JPH0348741B2 - - Google Patents

Info

Publication number
JPH0348741B2
JPH0348741B2 JP17103482A JP17103482A JPH0348741B2 JP H0348741 B2 JPH0348741 B2 JP H0348741B2 JP 17103482 A JP17103482 A JP 17103482A JP 17103482 A JP17103482 A JP 17103482A JP H0348741 B2 JPH0348741 B2 JP H0348741B2
Authority
JP
Japan
Prior art keywords
coil
coils
groove
phase
grooves
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP17103482A
Other languages
Japanese (ja)
Other versions
JPS5963961A (en
Inventor
Sadayoshi Hibino
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP17103482A priority Critical patent/JPS5963961A/en
Publication of JPS5963961A publication Critical patent/JPS5963961A/en
Publication of JPH0348741B2 publication Critical patent/JPH0348741B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/04Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
    • H02K3/28Layout of windings or of connections between windings

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Induction Machinery (AREA)
  • Windings For Motors And Generators (AREA)

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は分数溝巻線となる交流回転電機の多相
電機子巻線に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a polyphase armature winding for an AC rotating electrical machine, which is a fractional groove winding.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

多相交流回転電機では、円筒状の電機子鉄心の
内周面に複数個の軸方向溝を設け、これに電機子
巻線を巻装し、電機子を形成する。その電機子巻
線の巻き方には重ね巻、波巻、鎖巻の3種類があ
り、回転電機の種類、特性に応じて選定される。
又、溝数については毎極毎相当りの溝数が整数の
場合と不整数即ち分数になるものとがあり、前者
を整数溝巻、後者を不整数溝巻又は分数溝巻と称
して共に広く用いられている。分数溝巻は概して
極数の比較的多い回転電機に採用される場合が多
い。この理由は、分数溝巻は並列回路数の選定範
囲は狭いが、極数の整数倍でない溝数を選定でき
るので、設計上の自由度が大きく、又、電圧波形
を良好にしやすいなどの利点があるためである。
In a multiphase AC rotating electric machine, a plurality of axial grooves are provided on the inner peripheral surface of a cylindrical armature core, and armature windings are wound around the grooves to form an armature. There are three ways to wind the armature winding: lap winding, wave winding, and chain winding, which are selected depending on the type and characteristics of the rotating electrical machine.
Regarding the number of grooves, there are cases where the number of grooves per pole is an integer number, and cases where the number is an integer number, that is, a fraction.The former is called integer groove winding, and the latter is called irregular number groove winding or fractional groove winding. Widely used. Fractional groove winding is generally employed in rotating electric machines with a relatively large number of poles. The reason for this is that although the selection range for the number of parallel circuits in fractional groove winding is narrow, the number of grooves can be selected that is not an integer multiple of the number of poles, so there is a greater degree of freedom in design, and it also has advantages such as making it easier to create a good voltage waveform. This is because there is.

分数溝巻線において、毎極毎相当りの溝数qは
一般にq=a+c/b(但しa、b、cは整数で
c/bは既約分数)なる式で表わされる。又、溝
数をZ、相数をmとすると毎相の溝数NはN=
Z/mで表わされる。本発明は毎極毎相の溝数q
がq=a+c/bとなる分数溝巻線で、かつ、毎
相の溝数Nが奇数の場合に関する。具体的な例と
して、極数、溝数、相数で述べると6極、45溝、
3相の場合である。
In a fractional groove winding, the number of grooves q per pole is generally expressed by the formula q=a+c/b (where a, b, and c are integers and c/b is an irreducible fraction). Also, if the number of grooves is Z and the number of phases is m, the number of grooves for each phase is N=
It is expressed as Z/m. In the present invention, the number of grooves for each pole and each phase is q.
This relates to the case of a fractional groove winding where q=a+c/b and the number N of grooves in each phase is an odd number. As a specific example, in terms of number of poles, number of grooves, and number of phases, 6 poles, 45 grooves,
This is a three-phase case.

この場合、従来の3相重ね巻方式ではN=45/
3=15となり、コイル配置は第1図に示すように
なり、1相分のコイルは2個、3個、2個、3
個、2個、3個の組合せから成り、1相当り15個
のコイルになる。第1図で1〜45は溝番号を表
わし、U,V,WはそれぞれU相、V相、W相の
コイルを表わし、,,はU,V,Wのコイ
ルに対し電流の向きが逆方向となることを表わ
す。第1図の例ではコイルピツチは#1〜#8で
93.33%の短節巻となつている。このコイルを並
列に接続する場合は、第2図に示すように、2
個、3個、2個をシリーズに接続した第1のシリ
ーズコイル群Aと、3個、2個、3個をシリーズ
に接続した第2のシリーズコイル群Bとに分けら
れ、両群A,Bのコイル数が同一とならず、不平
衡となり実用に供し得ない。尚第2図において各
上コイルUには溝番号1,2等を添字として付
し、どの溝に入つているコイルかを明らかにし
た。又、uは電源端子、xは反対側の端子であ
る。
In this case, in the conventional three-phase lap winding method, N=45/
3 = 15, the coil arrangement is as shown in Figure 1, and the coils for one phase are 2, 3, 2, 3.
It consists of combinations of 1, 2, and 3 coils, and each coil has 15 coils. In Figure 1, 1 to 45 represent the groove numbers, U, V, and W represent the U-phase, V-phase, and W-phase coils, respectively, and ,,, the direction of the current is opposite to the U, V, and W coils. Indicates the direction. In the example in Figure 1, the coil pitch is #1 to #8.
It is 93.33% short-section volume. When connecting these coils in parallel, as shown in Figure 2, 2
It is divided into a first series coil group A, in which 1, 3, and 2 coils are connected in series, and a second series coil group B, in which 3, 2, and 3 coils are connected in series, and both groups A, The number of coils B is not the same, resulting in unbalance and cannot be put to practical use. In FIG. 2, groove numbers 1, 2, etc. are given as subscripts to each upper coil U to clarify which groove the coil is placed in. Further, u is a power supply terminal, and x is a terminal on the opposite side.

これを改良するためにN−1個のコイルを用い
て実用上使用可能な巻線を構成することを発明者
は考えた。この場合について第3図および第4図
を参照して説明する。
In order to improve this, the inventor considered constructing a practically usable winding using N-1 coils. This case will be explained with reference to FIGS. 3 and 4.

第3図は前記した従来例の第1図と同じ溝数
45、極数6極、相数3相の場合のコイル配置図で
ある。コイルピツチは#1〜#8で93.33%の短
節巻であることも第1図と同様である。即ち溝
#1に入る上コイルU1は溝#8に入る下コイル
とで1個のコイルを形成している。図中にはU,
V,Wで表わし、溝番号に相当する添字の数字は
省略してある。そして、従来の重ね巻による第1
図に対し、毎相のコイル数は毎相の溝数N=15よ
り1個少なくしてある。即ち毎相のコイル数をN
−1個とする。従つてこの例の場合は15−1=14
個のコイル数となる。従つて第3図から分るよう
にU相については溝番号#25のコイルが歯抜け
となる。即ち#25の上コイルから#32の下コ
イルに入るコイルを省くことになる。
Figure 3 shows the same number of grooves as Figure 1 of the conventional example mentioned above.
45, the number of poles is 6, and the number of phases is 3. As shown in Figure 1, the coil pitches are 93.33% short-pitch winding for #1 to #8. That is, the upper coil U1 entering groove #1 and the lower coil entering groove #8 form one coil. In the figure, U,
They are represented by V and W, and the subscript numbers corresponding to the groove numbers are omitted. Then, the first
In the figure, the number of coils for each phase is one less than the number of grooves for each phase, N=15. In other words, the number of coils for each phase is N
-1 piece. Therefore, in this example, 15-1=14
The number of coils is . Therefore, as can be seen from FIG. 3, regarding the U phase, the coil with groove number #25 is missing. That is, the coil that goes from the upper coil #25 to the lower coil #32 is omitted.

V相についても同様に14個のコイル数になるよ
うに溝番号45のコイルが歯抜けとなる。即ち
#45の上コイルから#7の下コイルに入るコイ
ルを省くことになる。
Similarly, for the V phase, the coil with groove number 45 is missing so that the number of coils is 14. That is, the coil that goes from the upper coil #45 to the lower coil #7 is omitted.

同様にW相については溝番号#5の上コイルか
ら#12の下コイルに入るコイルを省き、14個の
コイル数とする。
Similarly, for the W phase, the coils from the upper coil of groove number #5 to the lower coil of #12 are omitted, resulting in a total of 14 coils.

このコイルを2並列回路に接続する場合、U相
についてみれば第4図に示すように、2個、3
個、2個とシリーズに接続した第1のシリーズコ
イル群Aと、同様に2個、3個、2個とシリーズ
に接続した第2のシリーズコイル群Bとに分けら
れ、両者A,Bのシリーズコイル数はそれぞれ7
個宛であり等じいので、ほぼ平衡する。しかしこ
の場合、第1のシリーズコイル群Aと第2のシリ
ーズコイル群Bに誘起される電圧ベクトルは位相
差が若干あり、完全には平衡しない。これを更に
詳しく説明する。
When connecting these coils to two parallel circuits, for the U phase, two or three coils are connected as shown in Figure 4.
It is divided into a first series coil group A, which is connected in series with 2 coils, and a second series coil group B, which is similarly connected in series with 2 coils, 3 coils, and 2 coils. Number of series coils is 7 each
Since they are addressed to each individual and are the same, they are almost balanced. However, in this case, the voltage vectors induced in the first series coil group A and the second series coil group B have a slight phase difference and are not completely balanced. This will be explained in more detail.

第3図のコイル配置により、各溝における上コ
イルにて代表される各コイルに誘起される電圧ベ
クトルを、eに溝番号を添字してe1,e2…e44
し示すと第5図のようになる。第5図において破
線矢印で示したベクトルは実線矢印しで示したベ
クトルと逆方向に電流が流れることを示す。これ
を第4図のように各相を2並列回路(第4図はU
相のみを示す)に接続した場合の合成ベクトルは
第1のシリーズコイル群Aの方はeA、第2のシリ
ーズコイル群Bの方はeBとなり、それぞれ120゜、
240゜の位相差をもつてV相、W相のベクトルと平
衡している。しかし、第1、第2のシリーズコイ
ル群A,BのベクトルeA,eBには位相差がある。
次にこれを求めてみる。
With the coil arrangement shown in Figure 3, the voltage vectors induced in each coil represented by the upper coil in each groove are shown as e 1 , e 2 ...e 44 , with the groove number subscripted to e, as shown in Figure 5. become that way. In FIG. 5, the vector indicated by the dashed line arrow indicates that the current flows in the opposite direction to the vector indicated by the solid line arrow. This is connected to two parallel circuits for each phase as shown in Figure 4 (Figure 4 shows U
(phases only shown), the resultant vector is e A for the first series coil group A and e B for the second series coil group B, each at 120°,
It is balanced with the V-phase and W-phase vectors with a phase difference of 240°. However, there is a phase difference between the vectors e A and e B of the first and second series coil groups A and B.
Next, try searching for this.

溝ピツチθは θ=360/Z×極数/2=360/45×6/2=24゜ であるから、あるコイルの誘起電圧の絶対値をE
とすると各コイルの電圧ベクトルおよび合成ベク
トルは次のようになる。e1=EεJ0、e2=EεJ24
e16=EεJ0、e17=EεJ24、e30=Eε-J24、e31=EεJ0

e32=EεJ24の合成がeAであり、e8=Eε-J12、e9
J12、e10=EεJ36、e23=Eε-J12、e24=EεJ12、e3
8

=Eε-J12、e39=EεJ12の合成がeBである。これを
計算すると、 eA=e1+e2+e16+e17+e30+e31+e32 =3E+3Eεj24+Eε-24 =E〔3+3(cos24゜+jsin24゜) +(cos24゜−jsin24゜)〕 =(6.65418+j0.813474)E =6.703719E∠6.96982゜ eB=e8+e9+e10+e23+e24+e38+e39 =3Eεj12+3Eε-j12+Eεj36 =E〔3(cos12゜+jsin12゜)+3(cos12゜ −jsin12゜)+(cos36゜+jsin36゜)〕 =(6.677905+j0.587785)E =6.7037232E∠5.03017゜ となり両合成電圧ベクトルeA,eBの大きさは殆ど
同一であるが位相差αは α≒6.97゜−5.03゜=1.94゜ となり、若干の不平衡があり、第1、第2のシリ
ーズコイル群A,Bから成る並列回路には循環電
流が流れ、実用に供し得ない程ではないが損失を
増加する原因となる。これは各相共に同様であ
る。
Since the groove pitch θ is θ=360/Z×number of poles/2=360/45×6/2=24°, the absolute value of the induced voltage of a certain coil is E
Then, the voltage vector and composite vector of each coil are as follows. e 1 = Eε J0 , e 2 = Eε J24 ,
e 16 = Eε J0 , e 17 = Eε J24 , e 30 = Eε -J24 , e 31 = Eε J0
,
e 32 = Eε The synthesis of J24 is e A , e 8 = Eε -J12 , e 9 =
J12 , e 10 = Eε J36 , e 23 = Eε -J12 , e 24 = Eε J12 , e 3
8

=Eε -J12 , e 39 The composition of =Eε J12 is e B. Calculating this, e A = e 1 + e 2 + e 16 + e 17 + e 30 + e 31 + e 32 = 3E + 3Eε j24 + Eε -24 = E [3 + 3 (cos24゜+jsin24゜) + (cos24゜−jsin24゜)] = (6.6541 8 +j0.813474)E =6.703719E∠6.96982゜e B =e 8 +e 9 +e 10 +e 23 +e 24 +e 38 +e 39 =3Eε j12 +3Eε -j12 +Eε j36 =E[3(cos12゜+jsin12゜)+3(cos12゜−jsin12゜) + (cos36゜+jsin36゜)〕 = (6.677905+j0.587785)E = 6.7037232E∠5.03017゜The magnitudes of both composite voltage vectors e A and e B are almost the same, but the phase difference α is α ≒6.97゜-5.03゜=1.94゜, there is a slight unbalance, and a circulating current flows through the parallel circuit consisting of the first and second series coil groups A and B, although it is not so much that it cannot be used for practical purposes. This will cause increased losses. This is the same for each phase.

〔発明の目的〕[Purpose of the invention]

本発明は毎相の溝数Nが奇数個の場合でも平衡
した並列回路を作ることを可能とする多相電機子
巻線を提供することを目的とする。
An object of the present invention is to provide a multiphase armature winding that makes it possible to create a balanced parallel circuit even when the number N of grooves in each phase is an odd number.

〔発明の概要〕[Summary of the invention]

本発明は、45個の溝を有する電機子鉄心に巻装
され毎極毎相の溝数qがq=2+(1/2)とな
る分数溝巻線で且つ毎相の溝数が15個となる重ね
巻方式の多相電機子巻線において、毎相のコイル
数を14個としこれを第1及び第2コイル群に分け
て形成し、この2つのコイル群は共にコイル数が
2個連続コイル×2個と3個連続コイル×1個で
形成し、各コイルの巻回数で各溝の上コイルにて
代表する各コイルを相符号に溝番号を添字し電流
方向の逆はバー付で呼称する時U2,U17,U
32と8,23,38のコイルの巻回数を
U1,U16,U30,U31と9,10,
U24,39のコイルの巻回数の約0.88倍とし
て他相もこれに準じて形成し、第1コイル群の連
続コイル接続順を2、3、2としこの連続コイル
間に第1コイル群と逆接続の第2コイル群の連続
コイルを2、3、2の順で接続させ、第2コイル
群の2個連続コイル収納の隣接溝に第2コイル群
のコイル未納溝を基準溝(No.5)を基点として電
気角で480度の間隔を設けて3個形成し、夫々の
コイルを重ね巻方式で溝に収納後第1コイル群と
第2コイル群を並列接続し端子を取出し形成した
ものである。この結果、平衡した並列回路を作る
ことが可能で、2重電圧への対応や鉄心の標準化
ができる等の効果がある。
The present invention is a fractional groove winding that is wound around an armature core having 45 grooves, and the number of grooves q for each pole and each phase is q = 2 + (1/2), and the number of grooves for each phase is 15. In the lap-wound multiphase armature winding, the number of coils for each phase is 14, and these are divided into the first and second coil groups, and these two coil groups both have 2 coils. Formed by 2 continuous coils and 1 3 continuous coil, each coil is represented by the coil above each groove according to the number of turns of each coil, and the groove number is added to the phase code, and the opposite direction of current is marked with a bar. When referring to U2, U17, U
The number of turns of coils 32 and 8, 23 and 38 are U1, U16, U30, U31 and 9, 10,
The number of windings of the coils U24 and 39 is approximately 0.88 times, and the other phases are formed in the same manner, and the consecutive coils of the first coil group are connected in the order of 2, 3, 2. Connect the continuous coils of the second coil group in the order of 2, 3, 2, and insert the unstored coil groove of the second coil group into the reference groove (No. 5 ), three coils are formed with an electrical angle of 480 degrees as a reference point, each coil is stored in a groove using a lap winding method, and then the first coil group and second coil group are connected in parallel and the terminals are taken out and formed. It is. As a result, it is possible to create a balanced parallel circuit, which has the advantage of supporting dual voltages and standardizing the iron core.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の一実施例について第3図ないし
第5図を参照して説明する。コイル配置は本発明
に至る技術的背景にて述べた第3図の通りであ
り、並列回路も第4図の通りである。そして第5
図に示す位相差αを零にするために、U相につい
てみれば第1のシリーズコイル群Aの内のe2
e17,e32の電圧ベクトルを生ずるコイルU2,U17
U32と、第2のシリーズコイル群Bの内のe8
e23,e36の電圧ベクトルを生ずるコイル8
2338の各コイルの巻回数を、e1,e16,e30
e31,e9,e10,e24,e39の電圧ベクトルを生ずるコ
イルU1,U16,U30,U319102439
等の各コイルの巻回数の約0.88倍にする。V相、
W相もこれに準ずる。即ち、V相ではV7,V22
V37132843、のコイルを、W相では
W12,W27,W4231833のコイルをそ
れぞれ他のコイルの巻回数の約0.88倍とする。
Hereinafter, one embodiment of the present invention will be described with reference to FIGS. 3 to 5. The coil arrangement is as shown in FIG. 3 described in the technical background leading to the present invention, and the parallel circuit is also as shown in FIG. 4. and the fifth
In order to make the phase difference α shown in the figure zero, for the U phase, e 2 of the first series coil group A,
Coils U 2 , U 17 , which generate voltage vectors e 17 , e 32 ,
U 32 and e 8 of the second series coil group B,
Coil 8 that produces voltage vectors e 23 , e 36 ,
The number of turns of each coil 23 , 38 is e 1 , e 16 , e 30 ,
Coils U 1 , U 16 , U 30 , U 31 , 9 , 10 , 24 , 39 that generate voltage vectors e 31 , e 9 , e 10 , e 24 , e 39
The number of turns of each coil should be approximately 0.88 times. V phase,
This also applies to the W phase. That is, in the V phase, V 7 , V 22 ,
In the W phase, the coils of V 37 , 13 , 28 , 43 are
The number of turns of the coils W 12 , W 27 , W 42 , 3 , 18 , and 33 is approximately 0.88 times that of the other coils.

次に作用について説明する。 Next, the effect will be explained.

0.88とした巻回数比をxとしてeA=eBの条件を
求めてみる。
Let's find the condition of e A = e B with the turns ratio set to 0.88 as x.

eA=3E+3Exεj24+Eε-j24 =E〔3.913545+2.740635x +j(1.220211x−0.406737)〕 又、 eB=3Eεj12+3Exε-j12+Eεj36 =E〔3.743457+2.934444x +j(−0.623736x+1.211521)〕 ここでeA−eB=0を求めると、実数部から 0.170088−0.193809x=0 x=0.170088/0.193809=0.8776063 又、虚数部から 1.618258−1.843947x=0 x=1.618258/1.843947=0.8776054 即ちx≒0.88の時に第1のシリーズコイル群A
と第2のシリーズコイル群Bとの電圧ベクトルeA
とeBは大きさが殆ど等しく、位相差αが零に近ず
き、循環電流は殆ど流れない平衡した巻線とな
る。V相、W相も同様である。
e A =3E+3Exε j24 +Eε -j24 =E[3.913545+2.740635x +j(1.220211x−0.406737)] Also, e B =3Eε j12 +3Exε -j12 +Eε j36 =E[3.743457+2.93444 4x +j (-0.623736x+1.211521) ] Here, e A − e B = 0 is calculated from the real part: 0.170088−0.193809x=0 x=0.170088/0.193809=0.8776063, and from the imaginary part: 1.618258−1.843947x=0 x=1.618258/1.843947=0. 8776054 i.e. x When ≒0.88, the first series coil group A
and the voltage vector e A of the second series coil group B
and e B are almost equal in size, the phase difference α approaches zero, and a balanced winding with almost no circulating current flows. The same applies to the V phase and W phase.

このように2並列回路が可能となることによ
り、電源電圧が1:2のもの、例えば200Vと
400Vとに共用にすることができる。即ち、200V
では2倍の回路、例えば2×Yの結線とし、
400Vの場合は単一の回路、例えば1×Yの結線
にすればよい。
By making two parallel circuits possible in this way, it is possible to use a power supply voltage of 1:2, for example 200V.
Can be shared with 400V. i.e. 200V
Now, let's make a circuit twice as large, for example, 2 x Y wiring,
In the case of 400V, a single circuit, for example a 1×Y connection, is sufficient.

又、200Vで2倍の回路を採用することにより、
400V級に改造する場合、電機子巻線を巻替える
ことなく、コイルの接続替え、即ち2×Yから1
×Yにするのみで改造が可能となり、改造に要す
る時間が短く、短納期で経済的な対応が可能とな
る。
Also, by adopting twice the circuit at 200V,
When modifying to 400V class, you can change the coil connection without rewinding the armature winding, i.e. from 2 x Y to 1.
Modification is possible by simply changing to ×Y, and the time required for modification is short, making it possible to respond economically with short delivery times.

一般的には電機子鉄心の溝数は偶数が採用され
ているが、小容量小形機種では寸法上の制限から
この溝数を多くとれない。これを解決するために
奇数の溝数が必要となる。例えば6極では溝数36
個の上では54個を一般的に使用しているが、前記
のように寸法上54個の溝数がとれない場合、その
中間として45個の溝数が必要となり、この場合に
本発明が有効となる。
Generally, the number of grooves in the armature core is an even number, but this number cannot be increased in small capacity models due to dimensional limitations. To solve this problem, an odd number of grooves is required. For example, for 6 poles, the number of grooves is 36
Generally speaking, 54 grooves are used, but if 54 grooves cannot be accommodated due to the dimensions as mentioned above, 45 grooves will be needed as an intermediate number. It becomes effective.

このように、45溝は2、4、6、8、10、12、
14、15極等の平衡3相巻線が可能で巻線の応用範
囲が広く、且つ鉄心の共用化もでき標準化の点か
らも効果が大である。
In this way, the 45 grooves are 2, 4, 6, 8, 10, 12,
Balanced three-phase winding with 14 or 15 poles is possible, which has a wide range of applications, and the iron core can also be shared, which is very effective in terms of standardization.

〔発明の効果〕 以上説明したように、本発明によれば毎相の溝
数Nが奇数個の場合でありながら、平衡した並列
回路を作ることが可能であり、2重電圧に対応し
たり、他の電圧のものに改造したり、或いは鉄心
の標準化ができる等、設計製作上の効果は極めて
大である。
[Effects of the Invention] As explained above, according to the present invention, even when the number N of grooves in each phase is an odd number, it is possible to create a balanced parallel circuit, and it is possible to handle double voltage. The effects on design and production are extremely large, such as being able to be modified to a different voltage, or to standardize the iron core.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の多相電機子巻線を示すコイル配
置図、第2図は第1図の巻線の並列回路を2とし
た場合の1相分を示す結線図、第3図は本発明の
多相電機子巻線の一実施例を示すコイル配置図、
第4図は第3図の巻線の並列回路を2とした場合
の1相分を示す結線図、第5図は第3図の巻線の
誘起電圧ベクトル図である。 1〜45は溝番号、U,V,W,,,は
各相のコイル、U1,U2等溝番号を添字として付
したものは、その溝に上コイルが入つているコイ
ル、Aは並列回路の第1のシリーズコイル群、B
は並列回路の第2のシリーズコイル群。
Fig. 1 is a coil layout diagram showing a conventional multi-phase armature winding, Fig. 2 is a wiring diagram showing one phase when the number of parallel circuits of the windings in Fig. 1 is 2, and Fig. 3 is a diagram of the main winding. A coil layout diagram showing an embodiment of the polyphase armature winding of the invention,
FIG. 4 is a wiring diagram showing one phase when the number of parallel circuits of the windings in FIG. 3 is two, and FIG. 5 is an induced voltage vector diagram of the windings in FIG. 3. 1 to 45 are groove numbers, U, V, W,... are the coils of each phase, U 1 , U 2, etc. Those with groove numbers as subscripts are the coils in which the upper coil is placed in the groove, A is the coil. First series coil group of parallel circuit, B
is the second series coil group in parallel circuit.

Claims (1)

【特許請求の範囲】[Claims] 1 45個の溝を有する電機子鉄心に巻装され毎極
毎相の溝数qがq=2+(1/2)となる分数溝
巻線で且つ毎相の溝数が15個となる重ね巻方式の
多相電機子巻線において、毎相のコイル数を14個
としこれを第1及び第2コイル群に分けて形成
し、この2つのコイル群は共にコイル数が2個連
続コイル×2個と3個連続コイル×1個で形成
し、各コイルの巻回数で各溝の上コイルにて代表
する各コイルを相符号に溝番号を添字し電流方向
の逆はバー付で呼称する時U2,U17,U32
と8,23,38のコイルの巻回数をU
1,U16,U30,U31と9,10,
24,39のコイルの巻回数の約0.88倍として
他相もこれに準じて形成し、第1コイル群の連続
コイル接続順を2、3、2としこの連続コイル間
に第1コイル群と逆接続の第2コイル群の連続コ
イルを2、3、2の順で接続させ、第2コイル群
の2個連続コイル収納の隣接溝に第2コイル群の
コイル未納溝を基準溝(No.5)を基点として電気
角で480度の間隔を設けて3個形成し、夫々のコ
イルを重ね巻方式で溝に収納後第1コイル群と第
2コイル群を並列接続し端子を取出し形成したこ
とを特徴とする多相電機子巻線。
1 Fractional groove winding wound around an armature core with 45 grooves, where the number of grooves q per pole per phase is q = 2 + (1/2), and the number of grooves per phase is 15. In the winding type polyphase armature winding, the number of coils for each phase is 14, and these are divided into the first and second coil groups, and both of these two coil groups have 2 continuous coils × Formed with 2 and 3 continuous coils x 1, each coil represented by the coil above each groove is designated by the number of turns of each coil, and the groove number is added to the phase code, and the opposite current direction is referred to with a bar. Time U2, U17, U32
And the number of turns of coils 8, 23, and 38 is U
1, U16, U30, U31 and 9,10,
The number of turns of the coils 24 and 39 is approximately 0.88 times as large, and the other phases are formed in the same manner.The consecutive coils of the first coil group are connected in the order of 2, 3, 2, and between these consecutive coils, the windings are reversely connected to the first coil group. Connect the continuous coils of the second coil group in the order of 2, 3, 2, and insert the unstored coil groove of the second coil group into the reference groove (No. 5 ), three coils were formed at an electrical angle of 480 degrees, and each coil was stored in a groove using a lap winding method, and then the first coil group and second coil group were connected in parallel, and the terminals were taken out and formed. A polyphase armature winding featuring:
JP17103482A 1982-10-01 1982-10-01 Polyphase armature coil Granted JPS5963961A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17103482A JPS5963961A (en) 1982-10-01 1982-10-01 Polyphase armature coil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17103482A JPS5963961A (en) 1982-10-01 1982-10-01 Polyphase armature coil

Publications (2)

Publication Number Publication Date
JPS5963961A JPS5963961A (en) 1984-04-11
JPH0348741B2 true JPH0348741B2 (en) 1991-07-25

Family

ID=15915856

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17103482A Granted JPS5963961A (en) 1982-10-01 1982-10-01 Polyphase armature coil

Country Status (1)

Country Link
JP (1) JPS5963961A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61144563U (en) * 1985-02-27 1986-09-06
JP6610415B2 (en) * 2016-04-28 2019-11-27 アイシン精機株式会社 Three-phase synchronous machine and manufacturing method thereof

Also Published As

Publication number Publication date
JPS5963961A (en) 1984-04-11

Similar Documents

Publication Publication Date Title
US4132914A (en) Six-phase winding of electric machine stator
JPWO2013157115A1 (en) Stator winding of rotating electric machine
US3949253A (en) Electric motors
US3321653A (en) Alternating current electric motor rotor
US20100219788A1 (en) High phase order AC Machine with Short Pitch Winding
US6114790A (en) Sixteen and thirty two slot three phase induction motor winding
GB2175751A (en) Improvements in or relating to pole changeable, three phase windings
US5559385A (en) Stator of ac electric machine
JP3550847B2 (en) Armature winding pattern of rotating electric machine
Dudley et al. Connecting induction motors
JP2000350396A (en) Winding method of dynamo-electric machine and dynamo- electric machine
JPH0348741B2 (en)
US3299337A (en) Pole-changing, three-phase, alternating current, electric motors and generators
US2898534A (en) Induction motor
JPS5986445A (en) 3-phase armature winding
JPH0447551B2 (en)
US3049653A (en) Rotary electric machines
Fong et al. Two-speed single-winding salient-pole synchronous machines
Fong et al. Three-speed single-winding squirrel-cage induction motors
JPH0427782B2 (en)
JPS6216747Y2 (en)
JPS5953050A (en) Polyphase armature coil
JPH0340064Y2 (en)
JP2637103B2 (en) Armature winding
JPS6120220B2 (en)