JPS6321406A - Powdered fuel backfire inhibiting device - Google Patents
Powdered fuel backfire inhibiting deviceInfo
- Publication number
- JPS6321406A JPS6321406A JP16539286A JP16539286A JPS6321406A JP S6321406 A JPS6321406 A JP S6321406A JP 16539286 A JP16539286 A JP 16539286A JP 16539286 A JP16539286 A JP 16539286A JP S6321406 A JPS6321406 A JP S6321406A
- Authority
- JP
- Japan
- Prior art keywords
- fuel pipe
- fuel
- diameter
- substantially conical
- pulverized
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000446 fuel Substances 0.000 title claims abstract description 52
- 230000002401 inhibitory effect Effects 0.000 title 1
- 238000011144 upstream manufacturing Methods 0.000 claims abstract description 7
- 238000002485 combustion reaction Methods 0.000 claims description 24
- 230000002265 prevention Effects 0.000 claims description 15
- 230000007423 decrease Effects 0.000 claims description 6
- 239000004449 solid propellant Substances 0.000 claims description 2
- 239000003245 coal Substances 0.000 abstract description 48
- 239000000843 powder Substances 0.000 abstract description 12
- 230000000694 effects Effects 0.000 description 12
- 230000003111 delayed effect Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 239000011362 coarse particle Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 238000002309 gasification Methods 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 230000002269 spontaneous effect Effects 0.000 description 1
- 238000009827 uniform distribution Methods 0.000 description 1
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は粉砕燃料の燃焼装置に係り、とくに燃料を噴出
するフュエルパイプへの逆火防止とともに排ガス中の未
燃分を低減するに好適なボイラ装置に関する。[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a combustion device for pulverized fuel, and is particularly suitable for preventing flashback to a fuel pipe that injects fuel and reducing unburned content in exhaust gas. Regarding boiler equipment.
1970年代に起ったオイルショック以後、石油依存型
のエネルギ形態の見直しが始まり、石油を大量に消費し
ていた発電業界でも、これを機会に、石炭、ガス、原子
力へのエネルギ転換が計られている。その中でも1石炭
エネルギは埋蔵量が豊富で安価なことから現在量も利用
されている。After the oil crisis that occurred in the 1970s, a review of the oil-dependent energy format began, and even the power generation industry, which consumed large amounts of oil, took this as an opportunity to switch to coal, gas, and nuclear energy. ing. Among them, coal energy has abundant reserves and is inexpensive, so it is currently being utilized.
石炭の利用方法としては、従来の微粉炭燃焼に加えて、
COM、CWM、ガス化といった新しい方法が開発中で
ある。しかし、石炭を粉砕して、そのまま燃焼させる微
粉炭燃焼が現状では圧倒的に多い。In addition to conventional pulverized coal combustion, coal can be used by
New methods such as COM, CWM, and gasification are under development. However, pulverized coal combustion, in which coal is pulverized and combusted as is, is currently overwhelmingly popular.
このように多く利用されている微粉炭燃焼システムでは
、石炭はコールバンカからミルに送られ、粉砕され、微
粉炭となった後、搬送用空気と共にフュエルパイプによ
ってバーナへ送られる0通常は1台のミルで複数のバー
ナへ供給する場合が多い。In this widely used pulverized coal combustion system, coal is sent from a coal bunker to a mill, where it is pulverized and turned into pulverized coal, which is then sent to a burner along with conveying air through a fuel pipe. It is often supplied to multiple burners in a mill.
微粉炭燃焼は従来の油燃料と比べ燃焼性が悪いこと、ミ
ルを使用するために負荷変化への応答が悪いことなどが
上げられるが、最も大きな差はハンドリングにある。ま
ず、油燃料の場合はポンプで昇圧すれば、後は配管によ
って自由自在にバーナへ供給することができる。一方、
微粉炭の場合は搬送用の空気によって輸送されるため、
配管の曲がりが大きいと微粉炭が滞留したり、水平部が
長いと微粉炭が沈降したりする。この場合、自然発火に
よる火災の危険が生じる。Pulverized coal combustion has poor combustibility compared to conventional oil fuel, and because it uses a mill, it responds poorly to load changes, but the biggest difference lies in handling. First, in the case of oil fuel, once the pressure is increased with a pump, it can then be freely supplied to the burner via piping. on the other hand,
In the case of pulverized coal, it is transported by air, so
If the piping is too curved, the pulverized coal will accumulate, and if the pipe is long horizontally, the pulverized coal will settle. In this case, there is a risk of fire due to spontaneous combustion.
このような、微粉炭のハンドリング面における問題に対
しては種々の対策が施されている。その一つに、フュエ
ルパイプ内に設けた微粉炭逆火防止装置がある。Various measures have been taken to deal with such problems in handling pulverized coal. One of these is a pulverized coal flashback prevention device installed inside the fuel pipe.
〔発明=タミが解決しようとする問題点〕微粉炭逆火防
止装置を第2図によって説明する。[Problem to be solved by TAMI] The pulverized coal flashback prevention device will be explained with reference to FIG.
ミルから輸送されてきた微粉炭はフュエルパイプrによ
ってエアレジスタ2に入る。一方、燃焼用空気はウィン
ドボックス3に入りエアレジスタ2に導かれる。そして
、これらは炉壁4を通って火炉5内に噴出し、着火し、
火炎を形成する。この時、搬送用空気に乗った微粉炭6
は微粉炭逆火防止装置7を通ってエアレジスタ2に入る
が、既に述べたようにフュエルパイプ1等の配管に水平
部分があると微粉炭6が堆積し易く、火炉5側からの熱
を受けると、火炎がフュエルパイプ1内を伝播し、大火
災に至る可能性がある。そこで、火炎伝播速度以上にな
る絞りを設ければこの逆火は防止できる由である。それ
が、逆火防止装置7である。最初からフュエルパイプ1
径を小さくしておけば良いように思われるが、その場合
には火炎がバーナに着かず、吹き飛び状態になり、燃焼
側で一不都合が生じる。Pulverized coal transported from the mill enters the air register 2 through a fuel pipe r. On the other hand, combustion air enters the wind box 3 and is guided to the air register 2. Then, these are ejected through the furnace wall 4 into the furnace 5, ignited,
form a flame. At this time, the pulverized coal 6 on the conveying air
The pulverized coal passes through the pulverized coal flashback prevention device 7 and enters the air register 2. However, as already mentioned, if there is a horizontal section in the piping such as the fuel pipe 1, the pulverized coal 6 tends to accumulate and prevents heat from the furnace 5 side. If this occurs, the flames may propagate within the fuel pipe 1, potentially resulting in a major fire. Therefore, this backfire can be prevented by providing an aperture that exceeds the flame propagation speed. That is the flashback prevention device 7. Fuel pipe 1 from the beginning
It would seem that it would be better to make the diameter smaller, but in that case the flame would not reach the burner and would be blown off, causing an inconvenience on the combustion side.
この逆火防止装置7は別の機能も有している。This flashback prevention device 7 also has another function.
既に説明したように、配管中に曲がり、水平部があると
微粉炭と搬送用空気の分離や、偏流が生じる。これを防
止する役目をこの逆火防止装置は兼ねており、安定な燃
焼を行うために絶対必要なものである。As already explained, if there are bends or horizontal sections in the piping, separation of pulverized coal and conveying air and uneven flow will occur. The flashback prevention device also serves to prevent this, and is absolutely necessary for stable combustion.
しかし、従来の逆火防止装置は第2図のようにフュエル
パイプ1の内側に絞りを設けたものが多い、この方法に
よると、ミルから輸送されてきた、濃度分布にムラを持
ちしかも偏流を起こした微粉炭流も一担は整流されるが
、拡がり部で再び微粉炭濃度にムラを生じる。つまり絞
り部を出る際、はく離を起こさない程度の絞り部の下流
側の角度によって、搬送用空気はほぼ均一に拡がるが、
しかし、微粉炭は空気に比べ比重が2,000 もあ
るため、外側には拡がらず、逆に絞り上流側の効果のた
めに中央へ寄せられてしまう、この傾向は、慣性力の大
きい粗粉程その程度が著しくなる。However, most of the conventional flashback prevention devices have a restriction installed inside the fuel pipe 1 as shown in Figure 2. According to this method, the concentration distribution of the fuel transported from the mill is uneven and the flow is uneven. The generated pulverized coal flow is partially rectified, but the pulverized coal concentration becomes uneven again at the widening part. In other words, when leaving the constriction part, the conveying air is spread almost uniformly by adjusting the angle on the downstream side of the constriction part to an extent that does not cause separation.
However, since pulverized coal has a specific gravity of 2,000 compared to air, it does not spread outwards, but instead gathers toward the center due to the upstream effect of the throttle. This tendency is caused by coarse coal with a large inertial force. The more powdery the powder, the more noticeable it becomes.
粗粉は燃焼を完結するまでに微粉よりも長い時間を要す
が、火炎は外側から内部に進行して行くため、微粉に比
べ着火開始が遅れ、十分な燃焼時間が確保できない。そ
のため、ボイラ排ガス中には粗粉による未燃分の量が増
え、燃焼効率を著しく低下させている。Coarse powder takes longer to complete combustion than fine powder, but since the flame progresses from the outside to the inside, the start of ignition is delayed compared to fine powder, and sufficient combustion time cannot be secured. As a result, the amount of unburned particles due to coarse particles increases in the boiler exhaust gas, significantly reducing combustion efficiency.
この低下に対する従来技術としては第3図に示すように
内側に略円錐状物8を設けて、この燃焼効率の低下を緩
和しようとしたものもあるが、このような流路にすると
、微粉炭濃度のムラを無くす整流作用が低下するため、
あまり未燃分の量を減らす効果は上がっていない。As a conventional technique for dealing with this decrease, as shown in FIG. Because the rectifying effect that eliminates concentration unevenness decreases,
It has not been very effective in reducing the amount of unburned gas.
以上のように、従来技術による逆火防止装置では燃焼性
の悪い粗粉が中央に集まり火炎中での着火が遅れるため
排ガス中の未燃分を減らすことができない。As described above, in the flashback prevention device according to the conventional technology, coarse powder with poor combustibility gathers in the center and ignition in the flame is delayed, so that it is not possible to reduce the unburned content in the exhaust gas.
上記欠点を解消するために前記絞り部の位置と前記略円
錐状物の位置の相互関係をうまく調整すればよいことを
実験によって見い出した。即ち、絞り部の最小内径位置
と略円錐部の最大直径位置の軸方向距離ΔLをフュエル
パイプの直径りに対して
0.25<ΔL/D<1.0
とすれば、排ガス中の未燃分を減らすことができる(第
6図参照)。Through experiments, it has been found that in order to eliminate the above-mentioned drawbacks, the mutual relationship between the position of the constricted portion and the position of the substantially conical object can be appropriately adjusted. That is, if the axial distance ΔL between the minimum inner diameter position of the throttle part and the maximum diameter position of the substantially conical part is 0.25<ΔL/D<1.0 with respect to the diameter of the fuel pipe, then (See Figure 6).
微粉濃度にムラを持ち偏流なども起している微粉炭流は
、絞り部の前方において外側から絞られることによって
均一化される。そして、絞り部後方の拡大部に入ると略
円錐状物8によって、外側へと押しやられる。この結果
、空気よりも微粉炭の方が外側に集中し、特に、粗粉は
ど外側に集中する。従ってフュエルパイプ1出口では周
方向には均一で半径方向には外側において微粉炭濃度の
高い分布が得られる。そして、外側に集中している粗粉
から着火が始まるので十分な燃焼時間が確保でき、排ガ
ス中の未燃分を低減させることができるものと考えられ
る。The pulverized coal flow, which has uneven concentration of fine particles and drifts, is made uniform by being squeezed from the outside in front of the throttle section. Then, when it enters the enlarged part behind the constriction part, it is pushed outward by the substantially conical object 8. As a result, pulverized coal is more concentrated on the outside than air, and in particular, coarse powder is concentrated on the outside. Therefore, at the outlet of the fuel pipe 1, a uniform distribution in the circumferential direction and a high concentration of pulverized coal on the outside in the radial direction can be obtained. Since ignition starts from the coarse powder concentrated on the outside, sufficient combustion time can be ensured, and it is thought that the amount of unburned matter in the exhaust gas can be reduced.
本発明の数値を確認するために、小型の50kg/hr
のバーナでテストした所、未燃分が従来より10%低下
した。しかも、低NOx燃焼に必要な排ガス中のNOx
値は変化することがなかった。In order to confirm the numerical values of the present invention, a small 50 kg/hr
When tested with a burner, the unburned content was 10% lower than before. Furthermore, NOx in exhaust gas is necessary for low NOx combustion.
The value did not change.
その様子を第6図に示す。第6図の横軸は第1図に示す
ように、逆火防止装置である絞りが最小となる位置L□
、と略円錐構造物8が最大径となる位置L2との差ΔL
をフュエルパイプ径りで割って無次元化したものである
。つまり、略円錐状物8のズレを意味する。一方、縦軸
はフュエルパイプ噴出口でサンプルした排ガス中のNO
x′a度と灰中未燃分量を示す、いずれも比較のために
ΔL/D=O即ち従来タイプのものを100%にして相
対的な表示にしである。ΔL/Dを増加させても、排ガ
ス中のNoxtA度には殆んど変化が見られないのに対
して、未燃分はわずかな変化で急激に低下している。た
だし、その後は逆に増加しているのは、既に述べた原理
から、ΔL/Dが大きくなり過ぎると本発明の作用が低
下するためである。The situation is shown in FIG. As shown in Fig. 1, the horizontal axis in Fig. 6 is the position L□ where the throttle, which is a flashback prevention device, is at its minimum.
, and the position L2 where the substantially conical structure 8 has its maximum diameter ΔL
is made dimensionless by dividing by the fuel pipe diameter. In other words, it means the displacement of the substantially conical object 8. On the other hand, the vertical axis shows NO in the exhaust gas sampled at the fuel pipe outlet.
The x'a degrees and the amount of unburned matter in the ash are shown in relative terms for comparison, with ΔL/D=O, that is, the conventional type being taken as 100%. Even if ΔL/D is increased, there is almost no change in the NoxtA degree in the exhaust gas, whereas the unburned content rapidly decreases with only a slight change. However, the reason why it increases on the contrary after that is because, based on the principle already mentioned, if ΔL/D becomes too large, the effect of the present invention will deteriorate.
尚、大型の事業用ボイラでもNOx値を増加させること
なく、未燃分の量を10%程度、低減できると思われる
。It is believed that even in large commercial boilers, the amount of unburned matter can be reduced by about 10% without increasing the NOx value.
本発明になる実施例に係る燃焼システム全体構成を第4
図に示す。石炭11はコールバンカ12からフィーダ1
3に落下し、ミル14へと送られる。粉砕された微粉炭
は搬送用空気によってフュエルパイプ1から各バーナへ
と送られる。一方、燃焼用空気はファン15によってウ
ィンドボックス3に送られ各バーナに分配される。そし
て炉壁4から火炉5内にそれぞれ噴出し、燃焼し、排ガ
ス64となって図示しない煙突から出て行く。The overall configuration of the combustion system according to the embodiment of the present invention is shown in the fourth example.
As shown in the figure. Coal 11 is transferred from coal bunker 12 to feeder 1
3 and is sent to Mill 14. The crushed pulverized coal is sent from the fuel pipe 1 to each burner by conveying air. On the other hand, combustion air is sent to the wind box 3 by the fan 15 and distributed to each burner. Then, they are ejected from the furnace wall 4 into the furnace 5, burned, and exit as exhaust gas 64 from a chimney (not shown).
尚、ファン15から送り出された空気61は、一部は燃
焼用空気62として流れ、一部は搬送用空気63として
流れて微粉炭6流を形成する。Note that a part of the air 61 sent out from the fan 15 flows as combustion air 62 and a part flows as transport air 63 to form a flow of pulverized coal 6 .
次に、本発明を実施したバーナを第5図に示す。Next, FIG. 5 shows a burner embodying the present invention.
搬送用空気に乗った微粉炭はフュエルパイプ1を通り、
ウィンドボックス3の入口で絞り部7によって内側に絞
られ1次に本発明になる略円錐状物8によって外側に拡
げられ、フュエルパイプ1から火炉5に噴出する。一方
、燃焼用空気はウィンドボックス3からエアレジスタ2
に供給され、炉壁4から火炉5側に噴出される。火炉に
噴出した微粉炭と燃焼用空気は徐々に混合を開始し、火
炉からの熱を受けて着火し、燃焼を開始する。The pulverized coal carried by the conveying air passes through the fuel pipe 1,
At the inlet of the wind box 3, the fuel is squeezed inward by the constrictor 7, first expanded outward by the substantially conical member 8 of the present invention, and then ejected from the fuel pipe 1 into the furnace 5. On the other hand, combustion air is supplied from the wind box 3 to the air register 2.
and is ejected from the furnace wall 4 to the furnace 5 side. The pulverized coal and combustion air ejected into the furnace gradually begin to mix, receive heat from the furnace, ignite, and begin combustion.
尚、フュエルパイプ1の中央の油用フユエルパイプ16
は、微粉炭燃焼を開始するまでのウオームアツプ用の油
を供給するための配管であり、微粉炭燃焼中は油は停止
している。In addition, the fuel pipe 16 for oil in the center of the fuel pipe 1
is a pipe for supplying warm-up oil until pulverized coal combustion starts, and the oil is stopped during pulverized coal combustion.
本実施例の作用効果について説明する。前記第5図のΔ
L/Dの値は0.5である。まず絞り部7によって、微
粉炭及び搬送用空気が外側から内側に絞られる。その結
果、ミル14からバーナへ至るまでの配管中で生じた。The effects of this embodiment will be explained. Δ in Fig. 5 above
The value of L/D is 0.5. First, the pulverized coal and conveying air are squeezed from the outside to the inside by the throttle section 7. As a result, it occurred in the piping from the mill 14 to the burner.
微粉炭濃度のムラ及び偏流は解消される。Unevenness and drift in pulverized coal concentration are eliminated.
次に、この絞り7の下流に設けた。略円錐状物8によっ
て、微粉炭及び搬送用空気は外側に押しやられる。その
後、略円錐状物8の径は再び緩やかに小さくなるので、
慣性力の小さい搬送用空気はツユエルバイブ1内に均一
化していく。しかし、微粉炭は慣性力が空気に比べ2,
000倍程度あるため、外側に押しつけられたまま噴出
口へ向う。Next, it was provided downstream of this aperture 7. The substantially conical object 8 forces the pulverized coal and the conveying air to the outside. After that, the diameter of the substantially conical object 8 gradually decreases again, so
The conveying air having a small inertial force becomes uniform within the Tsuyuel Vibe 1. However, the inertia of pulverized coal is 2,
Since it is about 1,000 times larger, it heads toward the spout while being pressed outward.
特に、粒径の大きい粗粉は一層その傾向が大きい。In particular, coarse powder with a large particle size has this tendency even more.
本実施例の効果を確認するために、非燃焼時に。In order to confirm the effect of this example, during non-combustion.
フュエルパイプ1噴出口で微粉炭濃度を測定した結果を
示したのが、第8図である。縦軸はフュエルパイプ1の
半径方向位置をパイプ半径で割ったもので、0が中心、
1がフュエルパイプ径に相当する。横軸はサンプリング
した微粉炭濃度を最大微粉濃度で割った無次元量である
。0は微粉炭が無い部分、1が最大濃度である。第8図
においてBは第2図に示した従来型の場合を示し、Aは
第5図の場合を示す。FIG. 8 shows the results of measuring the pulverized coal concentration at the fuel pipe 1 outlet. The vertical axis is the radial position of fuel pipe 1 divided by the pipe radius, with 0 being the center,
1 corresponds to the fuel pipe diameter. The horizontal axis is a dimensionless quantity obtained by dividing the sampled pulverized coal concentration by the maximum pulverized concentration. 0 is the area where there is no pulverized coal, and 1 is the maximum concentration. In FIG. 8, B shows the case of the conventional type shown in FIG. 2, and A shows the case of FIG. 5.
第8図から明らかなように、従来型の場合には微粉濃度
の最大位置がフュエルパイプ1の中央にあり、逆火防止
装置の絞り効果によって微粉が中央に集まっているのが
判る。一方1体実施例になるBの場合には、反対に、最
大微粉濃度となる位置が外側になっており、中央は濃度
が低くなっている。As is clear from FIG. 8, in the case of the conventional type, the maximum concentration of fine powder is at the center of the fuel pipe 1, and it can be seen that the fine powder is concentrated at the center due to the throttling effect of the flashback prevention device. On the other hand, in the case of B, which is a one-piece embodiment, on the contrary, the position where the fine powder concentration is maximum is on the outside, and the concentration is low in the center.
この結果より、本実施例の効果が示された。This result demonstrated the effect of this example.
第7図に他の実施例を示す。第5図の例と異なる点は、
略円錐状物8がスリーブ21に取り付けられており、フ
ュエルパイプ軸方向にスライドするようになっているこ
とである。略円錐状物を絞り部に置けば従来例(第3図
)と同様になるが、スリーブ21を火炉側に押しこんで
行くと本発明に係るΔL/Dの数値をとることができる
。このスリーブ21はフュエルパイプ1から伸びる外筒
22内を移動し、ストッパによって固定される。FIG. 7 shows another embodiment. The difference from the example in Figure 5 is that
A substantially conical member 8 is attached to the sleeve 21 and is configured to slide in the axial direction of the fuel pipe. If a substantially conical object is placed in the constriction part, it will be similar to the conventional example (FIG. 3), but if the sleeve 21 is pushed into the furnace side, the value of ΔL/D according to the present invention can be obtained. This sleeve 21 moves within an outer cylinder 22 extending from the fuel pipe 1 and is fixed by a stopper.
また、他の実施例として、略円錐状物の形を流線形にし
たものなど考えられるが、その効果は同じである。In addition, as another embodiment, the shape of the substantially conical object may be streamlined, but the effect is the same.
本発明の粉砕燃料逆火防止装置によれば、フュエルパイ
プ内への逆火を防止できると同時に排ガス中の未燃分の
量が増加するのを抑制できる。According to the pulverized fuel flashback prevention device of the present invention, flashback into the fuel pipe can be prevented, and at the same time, an increase in the amount of unburned components in the exhaust gas can be suppressed.
第1図は第5図の要部拡大図、第2図は従来バーナの側
断面図、第3図は従来バーナの他の例を示す側断面図で
ある。第4図は本発明を実施する微粉炭焚ボイラの系統
図、第5図は本発明を実施したバーナの側断面図、第6
図は本発明の効果を示すためのグラフをあられした図、
第7図は他の実施例を示すバーナの側断面図、第8図は
本発明の効果を示す微粉炭濃度測定結果を示す図である
。
1・・・フュエルパイプ。
5・・・火炉。
6・・・粉砕された固体燃料(微粉炭)、7・・・絞り
部。
8・・・略円錐状物、
63・・・搬送用空気。FIG. 1 is an enlarged view of the main part of FIG. 5, FIG. 2 is a side sectional view of a conventional burner, and FIG. 3 is a side sectional view showing another example of the conventional burner. Fig. 4 is a system diagram of a pulverized coal-fired boiler embodying the present invention, Fig. 5 is a side sectional view of a burner embodying the present invention, and Fig. 6
The figure is a graph showing the effects of the present invention.
FIG. 7 is a side sectional view of a burner showing another embodiment, and FIG. 8 is a diagram showing pulverized coal concentration measurement results showing the effects of the present invention. 1...Fuel pipe. 5... Furnace. 6... Crushed solid fuel (pulverized coal), 7... Squeezing section. 8... Substantially conical object, 63... Conveying air.
Claims (4)
噴出するフュエルパイプを有する燃焼装置において、 フュエルパイプの噴出口の上流側にフュエルパイプの内
径が上流から下流に向って徐々に小さくなり最小内径と
なった後に除々に大きくなる絞り部を設け、該絞り部の
下流側中央位置に上流から下流に向って徐々に直径が大
きくなり最大直径となった後に徐々に小さくなる略円錐
状物を設け、フュエルパイプの軸方向における前記絞り
部の最小内径位置と前記略円錐状部の最大直径位置との
距離ΔLがフュエルパイプの直径Dに対して0.25<
ΔL/D<1.0 の関係を有するようにしたことを特徴とする粉砕燃料逆
火防止装置。(1) In a combustion device that has a fuel pipe that injects pulverized solid fuel into the furnace together with conveying air, there is a pipe on the upstream side of the fuel pipe's jet opening, where the inner diameter of the fuel pipe gradually decreases from upstream to downstream. A substantially conical object is provided with a constricted portion that gradually increases in size after reaching a minimum inner diameter, and is located at a central position on the downstream side of the constricted portion and whose diameter gradually increases from upstream to downstream and gradually decreases after reaching the maximum diameter. is provided, and the distance ΔL between the minimum inner diameter position of the constricted part and the maximum diameter position of the substantially conical part in the axial direction of the fuel pipe is 0.25< with respect to the diameter D of the fuel pipe.
A pulverized fuel flashback prevention device characterized by having a relationship of ΔL/D<1.0.
設けられている油用フュエルパイプの外径が上流から下
流に向って変化することにより形成されている粉砕燃料
逆火防止装置。(2) In claim 1, the substantially conical object is formed by the outer diameter of the oil fuel pipe provided coaxially at the center of the fuel pipe changing from upstream to downstream. Has pulverized fuel flashback prevention device.
設けられている油用フュエルパイプの外周上をスライド
可能に覆っている円筒状スリーブの外径が上流から下流
に向って変化することにより形成され、該円筒状スリー
ブはフュエルパイプの外部からスライドできるように構
成されている粉砕燃料逆火防止装置。(3) In claim 1, the substantially conical object is an outer part of a cylindrical sleeve that slidably covers the outer periphery of an oil fuel pipe that is coaxially provided at an internal center position of the fuel pipe. A pulverized fuel flashback prevention device having a cylindrical sleeve whose diameter changes from upstream to downstream and configured to be slidable from the outside of a fuel pipe.
れか1項において、略円錐状物は、直径の変化が曲線的
になされ全体として流線形をなしている粉砕燃料逆火防
止装置。(4) In any one of claims 1, 2, or 3, the substantially conical object is a pulverized fuel inverter whose diameter changes in a curved manner and has a streamlined shape as a whole. Fire prevention device.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16539286A JPH0769043B2 (en) | 1986-07-14 | 1986-07-14 | Ground fuel flashback prevention device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16539286A JPH0769043B2 (en) | 1986-07-14 | 1986-07-14 | Ground fuel flashback prevention device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6321406A true JPS6321406A (en) | 1988-01-29 |
JPH0769043B2 JPH0769043B2 (en) | 1995-07-26 |
Family
ID=15811527
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP16539286A Expired - Lifetime JPH0769043B2 (en) | 1986-07-14 | 1986-07-14 | Ground fuel flashback prevention device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0769043B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04214102A (en) * | 1990-03-07 | 1992-08-05 | Hitachi Ltd | Pulverized coal boiler, pulverized coal boiler system, and pulverized coal burner |
EP0809068A2 (en) | 1996-05-24 | 1997-11-26 | Babcock-Hitachi Kabushiki Kaisha | Pulverized coal burner |
EP2267368A1 (en) * | 2008-03-06 | 2010-12-29 | IHI Corporation | Oxygen combustion boiler and pulverized coal burner |
-
1986
- 1986-07-14 JP JP16539286A patent/JPH0769043B2/en not_active Expired - Lifetime
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04214102A (en) * | 1990-03-07 | 1992-08-05 | Hitachi Ltd | Pulverized coal boiler, pulverized coal boiler system, and pulverized coal burner |
EP0809068A2 (en) | 1996-05-24 | 1997-11-26 | Babcock-Hitachi Kabushiki Kaisha | Pulverized coal burner |
US5937770A (en) * | 1996-05-24 | 1999-08-17 | Babcock-Hitachi Kabushiki Kaisha | Pulverized coal burner |
EP2267368A1 (en) * | 2008-03-06 | 2010-12-29 | IHI Corporation | Oxygen combustion boiler and pulverized coal burner |
CN101960219A (en) * | 2008-03-06 | 2011-01-26 | 株式会社Ihi | The coal burner of oxygen combustion boiler |
EP2267368A4 (en) * | 2008-03-06 | 2012-06-06 | Ihi Corp | Oxygen combustion boiler and pulverized coal burner |
US9810425B2 (en) | 2008-03-06 | 2017-11-07 | Ihi Corporation | Pulverized coal burner for oxyfuel combustion boiler |
Also Published As
Publication number | Publication date |
---|---|
JPH0769043B2 (en) | 1995-07-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100515013B1 (en) | Solid fuel burner, burning method using the same, combustion apparatus and method of operating the combustion apparatus | |
JP4150968B2 (en) | Solid fuel burner and combustion method of solid fuel burner | |
US7553153B2 (en) | Burner and combustion method for solid fuels | |
CZ20021480A3 (en) | Burner for solid fuels, combustion plant, combustion method using the solid fuel burner, and operation method of the combustion plant | |
US4471703A (en) | Combustion system and method for a coal-fired furnace utilizing a louvered low load separator-nozzle assembly and a separate high load nozzle | |
JPS6387508A (en) | Pulverized coal igniting burner | |
JPH10220707A (en) | Burner for powdery solid fuel and combustion apparatus therewith | |
JPH11281010A (en) | Solid fuel combustion burner and solid fuel combustor | |
JP3830582B2 (en) | Pulverized coal combustion burner | |
JP2002115810A (en) | LOW NOx SOLID FUEL COMBUSTION APPARATUS | |
US5765488A (en) | Cyclone furnace combustion system and method utilizing a coal burner | |
JPS6321406A (en) | Powdered fuel backfire inhibiting device | |
JPH08219415A (en) | Burner for solid fuel and pulverized coal firing equipment | |
JP2954656B2 (en) | Pulverized coal burner | |
JP2954628B2 (en) | Pulverized coal burner | |
JP3765429B2 (en) | Pulverized coal burner | |
GB2513389A (en) | Nozzle for power station burner and method for the use thereof | |
JP2654386B2 (en) | Combustion equipment | |
JP2519923B2 (en) | Pulverized coal combustion equipment | |
JPH11148610A (en) | Solid fuel combustion burner and solid fuel combustion apparatus | |
JP2740201B2 (en) | Pulverized coal burner | |
JP2776575B2 (en) | Pulverized coal combustion equipment | |
WO2023204103A1 (en) | Powder fuel burner | |
JP3899457B2 (en) | Solid fuel burner and combustion method of solid fuel burner | |
JP7349308B2 (en) | Solid fuel burners and boilers |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |