the middle of the main generator arm 14 a.
  • a main generator arm (II) 14b which is a second arm extending in the axial direction from the connecting portion and bent at a right angle from the middle and connected to the shaft 13 at the other end.
  • the power converter 3 is installed on the inner diameter side of the portion extending in the axial direction of the machine arm (II) 14b.
  • a radiating fin 15 of a protruding structure extending in the radial direction is formed on the outer diameter side of the portion extending in the axial direction of the main generator arm (II) 14b.
  • the main generator rotor winding 7 is formed at a position adjacent to the main generator rotor winding 7.
  • the heat radiating fin 15 has a shape in which a thin plate is distorted, and has a function of sending wind to the adjacent main generator rotor winding 7.
  • the power converter 3 includes a power forward converter 3a that converts an AC signal into a DC signal and a power reverse converter 3b that converts a DC signal into an AC signal.
  • These power forward converters 3a As shown in FIG. 4, the power inverter 3b is alternately arranged at equal intervals in the circumferential direction on the inner diameter side of the portion extending in the axial direction of the main generator arm (II) 14b.
  • the radiating fins 15 are inclined and extended in the radial direction on the outer diameter side of the portion extending in the axial direction of the main generator arm (II) 14b.
  • the power converter 3 and the radiation fin 15 are installed on the main generator arm (II) 14b of the main generator 1, but are installed on the auxiliary generator arm 16 of the auxiliary generator 2. May be.
  • the auxiliary generator arm 16 has the same structure as the main generator arm (I) 14a and the main generator arm (II) 14b described above, and the inner diameter of the auxiliary generator arm 16 that extends in the axial direction.
  • the power converter 3 is installed on the side, and the radiation fins 15 are installed on the outer diameter side.
  • the power converters 3 are alternately arranged in the circumferential direction of the rotation axis at equal intervals on the inner diameter side of the portion extending in the axial direction of the main generator arm (II) 14b,
  • the radiation fins 15 By installing the radiation fins 15 on the outer diameter side, heat generated from the power converter 3 is dissipated through the main generator arm (II) 14 b and the radiation fins 15.
  • the radiating fin 15 rotates together with the main generator arm (II) 14b, it is possible to efficiently radiate heat and by sending wind from the rotating radiating fin 15 to the main generator rotor winding 7.
  • FIG. 5 shows a third embodiment of the rotating electrical machine system of the present invention.
  • the rotating electrical machine system 300 of the present embodiment shown in the figure is an improvement of the second embodiment. That is, in this embodiment, the power converter 3a and the power reverse converter 3b installed on the inner diameter side of the portion extending in the axial direction of the main generator arm (II) 14b are alternately arranged in the axial direction, and Are arranged at equal intervals.
  • the power forward converter 3a and the power reverse converter 3b are alternately arranged in the circumferential direction of the rotating shaft on the inner diameter side of the portion extending in the axial direction of the main generator arm (II) 14b. And it arrange
  • Other configurations are the same as those of the second embodiment.
  • the power forward converters 3a and the power reverse converters 3b are alternately arranged at equal intervals in the axial direction, and alternately at equal intervals in the circumferential direction of the rotation axis.
  • FIG. 6 shows a fourth embodiment of the rotating electrical machine system of the present invention.
  • the rotating electrical machine system 400 of the present embodiment shown in the figure is an improvement of the second embodiment. That is, in this embodiment, the power forward converter 3a and the power reverse converter 3b are alternately arranged in the circumferential direction of the rotating shaft on the inner diameter side of the portion extending in the axial direction of the main generator arm (II) 14b, and so on.
  • a configuration in which a plurality of layers (two layers in this embodiment) are arranged in the radial direction is a configuration in which the heat dissipating fins 15 are respectively arranged on the outer diameter side at intervals.
  • Other configurations are the same as those of the second embodiment.
  • the same effect as that of the second embodiment can be obtained, and the power converter 3 including the power forward converter 3a and the power reverse converter 3b is mounted at a high density in the radial direction. Therefore, the apparatus can be reduced in size.
  • the outer layer in the radial direction has a larger area of the housing surface (the portion extending in the axial direction of the main generator arm (II) 14b) on which the power converter 3 is mounted, and the radiation fins 15 can be formed more, it is preferable to mount the power converter 3 having a larger calorific value on the radially outer layer.
  • FIG. 7 shows a fifth embodiment of the rotating electrical machine system of the present invention.
  • the rotating electrical machine system 500 of the present embodiment shown in the figure is an improvement of the second embodiment. That is, in this embodiment, the main generator arm (II) 14b and the auxiliary generator arm 16 in the second embodiment shown in FIG. 3 are integrated.
  • the auxiliary generator rotor core 9 is connected to the shaft 13 via the first arm 20a extending in the radial direction, and one end is connected to the middle of the first arm 20a. It has a second arm 20b that extends in the axial direction from the connecting portion, supports the main generator rotor core 5 in the middle, is bent from the middle extending from the supporting portion, and is connected to the shaft 13 at the other end.
  • the power converter 3 is installed on the inner diameter side of the portion extending in the axial direction of the second arm 20b, and the heat radiation fin 15 is installed on the outer diameter side.
  • Other configurations are the same as those of the second embodiment.
  • the same effects as those of the second embodiment can be obtained, and the first arm 20a and the second arm 20b, that is, the main generator arm and the auxiliary generator arm are integrated.
  • the number of parts can be reduced and the assembly of the apparatus can be simplified.
  • FIG. 8 shows a sixth embodiment of the rotating electrical machine system of the present invention.
  • the rotating electrical machine system 600 of the present embodiment shown in the drawing is an improvement of the fifth embodiment. That is, in the present embodiment, a part replacement window 21 is formed on the axial side wall of the rotating electrical machine frame 18 that houses the main generator, the auxiliary generator, and the power converter 3. Other configurations are the same as those of the fifth embodiment.
  • FIG. 9 shows a seventh embodiment in which the rotating electrical machine system of the present invention is applied to a wind power generation system.
  • the wind power generation system of the present embodiment includes a rotor 12 that rotates by receiving wind, and a rotating electrical machine system 23 of the present invention that is connected to the rotor 12 via a shaft 13 and a speed increaser 17.
  • the rotary electric machine system 23 includes a nacelle (not shown) that houses the tower and a tower (not shown) that supports the nacelle.
  • the main generator 1 and the auxiliary generator 2 are provided with the rotational force of the rotor 12.
  • the main generator stator winding 6 and the auxiliary generator stator winding 10 are connected to the power system 22 side.
  • the wind energy received by the rotor 12 can be converted into electric energy by the rotating electrical machine system 23 and transmitted to the power system 22.
  • circuit breaker 24 may be provided in parallel with the power converter 3. Thereby, the power converter 3 can be protected from the excessive electric power applied at the time of a system failure. Further, the present invention may be applied to a gearless system in which the speed increaser 17 is lost.
  • this invention is not limited to the above-mentioned Example, Various modifications are included.
  • the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described.
  • a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment.

Abstract

The present invention provides a rotating electrical machine system having an operation range not narrowed, and capable of sufficiently cooling a power convertor without resulting in performance degradation. The rotating electrical machine system according to the present invention comprises: a first rotating electrical machine constituted by a first stator having a first stator winding and stator core, and a first rotor having a first rotor winding and rotor core and disposed near the inner diameter of the first stator with a prescribed gap therebetween; a second rotating electrical machine constituted by a second stator having a second stator winding and stator core, and a second rotor having a second rotor winding and rotor core and disposed near the inner diameter of the second stator with a prescribed gap therebetween; and a power convertor electrically connected to the first and second rotating electrical machines, and disposed either at the first rotor core or at the second rotor core to rotate when the first and second rotor cores rotate.

Description

回転電機システム及び風力発電システムRotating electrical machine system and wind power generation system
 本発明は回転電機システム及び風力発電システムに係り、特に、第1の回転電機(主発電機)と第2の回転電機(補助発電機)、及びこれらのいずれかに設置されて回転子と共に回転する電力変換器を備えているものに好適な回転電機システム及び風力発電システムに関する。 The present invention relates to a rotating electrical machine system and a wind power generation system, and in particular, is installed in a first rotating electrical machine (main generator) and a second rotating electrical machine (auxiliary generator), and rotates together with a rotor. The present invention relates to a rotating electrical machine system and a wind power generation system suitable for a device including a power converter.
 近年、地球温暖化防止のため風力発電或いは太陽光発電等のような自然エネルギーを利用した発電システムが注目を浴びている。この中で、風力を利用した風力発電システムでは、発電装置として交流励磁式回転電機を使用する例が多い。 In recent years, power generation systems using natural energy such as wind power generation or solar power generation have been attracting attention in order to prevent global warming. Among these, in a wind power generation system using wind power, there are many examples in which an AC excitation type rotating electrical machine is used as a power generation device.
 風力発電システムの発電装置として交流励磁式回転電機を使用する場合、運転中は、回転している回転子内の回転子巻線に励磁電力を供給する必要がある。通常は、回転子巻線に電力を供給するために、スリップリング及びブラシを設け、回転するスリップリングにブラシを接触させ通電するようにしている。 When an AC excitation type rotating electrical machine is used as a power generation device of a wind power generation system, it is necessary to supply excitation power to a rotor winding in a rotating rotor during operation. Usually, in order to supply electric power to the rotor winding, a slip ring and a brush are provided, and the brush is brought into contact with the rotating slip ring to energize it.
 しかし、風力発電システムにおいて発電運転を行うためのエネルギーは大きく、発電運転を行う上での励磁電力供給用にスリップリング及びブラシを設けると、ブラシの摩耗が進んでしまうため、定期的なメンテナンスが必要となる。 However, the energy required for power generation operation in a wind power generation system is large, and if a slip ring and a brush are provided for exciting power supply when performing a power generation operation, the wear of the brush advances, so that periodic maintenance is required. Necessary.
 ところが、風力発電システムでは、交流励磁式回転電機は、風車のタワー上にあるナセル内に設置されており、定期的なメンテナンスは、ナセル内という限られた空間内で行う必要があり、ブラシレス化などのメンテナンス軽減が求められていた。 However, in the wind power generation system, the AC excitation type rotating electrical machine is installed in a nacelle on the tower of the windmill, and it is necessary to perform regular maintenance in a limited space in the nacelle. Maintenance reduction such as was demanded.
 ブラシレスの交流励磁同期回転電機として、例えば、特許文献1に記載されたものがある。この特許文献1には、交流励磁同期発電機と同軸に回転励磁機と電力変換器を設けて電力系統の電力を直流に整流し、回転励磁機の固定子に通電させ、同期発電機の原理により回転子に電力を供給した後、電力変換器により、電圧、周波数を変換した電力を交流励磁同期発電機の回転子に電力を供給し、発電運転を行うことが記載されている。この特許文献1の構成によると、電力変換器は回転子に取り付けられるため、回転子の回転に伴い、電力変換器は回転することになる。 As a brushless AC excitation synchronous rotating electrical machine, for example, there is one described in Patent Document 1. In Patent Document 1, a rotary exciter and a power converter are provided coaxially with an AC excitation synchronous generator to rectify the electric power of the power system to DC, and energize the stator of the rotary exciter. After the power is supplied to the rotor, the power converted by the power converter is supplied to the rotor of the AC excitation synchronous generator to perform the power generation operation. According to the configuration of Patent Document 1, since the power converter is attached to the rotor, the power converter rotates as the rotor rotates.
特開2002-136191号公報JP 2002-136191 A
 従来の一般的な交流励磁同期発電機では、同期速度以下の場合は、電力系統の電力を電力変換器を通して回転子に供給し、同期速度以上の場合は、回転子の電力を電力変換器を通して電力系統に供給している。 In a conventional general AC excitation synchronous generator, when the synchronous speed is lower than the synchronous speed, the power of the power system is supplied to the rotor through the power converter, and when the synchronous speed is higher than the synchronous speed, the rotor power is supplied to the rotor through the power converter. Supplying to the power system.
 しかしながら、特許文献1では、電力系統から交流励磁同期発電機に電力を供給することはできるが、電力系統の電圧を整流器で整流した後、回転励磁機に供給しているため、整流器が設置されていることから、交流励磁同期発電機から電力系統に電力を供給することができない。よって、従来の一般的な交流励磁同期発電機に比べ、動作範囲が狭くなってしまう。即ち、電力系統からの発電機への電力供給と発電機からの電力系統への電力供給の両方ができなくなってしまう。 However, in Patent Document 1, power can be supplied from the power system to the AC excitation synchronous generator, but the voltage of the power system is rectified by the rectifier and then supplied to the rotary exciter, so that the rectifier is installed. Therefore, electric power cannot be supplied from the AC excitation synchronous generator to the power system. Therefore, the operation range becomes narrower than that of a conventional general AC excitation synchronous generator. That is, both power supply from the power system to the generator and power supply from the generator to the power system cannot be performed.
 また、ブラシレスの交流励磁同期回転電機を実現しようとした場合、電力変換器を回転子へ配置すると回転電機と電力変換器の損失によって発生する熱を同時に冷却する必要があり、通常の回転電機の冷却能力では、発電機と発熱の大きい電力変換器を同時に十分に冷却することができず、電力変換器の性能が劣化するといった課題がある。 In addition, when trying to realize a brushless AC excitation synchronous rotating electrical machine, if the power converter is arranged on the rotor, it is necessary to simultaneously cool the heat generated by the loss of the rotating electrical machine and the power converter. With regard to the cooling capacity, there is a problem that the generator and the power converter that generates a large amount of heat cannot be sufficiently cooled simultaneously, and the performance of the power converter deteriorates.
 本発明は上述の点に鑑みなされたもので、その目的とするところは、動作範囲が狭くなることはなく、しかも、電力変換器を十分に冷却でき性能劣化に至ることのない回転電機システム及び風力発電システムを提供することにある。 The present invention has been made in view of the above-described points, and an object of the present invention is to provide a rotating electrical machine system in which the operating range is not narrowed, and the power converter can be sufficiently cooled and performance is not deteriorated. It is to provide a wind power generation system.
 本発明の回転電機システムは、上記目的を達成するために、第1の固定子巻線及び固定子鉄心を有する第1の固定子、第1の回転子巻線及び回転子鉄心を有すると共に、前記第1の固定子の内径側に所定の間隙を介して配置されている第1の回転子から成る第1の回転電機と、第2の固定子巻線及び固定子鉄心を有する第2の固定子、第2の回転子巻線及び回転子鉄心を有すると共に、前記第2の固定子の内径側に所定の間隙を介して配置されている第2回転子から成る第2の回転電機と、前記第1及び第2の回転電機と電気的に接続され、かつ、前記第1及び第2の回転子鉄心のいずれかに、これらの回転時に回転するように設置されている電力変換器とを備えているか、
 或いは、第1の固定子巻線及び固定子鉄心を有する第1の固定子、第1の回転子巻線及び回転子鉄心を有すると共に、前記第1の固定子の内径側に所定の間隙を介して配置されている第1の回転子から成る第1の回転電機と、第2の固定子巻線及び固定子鉄心を有する第2の固定子、第2の回転子巻線及び回転子鉄心を有すると共に、前記第2の固定子の内径側に所定の間隙を介して配置されている第2回転子から成る第2の回転電機と、前記第1及び第2の回転電機と電気的に接続され、かつ、前記第1及び第2の回転子のいずれかに、これらの回転時に回転するように設置されている電力変換器とを備え、前記第1及び第2の回転子鉄心が、それぞれ径方向に延びる第1のアームを介して回転軸に接続されると共に、前記第1及び第2の回転子鉄心が接続される前記第1のアームのいずれかの途中に一端が接続され、その接続部から軸方向に伸延して途中から折り曲がり他端が前記回転軸に接続されている第2のアームを有し、前記第2のアームの軸方向に伸延する部分の内径側に前記電力変換器が設置されていることを特徴とするか、或いは、前記第1又は第2の回転子鉄心が、径方向に延びる第1のアームを介して回転軸に接続されると共に、一端が前記第1のアームの途中に接続され、その接続部から軸方向に伸延して途中で前記第1又は第2の回転子鉄心を支持し、その支持部から伸延する途中から折り曲がり他端が前記回転軸に接続されている第2のアームを有し、該第2のアームの軸方向に伸延する部分の内径側に前記電力変換器が設置されていることを特徴とする。
In order to achieve the above object, a rotating electrical machine system of the present invention has a first stator having a first stator winding and a stator core, a first rotor winding and a rotor core, A first rotating electric machine comprising a first rotor disposed on an inner diameter side of the first stator with a predetermined gap, a second stator winding and a second core having a stator core; A second rotating electrical machine comprising a second rotor having a stator, a second rotor winding, and a rotor iron core, and disposed on the inner diameter side of the second stator via a predetermined gap; A power converter that is electrically connected to the first and second rotating electrical machines and that is installed on one of the first and second rotor cores so as to rotate during rotation. Or
Alternatively, the first stator having the first stator winding and the stator core, the first rotor winding and the rotor core, and a predetermined gap on the inner diameter side of the first stator. A first rotating electric machine composed of a first rotor, a second stator winding and a second stator having a stator core, a second rotor winding and a rotor core And a second rotating electrical machine comprising a second rotor disposed on the inner diameter side of the second stator via a predetermined gap, and electrically with the first and second rotating electrical machines A power converter connected to and installed in any one of the first and second rotors so as to rotate during these rotations, the first and second rotor cores, Each of the first and second shafts is connected to the rotary shaft via a first arm extending in the radial direction. One end of the first arm to which the trochanter core is connected is connected to one end, extends from the connecting portion in the axial direction, is bent in the middle, and the other end is connected to the rotating shaft. The power converter is installed on the inner diameter side of the portion extending in the axial direction of the second arm, or the first or second rotor core Is connected to the rotating shaft through a first arm extending in the radial direction, and one end is connected to the middle of the first arm, and extends in the axial direction from the connecting portion, and the first or The second rotor iron core is supported, has a second arm that is bent in the middle of extending from the support portion and is connected to the rotating shaft at the other end, and extends in the axial direction of the second arm. The power converter is installed on the inner diameter side of the portion. .
 また、前記第2のアームの軸方向に伸延する部分の外径側に、径方向に延びる突起が形成され、前記突起は、前記第1及び第2の回転子巻線のいずれかに隣接して形成され、また、前記突起は、放熱フィンであり、該放熱フィンは、薄板を歪曲させた形状であることを特徴とする。 In addition, a radially extending protrusion is formed on the outer diameter side of the portion extending in the axial direction of the second arm, and the protrusion is adjacent to one of the first and second rotor windings. The protrusion is a heat radiating fin, and the heat radiating fin has a shape obtained by warping a thin plate.
 また、前記電力変換器は、交流を直流に変換する電力順変換器と、直流を交流に変換する電力逆変換器とから成り、前記電力順変換器と電力逆変換器は、周方向に交互に設置されていることを特徴とする。 The power converter includes a power forward converter that converts alternating current to direct current and a power reverse converter that converts direct current to alternating current, and the power forward converter and the power reverse converter are alternately arranged in the circumferential direction. It is characterized by being installed in.
 また、前記電力順変換器と電力逆変換器は、軸方向に交互に設置されていることを特徴とする。 Also, the forward power converter and the reverse power converter are alternately arranged in the axial direction.
 また、前記電力順変換器と電力逆変換器は、径方向に複数設置されていることを特徴とする。 Further, a plurality of the power forward converter and the power reverse converter are installed in the radial direction.
 また、前記電力順変換器と電力逆変換器は、等間隔に設置されていることを特徴とする。 Further, the power forward converter and the power reverse converter are installed at equal intervals.
 また、前記第1及び第2の回転電機と前記電力変換器を収納する回転電機フレームの側面に、部品交換用の扉が形成されていることを特徴とする。 Further, a door for parts replacement is formed on a side surface of the rotating electrical machine frame that houses the first and second rotating electrical machines and the power converter.
 更に、本発明の風力発電システムは、上記目的を達成するための、風を受けて回転するロータと、該ロータに主軸を介して接続される上記いずれかに記載の回転電機システムと、該回転電機システムを内部に収納するナセルと、該ナセルを支持するタワーとを備え、前記第1及び第2の回転電機は、前記ロータの回転力により回転すると共に、前記第1及び第2の回転電機の固定子巻線は、電力系統側に接続されていることを特徴とする。 Furthermore, the wind power generation system of the present invention includes a rotor that rotates by receiving wind to achieve the above object, the rotating electrical machine system according to any one of the above that is connected to the rotor via a main shaft, and the rotation A nacelle that houses the electric system and a tower that supports the nacelle, and the first and second rotating electric machines are rotated by the rotational force of the rotor, and the first and second rotating electric machines The stator winding is connected to the power system side.
 本発明によれば、動作範囲が狭くなることはなく、しかも、電力変換器を十分に冷却でき性能劣化に至ることのない効果がある。 According to the present invention, there is an effect that the operating range is not narrowed, and the power converter can be sufficiently cooled and performance is not deteriorated.
本発明の回転電機システムの実施例1を示す概略断面図である。It is a schematic sectional drawing which shows Example 1 of the rotary electric machine system of this invention. 図1の径方向断面図である。It is radial direction sectional drawing of FIG. 本発明の回転電機システムの実施例2を示す概略断面図である。It is a schematic sectional drawing which shows Example 2 of the rotary electric machine system of this invention. 図3の径方向断面図である。It is radial direction sectional drawing of FIG. 本発明の回転電機システムの実施例3を示す概略断面図である。It is a schematic sectional drawing which shows Example 3 of the rotary electric machine system of this invention. 本発明の回転電機システムの実施例4を示す径方向断面図である。It is radial direction sectional drawing which shows Example 4 of the rotary electric machine system of this invention. 本発明の回転電機システムの実施例5を示す概略断面図である。It is a schematic sectional drawing which shows Example 5 of the rotary electric machine system of this invention. 本発明の回転電機システムの実施例6を示す概略断面図である。It is a schematic sectional drawing which shows Example 6 of the rotary electric machine system of this invention. 本発明の実施例7である風力発電システムを示す概略構成図である。It is a schematic block diagram which shows the wind power generation system which is Example 7 of this invention.
 以下、図示した実施例に基づいて本発明の回転電機システム及び風力発電システムを説明する。なお、各実施例において、同一構成部品には同符号を使用する。 Hereinafter, the rotating electrical machine system and the wind power generation system of the present invention will be described based on the illustrated embodiments. In addition, in each Example, the same code | symbol is used for the same component.
 図1及び図2に、本発明の回転電機システムの実施例1を示す。 1 and 2 show Embodiment 1 of the rotating electrical machine system of the present invention.
 該図に示す如く、本実施例の回転電機システム100は、電力系統に発電電力を送るための発電機として働く第1の回転電機である主発電機1と、運転条件により励磁機と発電機の2つの働きをする第2の回転電機である補助発電機2と、主発電機1及び補助発電機2と電気的に接続され、交流信号を直流信号に変換若しくは直流信号を交流信号に変換する電力変換器3とを備えている。 As shown in the figure, a rotating electrical machine system 100 of the present embodiment includes a main generator 1 that is a first rotating electrical machine that functions as a generator for sending generated power to an electric power system, an exciter and a generator depending on operating conditions. Auxiliary generator 2, which is a second rotating electrical machine that performs the two functions, and main generator 1 and auxiliary generator 2 are electrically connected to convert an AC signal into a DC signal or convert a DC signal into an AC signal. The power converter 3 is provided.
 主発電機1は、主発電機固定子鉄心4、この主発電機固定子鉄心4に設けられているスロット(図示せず)内に巻回される三相の主発電機固定子巻線6から成る主発電機固定子1Aと、主発電機固定子鉄心4の内径側に所定の間隙を設けて配置される主発電機回転子鉄心5、この主発電機回転子鉄心5内に設けられているスロット(図示せず)内に巻回される三相の主発電機回転子巻線7からなる主発電機回転子1Bとから構成されている。 The main generator 1 includes a main generator stator core 4 and a three-phase main generator stator winding 6 wound in a slot (not shown) provided in the main generator stator core 4. A main generator stator core 1, a main generator rotor core 5 disposed with a predetermined gap on the inner diameter side of the main generator stator core 4, and the main generator rotor core 5. And a main generator rotor 1B composed of a three-phase main generator rotor winding 7 wound in a slot (not shown).
 また、補助発電機2も同様に、補助発電機固定子鉄心8と、この補助発電機固定子鉄心8に設けられているスロット(図示せず)内に巻回される三相の補助発電機固定子巻線10から成る補助発電機固定子2Aと、補助発電機固定子鉄心8の内径側に所定の間隙を設けて配置される補助発電機回転子鉄心9、この補助発電機回転子鉄心9内に設けられているスロット(図示せず)内に巻回される三相の補助発電機回転子巻線11から成る補助発電機回転子2Bとから構成されている。 Similarly, the auxiliary generator 2 has a three-phase auxiliary generator wound around an auxiliary generator stator core 8 and a slot (not shown) provided in the auxiliary generator stator core 8. Auxiliary generator stator 2A composed of stator winding 10, auxiliary generator rotor core 9 arranged with a predetermined gap on the inner diameter side of auxiliary generator stator core 8, and this auxiliary generator rotor core 9 includes an auxiliary generator rotor 2 </ b> B including a three-phase auxiliary generator rotor winding 11 wound in a slot (not shown) provided in 9.
 図1は、本実施例に係る回転電機システム100が風力発電システムに搭載される様子を示しており、風を受けて回転するロータ12と、ロータ12に接続されると共に、主発電機回転子鉄心5と補助発電機回転子鉄心9の回転軸となるシャフト13と、増速機17が図示されており、電力変換器3は、主発電機回転子鉄心5に実装されている例である(電力変換器3は、補助発電機回転子鉄心9に実装しても良い)。 FIG. 1 shows a state in which a rotating electrical machine system 100 according to the present embodiment is mounted on a wind power generation system. The rotor 12 rotates by receiving wind, and is connected to the rotor 12 and is also connected to the main generator rotor. A shaft 13 serving as a rotation axis of the iron core 5 and the auxiliary generator rotor core 9 and a speed increaser 17 are illustrated, and the power converter 3 is an example mounted on the main generator rotor core 5. (The power converter 3 may be mounted on the auxiliary generator rotor core 9).
 そして、本実施例では、電力変換器3は、交流信号を直流信号に変換する電力順変換器3aと直流信号を交流信号に変換する電力逆変換器3bとから構成され、これら電力順変換器3aと電力逆変換器3bが、図2に示すように、主発電機回転子鉄心5に回転軸周方向に交互に、かつ、等間隔に配置されている(電力順変換器3aと電力逆変換器3bは、補助発電機回転子鉄心9に回転軸周方向に交互に、かつ、等間隔に配置しても良い)。 In this embodiment, the power converter 3 includes a power forward converter 3a that converts an alternating current signal into a direct current signal and a power reverse converter 3b that converts the direct current signal into an alternating current signal. As shown in FIG. 2, the power generator 3a and the power reverse converter 3b are alternately arranged in the rotation axis circumferential direction at equal intervals on the main generator rotor core 5 (the power forward converter 3a and the power reverse converter 3b). The converters 3b may be arranged on the auxiliary generator rotor core 9 alternately in the circumferential direction of the rotation axis and at equal intervals).
 通常、電力順変換器3aと電力逆変換器3bでは、導通する電流量およびスイッチング回数が異なるため、各々の発熱量が異なる。 Usually, in the power forward converter 3a and the power reverse converter 3b, the amount of current to be conducted and the number of times of switching are different, so that the amount of generated heat differs.
 しかし、本実施例のように、電力順変換器3aと電力逆変換器3bを、主発電機回転子鉄心5に回転軸周方向に交互に、かつ、等間隔に配置することで、電力変換器3からの発熱が回転子鉄心と冷媒を介して回転電機内へ均一に分散されるため、電力変換器3の実装配置に起因する装置内での局所的な熱の滞りが減少することになり、電力変換器3の熱による性能劣化を抑制することができる。 However, as in the present embodiment, the power conversion is performed by arranging the power forward converter 3a and the power reverse converter 3b alternately in the circumferential direction of the rotation axis on the main generator rotor core 5 at equal intervals. Since the heat generated from the generator 3 is uniformly dispersed in the rotating electrical machine via the rotor core and the refrigerant, local heat stagnation in the apparatus due to the mounting arrangement of the power converter 3 is reduced. Thus, performance degradation due to heat of the power converter 3 can be suppressed.
 また、発熱量が大きな電力変換器3同士を近接させて実装した場合には、局所的な発熱が大きくなるため、電力変換器3の周囲の温度が高くなり、熱による電力変換器3の性能劣化が大きくなることが懸念されるが、本実施例のように、電力順変換器3aと電力逆変換器3bを、主発電機回転子鉄心5に回転軸周方向に交互に、かつ、等間隔に配置することで、電力変換器3の性能劣化を抑制することができる。 Further, when the power converters 3 having large calorific values are mounted close to each other, the local heat generation becomes large, so the temperature around the power converter 3 becomes high, and the performance of the power converter 3 due to heat. Although there is a concern that deterioration will increase, as in the present embodiment, the power forward converter 3a and the power reverse converter 3b are alternately arranged on the main generator rotor core 5 in the circumferential direction of the rotation axis, and the like. By disposing at intervals, the performance deterioration of the power converter 3 can be suppressed.
 このような本実施例の構成とすることにより、電力系統からの発電機への電力供給と発電機からの電力系統への電力供給の両方が可能であることから、動作範囲が狭くなることはなく、しかも、電力順変換器と電力逆変換器を、回転軸周方向に交互に、かつ、等間隔に配置していることから、電力変換器からの発熱が回転電機内へ均一に分散されるため、電力変換器を十分に冷却でき性能劣化に至ることがないという効果を得ることができる。 By adopting such a configuration of the present embodiment, both the power supply from the power system to the generator and the power supply from the generator to the power system are possible. In addition, since the power forward converter and the power reverse converter are alternately arranged at equal intervals in the circumferential direction of the rotation axis, the heat generated from the power converter is uniformly distributed in the rotating electrical machine. Therefore, it is possible to obtain an effect that the power converter can be sufficiently cooled and performance is not deteriorated.
 図3及び図4に、本発明の回転電機システムの実施例2を示す。 3 and 4 show a second embodiment of the rotating electrical machine system of the present invention.
 該図に示す本実施例の回転電機システム200は、実施例1と比較すると、電力変換器3の設置位置が異なるものであり、他の構成は実施例1と略同様である。 The rotating electrical machine system 200 of the present embodiment shown in the figure is different from the first embodiment in the installation position of the power converter 3, and the other configuration is substantially the same as the first embodiment.
 即ち、本実施例では、第1の回転子鉄心である主発電機回転子鉄心5が径方向に延びる第1のアームである主発電機アーム(I)14aを介して、第2の回転子鉄心である補助発電機回転子鉄心9が径方向に延びる第1のアームである補助発電機アーム16を介して、それぞれシャフト13に接続され、また、一端が主発電機アーム14aの途中に接続され、その接続部から軸方向に伸延して途中から直角に折り曲がり、他端がシャフト13に接続されている第2のアームである主発電機アーム(II)14bを有し、この主発電機アーム(II)14bの軸方向に伸延する部分の内径側に、電力変換器3が設置されている。 That is, in this embodiment, the second rotor is provided via the main generator arm (I) 14a, which is the first arm, in which the main generator rotor core 5, which is the first rotor core, extends in the radial direction. The auxiliary generator rotor core 9, which is an iron core, is connected to the shaft 13 via an auxiliary generator arm 16, which is a first arm extending in the radial direction, and one end is connected to the middle of the main generator arm 14 a. A main generator arm (II) 14b, which is a second arm extending in the axial direction from the connecting portion and bent at a right angle from the middle and connected to the shaft 13 at the other end. The power converter 3 is installed on the inner diameter side of the portion extending in the axial direction of the machine arm (II) 14b.
 更に、主発電機アーム(II)14bの軸方向に伸延する部分の外径側には、径方向に延びる突起状構造物の放熱フィン15が形成され、この放熱フィン15は、主発電機1の主発電機回転子巻線7に隣接した位置に形成されている。また、放熱フィン15は、薄板を歪曲させた形状であり、隣接する主発電機回転子巻線7に風を送り出す機能を有している。 Further, on the outer diameter side of the portion extending in the axial direction of the main generator arm (II) 14b, a radiating fin 15 of a protruding structure extending in the radial direction is formed. The main generator rotor winding 7 is formed at a position adjacent to the main generator rotor winding 7. Further, the heat radiating fin 15 has a shape in which a thin plate is distorted, and has a function of sending wind to the adjacent main generator rotor winding 7.
 本実施例においても、電力変換器3は、交流信号を直流信号に変換する電力順変換器3aと直流信号を交流信号に変換する電力逆変換器3bとから構成され、これら電力順変換器3aと電力逆変換器3bが、図4に示すように、主発電機アーム(II)14bの軸方向に伸延する部分の内径側に回転軸周方向に交互に、かつ、等間隔に配置されており、放熱フィン15は、主発電機アーム(II)14bの軸方向に伸延する部分の外径側に、傾斜して径方向に延びて設置されている。 Also in the present embodiment, the power converter 3 includes a power forward converter 3a that converts an AC signal into a DC signal and a power reverse converter 3b that converts a DC signal into an AC signal. These power forward converters 3a As shown in FIG. 4, the power inverter 3b is alternately arranged at equal intervals in the circumferential direction on the inner diameter side of the portion extending in the axial direction of the main generator arm (II) 14b. The radiating fins 15 are inclined and extended in the radial direction on the outer diameter side of the portion extending in the axial direction of the main generator arm (II) 14b.
 なお、本実施例では、電力変換器3と放熱フィン15は、主発電機1の主発電機アーム(II)14bに設置されているが、補助発電機2の補助発電機アーム16に設置しても良い。この場合、補助発電機アーム16は、上述した主発電機アーム(I)14a及び主発電機アーム(II)14bと同様な構造であり、軸方向に伸延する部分の補助発電機アーム16の内径側に電力変換器3が、外径側に放熱フィン15がそれぞれ設置されるものである。 In the present embodiment, the power converter 3 and the radiation fin 15 are installed on the main generator arm (II) 14b of the main generator 1, but are installed on the auxiliary generator arm 16 of the auxiliary generator 2. May be. In this case, the auxiliary generator arm 16 has the same structure as the main generator arm (I) 14a and the main generator arm (II) 14b described above, and the inner diameter of the auxiliary generator arm 16 that extends in the axial direction. The power converter 3 is installed on the side, and the radiation fins 15 are installed on the outer diameter side.
 このような本実施例のように、主発電機アーム(II)14bの軸方向に伸延する部分の内径側に電力変換器3が回転軸周方向に交互に、かつ、等間隔に配置され、外径側に放熱フィン15がそれぞれ設置されることにより、電力変換器3からの発熱が、主発電機アーム(II)14b、放熱フィン15を介して放散される。このとき、放熱フィン15は主発電機アーム(II)14bと共に回転するため、効率的な放熱が可能となると共に、回転する放熱フィン15から主発電機回転子巻線7へ風を送り出すことで、主発電機回転子巻線7から電力変換器3への熱の干渉を防ぐこともでき、電力変換器3の熱による性能劣化を更に低減することが可能となる。 As in this example, the power converters 3 are alternately arranged in the circumferential direction of the rotation axis at equal intervals on the inner diameter side of the portion extending in the axial direction of the main generator arm (II) 14b, By installing the radiation fins 15 on the outer diameter side, heat generated from the power converter 3 is dissipated through the main generator arm (II) 14 b and the radiation fins 15. At this time, since the radiating fin 15 rotates together with the main generator arm (II) 14b, it is possible to efficiently radiate heat and by sending wind from the rotating radiating fin 15 to the main generator rotor winding 7. In addition, it is possible to prevent heat interference from the main generator rotor winding 7 to the power converter 3 and to further reduce performance deterioration due to heat of the power converter 3.
 図5に、本発明の回転電機システムの実施例3を示す。 FIG. 5 shows a third embodiment of the rotating electrical machine system of the present invention.
 該図に示す本実施例の回転電機システム300は、実施例2を改良したものである。即ち、本実施例では、主発電機アーム(II)14bの軸方向に伸延する部分の内径側に設置されている電力変換器3aと電力逆変換器3bを、軸方向にも交互に、かつ、等間隔に配置したものである。勿論、実施例2と同様に、主発電機アーム(II)14bの軸方向に伸延する部分の内径側に、電力順変換器3aと電力逆変換器3bが、回転軸周方向に交互に、かつ、等間隔に配置されている。他の構成は、実施例2と同様である。 The rotating electrical machine system 300 of the present embodiment shown in the figure is an improvement of the second embodiment. That is, in this embodiment, the power converter 3a and the power reverse converter 3b installed on the inner diameter side of the portion extending in the axial direction of the main generator arm (II) 14b are alternately arranged in the axial direction, and Are arranged at equal intervals. Of course, as in the second embodiment, the power forward converter 3a and the power reverse converter 3b are alternately arranged in the circumferential direction of the rotating shaft on the inner diameter side of the portion extending in the axial direction of the main generator arm (II) 14b. And it arrange | positions at equal intervals. Other configurations are the same as those of the second embodiment.
 このような本実施例のように、電力順変換器3aと電力逆変換器3bを軸方向に交互に、かつ、等間隔に配置し、回転軸周方向にも交互に、かつ、等間隔に配置することで、電力変換器3からの発熱が、回転子鉄心と冷媒を介して回転電機内へ均一に分散され、電力変換器3の実装配置に起因する装置内での局所的な熱の滞りが減少することにより、電力変換器3の熱による性能劣化を抑制することができる。 As in this embodiment, the power forward converters 3a and the power reverse converters 3b are alternately arranged at equal intervals in the axial direction, and alternately at equal intervals in the circumferential direction of the rotation axis. By arranging, the heat generated from the power converter 3 is uniformly distributed in the rotating electrical machine via the rotor core and the refrigerant, and the local heat generated in the apparatus due to the mounting arrangement of the power converter 3 is distributed. By reducing the stagnation, performance deterioration due to heat of the power converter 3 can be suppressed.
 図6に、本発明の回転電機システムの実施例4を示す。 FIG. 6 shows a fourth embodiment of the rotating electrical machine system of the present invention.
 該図に示す本実施例の回転電機システム400は、実施例2を改良したものである。即ち、本実施例では、主発電機アーム(II)14bの軸方向に伸延する部分の内径側に電力順変換器3aと電力逆変換器3bが、回転軸周方向に交互に、かつ、等間隔に配置され、外径側に放熱フィン15がそれぞれ設置された構成を、径方向に複数層(本実施例では2層)配置したものである。他の構成は、実施例2と同様である。 The rotating electrical machine system 400 of the present embodiment shown in the figure is an improvement of the second embodiment. That is, in this embodiment, the power forward converter 3a and the power reverse converter 3b are alternately arranged in the circumferential direction of the rotating shaft on the inner diameter side of the portion extending in the axial direction of the main generator arm (II) 14b, and so on. A configuration in which a plurality of layers (two layers in this embodiment) are arranged in the radial direction is a configuration in which the heat dissipating fins 15 are respectively arranged on the outer diameter side at intervals. Other configurations are the same as those of the second embodiment.
 このような本実施例の構成により、実施例2と同様な効果を得ることができることは勿論、径方向に電力順変換器3aと電力逆変換器3bから成る電力変換器3を高密度に実装できるため、装置を小型化することができる。 According to the configuration of the present embodiment, the same effect as that of the second embodiment can be obtained, and the power converter 3 including the power forward converter 3a and the power reverse converter 3b is mounted at a high density in the radial direction. Therefore, the apparatus can be reduced in size.
 また、本実施例によれば、径方向外側の層ほど電力変換器3を実装する筐体面(主発電機アーム(II)14bの軸方向に伸延する部分)の面積が広く、また、放熱フィン15を多く形成できるため、発熱量の大きな電力変換器3ほど径方向外側の層に実装することが好ましい。 Further, according to the present embodiment, the outer layer in the radial direction has a larger area of the housing surface (the portion extending in the axial direction of the main generator arm (II) 14b) on which the power converter 3 is mounted, and the radiation fins 15 can be formed more, it is preferable to mount the power converter 3 having a larger calorific value on the radially outer layer.
 図7に、本発明の回転電機システムの実施例5を示す。 FIG. 7 shows a fifth embodiment of the rotating electrical machine system of the present invention.
 該図に示す本実施例の回転電機システム500は、実施例2を改良したものである。即ち、本実施例は、図3に示した実施例2における主発電機アーム(II)14bと補助発電機アーム16を一体化したものである。 The rotating electrical machine system 500 of the present embodiment shown in the figure is an improvement of the second embodiment. That is, in this embodiment, the main generator arm (II) 14b and the auxiliary generator arm 16 in the second embodiment shown in FIG. 3 are integrated.
 つまり、本実施例では、補助発電機回転子鉄心9が、径方向に延びる第1のアーム20aを介してシャフト13に接続されると共に、一端が第1のアーム20aの途中に接続され、その接続部から軸方向に伸延して途中で主発電機回転子鉄心5を支持し、その支持部から伸延する途中から折り曲がり他端がシャフト13に接続されている第2のアーム20bを有し、この第2のアーム20bの軸方向に伸延する部分の内径側に電力変換器3が設置され、外径側に放熱フィン15が設置されている。他の構成は、実施例2と同様である。 That is, in this embodiment, the auxiliary generator rotor core 9 is connected to the shaft 13 via the first arm 20a extending in the radial direction, and one end is connected to the middle of the first arm 20a. It has a second arm 20b that extends in the axial direction from the connecting portion, supports the main generator rotor core 5 in the middle, is bent from the middle extending from the supporting portion, and is connected to the shaft 13 at the other end. The power converter 3 is installed on the inner diameter side of the portion extending in the axial direction of the second arm 20b, and the heat radiation fin 15 is installed on the outer diameter side. Other configurations are the same as those of the second embodiment.
 このような本実施例の構成により、実施例2と同様な効果を得ることができることは勿論、第1のアーム20aと第2のアーム20b、即ち、主発電機アームと補助発電機アームを一体化することで、部品点数が減少し装置の組立を簡易化することができる。 According to the configuration of the present embodiment, the same effects as those of the second embodiment can be obtained, and the first arm 20a and the second arm 20b, that is, the main generator arm and the auxiliary generator arm are integrated. As a result, the number of parts can be reduced and the assembly of the apparatus can be simplified.
 図8に、本発明の回転電機システムの実施例6を示す。 FIG. 8 shows a sixth embodiment of the rotating electrical machine system of the present invention.
 該図に示す本実施例の回転電機システム600は、実施例5を改良したものである。即ち、本実施例では、主発電機と補助発電機及び電力変換器3を収納する回転電機フレーム18の軸方向側壁に、部品交換用の窓21が形成されている。他の構成は、実施例5と同様である。 The rotating electrical machine system 600 of the present embodiment shown in the drawing is an improvement of the fifth embodiment. That is, in the present embodiment, a part replacement window 21 is formed on the axial side wall of the rotating electrical machine frame 18 that houses the main generator, the auxiliary generator, and the power converter 3. Other configurations are the same as those of the fifth embodiment.
 このような本実施例の構成により、実施例5と同様な効果を得ることができることは勿論、電力変換器3が故障した際には、上記部品交換用の窓21を開けることで簡易に部品交換することが可能となる。 With the configuration of this embodiment, it is possible to obtain the same effect as that of the fifth embodiment. Of course, when the power converter 3 fails, the parts can be easily opened by opening the parts replacement window 21. It can be exchanged.
 図9に、本発明の回転電機システムを風力発電システムに適応した実施例7を示す。 FIG. 9 shows a seventh embodiment in which the rotating electrical machine system of the present invention is applied to a wind power generation system.
 該図に示す如く、本実施例の風力発電システムは、風を受けて回転するロータ12と、このロータ12にシャフト13及び増速機17を介して接続される本発明の回転電機システム23と、この回転電機システム23を内部に収納するナセル(図示せず)と、ナセルを支持するタワー(図示せず)とから構成され、主発電機1と補助発電機2は、ロータ12の回転力により回転すると共に、主発電機固定子巻線6と補助発電機固定子巻線10は、電力系統22側に接続されているものである。 As shown in the figure, the wind power generation system of the present embodiment includes a rotor 12 that rotates by receiving wind, and a rotating electrical machine system 23 of the present invention that is connected to the rotor 12 via a shaft 13 and a speed increaser 17. The rotary electric machine system 23 includes a nacelle (not shown) that houses the tower and a tower (not shown) that supports the nacelle. The main generator 1 and the auxiliary generator 2 are provided with the rotational force of the rotor 12. The main generator stator winding 6 and the auxiliary generator stator winding 10 are connected to the power system 22 side.
 これにより、ロータ12が受けた風のエネルギーを回転電機システム23が電気エネルギーに変換し、電力系統22に送電することができる。 Thus, the wind energy received by the rotor 12 can be converted into electric energy by the rotating electrical machine system 23 and transmitted to the power system 22.
 このような本実施例によれば、上述した回転電機システムを採用しているので、装置の大型化が防止でき、ナセルの小型化に寄与することができる。 According to the present embodiment, since the rotating electrical machine system described above is employed, it is possible to prevent the apparatus from being enlarged and contribute to the downsizing of the nacelle.
 なお、電力変換器3と並列に遮断器24を設けても良い。これにより、系統故障時に加わる過大な電力から、電力変換器3を保護できる。また、増速機17を失くしたギアレスシステムに本発明を適用しても良い。 Note that the circuit breaker 24 may be provided in parallel with the power converter 3. Thereby, the power converter 3 can be protected from the excessive electric power applied at the time of a system failure. Further, the present invention may be applied to a gearless system in which the speed increaser 17 is lost.
 なお、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明を分かり易く説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成を置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。 In addition, this invention is not limited to the above-mentioned Example, Various modifications are included. For example, the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described. Further, a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment. Further, it is possible to add, delete, and replace other configurations for a part of the configuration of each embodiment.
 1…主発電機、1A…主発電機固定子、1B…主発電機回転子、2…補助発電機、2A…補助発電機固定子、2B…補助発電機回転子、3…電力変換器、3a…電力順変換器、3b…電力逆変換器、4…主発電機固定子鉄心、5…主発電機回転子鉄心、6…主発電機固定子巻線、7…主発電機回転子巻線、8…補助発電機固定子鉄心、9…補助発電機回転子鉄心、10…補助発電機固定子巻線、11…補助発電機回転子巻線、12…ロータ、13…シャフト、14a…主発電機アーム(I)、14b…主発電機アーム(II)、15…放熱フィン、16…補助発電機アーム、17…増速機、18…回転電機フレーム、20a…第1のアーム、20b…第2のアーム、21…部品交換用の窓、22…電力系統、23、100、200、300、400、500、600…回転電機システム、24…遮断器。 DESCRIPTION OF SYMBOLS 1 ... Main generator, 1A ... Main generator stator, 1B ... Main generator rotor, 2 ... Auxiliary generator, 2A ... Auxiliary generator stator, 2B ... Auxiliary generator rotor, 3 ... Power converter, 3a ... Power forward converter, 3b ... Power reverse converter, 4 ... Main generator stator core, 5 ... Main generator rotor core, 6 ... Main generator stator winding, 7 ... Main generator rotor winding Wires 8 ... Auxiliary generator stator core 9 ... Auxiliary generator rotor core 10 ... Auxiliary generator stator winding 11 ... Auxiliary generator rotor winding 12 ... Rotor 13 ... Shaft 14a ... Main generator arm (I), 14b ... Main generator arm (II), 15 ... radiating fins, 16 ... auxiliary generator arm, 17 ... speed increaser, 18 ... rotating electric machine frame, 20a ... first arm, 20b ... 2nd arm, 21 ... Window for parts replacement, 22 ... Power system, 23, 100, 200, 300 400, 500, 600 ... rotary electric machine system, 24 ... breaker.

Claims (13)

  1.  第1の固定子巻線及び固定子鉄心を有する第1の固定子、第1の回転子巻線及び回転子鉄心を有すると共に、前記第1の固定子の内径側に所定の間隙を介して配置されている第1の回転子から成る第1の回転電機と、第2の固定子巻線及び固定子鉄心を有する第2の固定子、第2の回転子巻線及び回転子鉄心を有すると共に、前記第2の固定子の内径側に所定の間隙を介して配置されている第2回転子から成る第2の回転電機と、前記第1及び第2の回転電機と電気的に接続され、かつ、前記第1及び第2の回転子鉄心のいずれかに、これらの回転時に回転するように設置されている電力変換器とを備えていることを特徴とする回転電機システム。 A first stator having a first stator winding and a stator core, a first rotor winding and a rotor core, and a predetermined gap on the inner diameter side of the first stator A first rotating electric machine comprising a first rotor arranged; a second stator having a second stator winding and a stator core; a second rotor winding and a rotor core. And a second rotating electric machine comprising a second rotor disposed on the inner diameter side of the second stator via a predetermined gap, and electrically connected to the first and second rotating electric machines. A rotating electrical machine system comprising: a power converter installed in one of the first and second rotor cores so as to rotate during rotation.
  2.  第1の固定子巻線及び固定子鉄心を有する第1の固定子、第1の回転子巻線及び回転子鉄心を有すると共に、前記第1の固定子の内径側に所定の間隙を介して配置されている第1の回転子から成る第1の回転電機と、第2の固定子巻線及び固定子鉄心を有する第2の固定子、第2の回転子巻線及び回転子鉄心を有すると共に、前記第2の固定子の内径側に所定の間隙を介して配置されている第2回転子から成る第2の回転電機と、前記第1及び第2の回転電機と電気的に接続され、かつ、前記第1及び第2の回転子のいずれかに、これらの回転時に回転するように設置されている電力変換器とを備え、
     前記第1及び第2の回転子鉄心が、それぞれ径方向に延びる第1のアームを介して回転軸に接続されると共に、前記第1及び第2の回転子鉄心が接続される前記第1のアームのいずれかの途中に一端が接続され、その接続部から軸方向に伸延して途中から折り曲がり他端が前記回転軸に接続されている第2のアームを有し、前記第2のアームの軸方向に伸延する部分の内径側に前記電力変換器が設置されていることを特徴とする回転電機システム。
    A first stator having a first stator winding and a stator core, a first rotor winding and a rotor core, and a predetermined gap on the inner diameter side of the first stator A first rotating electric machine comprising a first rotor arranged; a second stator having a second stator winding and a stator core; a second rotor winding and a rotor core. And a second rotating electric machine comprising a second rotor disposed on the inner diameter side of the second stator via a predetermined gap, and electrically connected to the first and second rotating electric machines. And any one of the first and second rotors, and a power converter installed to rotate during these rotations,
    The first and second rotor cores are connected to a rotating shaft via first arms extending in the radial direction, respectively, and the first and second rotor cores are connected to the first rotor core. One end of the arm is connected to one end of the arm, the second arm is extended in the axial direction from the connecting portion, bent from the middle, and the other end is connected to the rotating shaft, and the second arm The rotating electrical machine system is characterized in that the power converter is installed on the inner diameter side of the portion extending in the axial direction.
  3.   第1の固定子巻線及び固定子鉄心を有する第1の固定子、第1の回転子巻線及び回転子鉄心を有すると共に、前記第1の固定子の内径側に所定の間隙を介して配置されている第1の回転子から成る第1の回転電機と、第2の固定子巻線及び固定子鉄心を有する第2の固定子、第2の回転子巻線及び回転子鉄心を有すると共に、前記第2の固定子の内径側に所定の間隙を介して配置されている第2回転子から成る第2の回転電機と、前記第1及び第2の回転電機と電気的に接続され、かつ、前記第1及び第2の回転子のいずれかに、これらの回転時に回転するように設置されている電力変換器とを備え、
     前記第1又は第2の回転子鉄心が、径方向に延びる第1のアームを介して回転軸に接続されると共に、一端が前記第1のアームの途中に接続され、その接続部から軸方向に伸延して途中で前記第1又は第2の回転子鉄心を支持し、その支持部から伸延する途中から折り曲がり他端が前記回転軸に接続されている第2のアームを有し、該第2のアームの軸方向に伸延する部分の内径側に前記電力変換器が設置されていることを特徴とする回転電機システム。
    A first stator having a first stator winding and a stator core, a first rotor winding and a rotor core, and a predetermined gap on the inner diameter side of the first stator A first rotating electric machine comprising a first rotor arranged; a second stator having a second stator winding and a stator core; a second rotor winding and a rotor core. And a second rotating electric machine comprising a second rotor disposed on the inner diameter side of the second stator via a predetermined gap, and electrically connected to the first and second rotating electric machines. And any one of the first and second rotors, and a power converter installed to rotate during these rotations,
    The first or second rotor core is connected to the rotary shaft via a first arm extending in the radial direction, and one end is connected to the middle of the first arm, and axially extends from the connecting portion. A second arm that supports the first or second rotor core in the middle and is bent from the middle and extended at the other end and connected to the rotary shaft. The rotating electrical machine system, wherein the power converter is installed on an inner diameter side of a portion extending in the axial direction of the second arm.
  4.  請求項2又は3に記載の回転電機システムにおいて、
     前記第2のアームの軸方向に伸延する部分の外径側に、径方向に延びる突起が形成されていることを特徴とする回転電機システム。
    In the rotating electrical machine system according to claim 2 or 3,
    A rotating electrical machine system, wherein a protrusion extending in the radial direction is formed on an outer diameter side of a portion extending in the axial direction of the second arm.
  5.  請求項4に記載の回転電機システムにおいて、
     前記突起は、前記第1及び第2の回転子巻線のいずれかに隣接して形成されていることを特徴とする回転電機システム。
    In the rotating electrical machine system according to claim 4,
    The rotating electrical machine system, wherein the protrusion is formed adjacent to one of the first and second rotor windings.
  6.  請求項4又は5に記載の回転電機システムにおいて、
     前記突起は、放熱フィンであることを特徴とする回転電機システム。
    In the rotating electrical machine system according to claim 4 or 5,
    The rotating electrical machine system, wherein the protrusion is a heat radiating fin.
  7.  請求項6に記載の回転電機であって、
     前記放熱フィンは、薄板を歪曲させた形状であることを特徴とする回転電機システム。
    The rotating electrical machine according to claim 6,
    The radiating fin has a shape obtained by warping a thin plate.
  8.  請求項1乃至7のいずれか1項に記載の回転電機システムにおいて、
     前記電力変換器は、交流を直流に変換する電力順変換器と、直流を交流に変換する電力逆変換器とから成り、前記電力順変換器と電力逆変換器は、周方向に交互に設置されていることを特徴とする回転電機システム。
    The rotating electrical machine system according to any one of claims 1 to 7,
    The power converter includes a power forward converter that converts alternating current to direct current and a power reverse converter that converts direct current to alternating current. The power forward converter and the power reverse converter are alternately installed in the circumferential direction. Rotating electrical machine system characterized by that.
  9.  請求項8に記載の回転電機システムにおいて、
     前記電力順変換器と電力逆変換器は、軸方向に交互に設置されていることを特徴とする回転電機システム。
    In the rotating electrical machine system according to claim 8,
    The rotating electrical machine system, wherein the power forward converter and the power reverse converter are alternately installed in the axial direction.
  10.  請求項8又は9に記載の回転電機システムにおいて、
     前記電力順変換器と電力逆変換器は、径方向に複数設置されていることを特徴とする回転電機システム。
    In the rotating electrical machine system according to claim 8 or 9,
    A rotating electrical machine system, wherein a plurality of the forward power converter and the reverse power converter are installed in a radial direction.
  11.  請求項8乃至10のいずれか1項に記載の回転電機システムにおいて、
     前記電力順変換器と電力逆変換器は、等間隔に設置されていることを特徴とする回転電機システム。
    The rotating electrical machine system according to any one of claims 8 to 10,
    The rotating electrical machine system, wherein the power forward converter and the power reverse converter are installed at equal intervals.
  12.  請求項1乃至11のいずれか1項に記載の回転電機システムにおいて、
     前記第1及び第2の回転電機と前記電力変換器を収納する回転電機フレームの側面に、部品交換用の扉が形成されていることを特徴とする回転電機システム。
    The rotating electrical machine system according to any one of claims 1 to 11,
    A rotating electrical machine system, wherein a door for component replacement is formed on a side surface of a rotating electrical machine frame that houses the first and second rotating electrical machines and the power converter.
  13.  風を受けて回転するロータと、該ロータに主軸を介して接続される請求項1乃至12のいずれか1項に記載の回転電機システムと、該回転電機システムを内部に収納するナセルと、該ナセルを支持するタワーとを備え、
     前記第1及び第2の回転電機は、前記ロータの回転力により回転すると共に、前記第1及び第2の回転電機の固定子巻線は、電力系統側に接続されていることを特徴とする風力発電システム。
    A rotor that rotates by receiving wind, a rotating electrical machine system according to any one of claims 1 to 12 connected to the rotor via a main shaft, a nacelle that houses the rotating electrical machine system, and And a tower that supports the nacelle,
    The first and second rotating electric machines are rotated by the rotational force of the rotor, and the stator windings of the first and second rotating electric machines are connected to the power system side. Wind power generation system.
PCT/JP2012/081104 2012-11-30 2012-11-30 Rotating electrical machine system and wind power generation system WO2014083687A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2014549732A JP5852750B2 (en) 2012-11-30 2012-11-30 Rotating electrical machine system and wind power generation system
PCT/JP2012/081104 WO2014083687A1 (en) 2012-11-30 2012-11-30 Rotating electrical machine system and wind power generation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/081104 WO2014083687A1 (en) 2012-11-30 2012-11-30 Rotating electrical machine system and wind power generation system

Publications (1)

Publication Number Publication Date
WO2014083687A1 true WO2014083687A1 (en) 2014-06-05

Family

ID=50827357

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/081104 WO2014083687A1 (en) 2012-11-30 2012-11-30 Rotating electrical machine system and wind power generation system

Country Status (2)

Country Link
JP (1) JP5852750B2 (en)
WO (1) WO2014083687A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016116304A (en) * 2014-12-15 2016-06-23 株式会社日立製作所 Power generation system or wind power generation system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7299477B2 (en) * 2019-03-27 2023-06-28 ダイキン工業株式会社 electric motor system

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55137870U (en) * 1979-03-23 1980-10-01
JPS5815460A (en) * 1981-07-17 1983-01-28 Hitachi Ltd Rotary electric machine
JPH04347566A (en) * 1991-05-22 1992-12-02 Shindaiwa Kogyo Kk Brushless synchronous machine
JP2002136191A (en) * 2000-10-23 2002-05-10 Kobe Steel Ltd Secondary exciter of generator motor
JP2004328911A (en) * 2003-04-25 2004-11-18 Denso Corp Ac generator for vehicle
WO2005046044A1 (en) * 2003-11-06 2005-05-19 Varispeed Electric Motors Pty Ltd A variable speed power generator having two induction generators on a common shaft
EP2061133A2 (en) * 2007-11-16 2009-05-20 Hitachi Ltd. Rotating electric machine and vehicle-mounted electric machine system equipped with the same
CN102168652A (en) * 2010-02-25 2011-08-31 株式会社日立制作所 Wind power generation system and control method thereof
JP2012175784A (en) * 2011-02-21 2012-09-10 Toshiba Mitsubishi-Electric Industrial System Corp Power generation system

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55137870U (en) * 1979-03-23 1980-10-01
JPS5815460A (en) * 1981-07-17 1983-01-28 Hitachi Ltd Rotary electric machine
JPH04347566A (en) * 1991-05-22 1992-12-02 Shindaiwa Kogyo Kk Brushless synchronous machine
JP2002136191A (en) * 2000-10-23 2002-05-10 Kobe Steel Ltd Secondary exciter of generator motor
JP2004328911A (en) * 2003-04-25 2004-11-18 Denso Corp Ac generator for vehicle
WO2005046044A1 (en) * 2003-11-06 2005-05-19 Varispeed Electric Motors Pty Ltd A variable speed power generator having two induction generators on a common shaft
US20090121482A1 (en) * 2003-11-06 2009-05-14 Varispeed Electric Motors Pty Ltd Variable speed power generator having two induction generators on a common shaft
EP2061133A2 (en) * 2007-11-16 2009-05-20 Hitachi Ltd. Rotating electric machine and vehicle-mounted electric machine system equipped with the same
CN101436796A (en) * 2007-11-16 2009-05-20 株式会社日立制作所 Rotating electric machine and vehicle-mounted electric machine system equipped with the same
US20090127948A1 (en) * 2007-11-16 2009-05-21 Hitachi, Ltd. Rotating electric machine and vehicle-mounted electric machine system equipped with the same
JP2009124902A (en) * 2007-11-16 2009-06-04 Hitachi Ltd Rotating electric machine and vehicle-mounted electric machine system equipped with the same
CN102168652A (en) * 2010-02-25 2011-08-31 株式会社日立制作所 Wind power generation system and control method thereof
JP2011176956A (en) * 2010-02-25 2011-09-08 Hitachi Ltd Wind power generation system and control method of the same
JP2012175784A (en) * 2011-02-21 2012-09-10 Toshiba Mitsubishi-Electric Industrial System Corp Power generation system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016116304A (en) * 2014-12-15 2016-06-23 株式会社日立製作所 Power generation system or wind power generation system

Also Published As

Publication number Publication date
JP5852750B2 (en) 2016-02-03
JPWO2014083687A1 (en) 2017-01-05

Similar Documents

Publication Publication Date Title
JP5942393B2 (en) Rotating electrical machine system or wind power generation system.
JP6258925B2 (en) Synchronous generator for gearless wind turbine generator
JP5834433B2 (en) Outer rotor type rotating electrical machine
US20130300228A1 (en) Generator, in particular for a wind turbine
JPWO2015136632A1 (en) Rotating electric machine
JP5852750B2 (en) Rotating electrical machine system and wind power generation system
TWI516001B (en) Rotating electrical systems and wind power generation systems
CN110601479B (en) Double-rotor induction wind driven generator and working method thereof
CA2752979C (en) Generator for an electrical machine
JP4299734B2 (en) Rotating electric machine
JP5913618B2 (en) Rotating electrical machine system and wind power generation system
CN110380575B (en) Self-excited synchronous generator with radial-flow type heat-dissipation wind wheel
CN103023243A (en) Double-air-gap hybrid excitation direct drive switched reluctance wind power generator and unit system thereof
JP5823061B2 (en) Rotating electric machines, especially double-fed asynchronous machines in the output range of 20 MVA to 500 MVA
US20150194862A1 (en) Generator assembly
JP5933123B1 (en) Rotating electrical machine system or wind power generation system
JP5808871B2 (en) Rotating electrical machine system and wind power generation system
KR102547853B1 (en) Apparatus for rectifying for exciter of generator
US11742722B2 (en) Cooling of electrical machines
US20230340945A1 (en) Cooling circuit for an electric generator
JP6325339B2 (en) Rotating electrical machine system and wind power generation system
EP4102683A1 (en) Cooling of an electric generator
JP2017200302A (en) Generator system or wind generator system
JP2016116304A (en) Power generation system or wind power generation system
JP2006054946A (en) Low-speed rotation outer rotor power generator

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12889025

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014549732

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12889025

Country of ref document: EP

Kind code of ref document: A1