JP2740201B2 - Pulverized coal burner - Google Patents

Pulverized coal burner

Info

Publication number
JP2740201B2
JP2740201B2 JP63220461A JP22046188A JP2740201B2 JP 2740201 B2 JP2740201 B2 JP 2740201B2 JP 63220461 A JP63220461 A JP 63220461A JP 22046188 A JP22046188 A JP 22046188A JP 2740201 B2 JP2740201 B2 JP 2740201B2
Authority
JP
Japan
Prior art keywords
pulverized coal
flow
concentration
burner
coal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63220461A
Other languages
Japanese (ja)
Other versions
JPH0268405A (en
Inventor
彰 馬場
邦夫 沖浦
邦勝 吉田
Original Assignee
バブコツク日立株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by バブコツク日立株式会社 filed Critical バブコツク日立株式会社
Priority to JP63220461A priority Critical patent/JP2740201B2/en
Publication of JPH0268405A publication Critical patent/JPH0268405A/en
Application granted granted Critical
Publication of JP2740201B2 publication Critical patent/JP2740201B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/34Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery

Landscapes

  • Feeding And Controlling Fuel (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、微粉炭焚ボイラに用いられる微粉炭燃焼装
置に係り、特に難燃性燃料を使用したり、負荷変化運用
をする微粉炭焚ボイラの安定燃焼に好適な微粉炭バーナ
に関するものである。
Description: TECHNICAL FIELD The present invention relates to a pulverized coal combustion device used for a pulverized coal-fired boiler, and particularly to a pulverized coal combustion device using a flame-retardant fuel or performing load change operation. The present invention relates to a pulverized coal burner suitable for stable combustion of a boiler.

〔従来の技術〕[Conventional technology]

近年、油燃料の価格の不安定性から、微粉炭焚ボイラ
の需要が急速に増加している。微粉炭焚ボイラにおいて
は、主燃料の微粉炭に加えて、起動用に補助燃料として
重油、点火用に軽油という具合に、3種類の燃料が一般
的に使われている。微粉炭焚ボイラの低負荷時に使用さ
れる補助燃料は、着火性の良い軽油、重油が主流であ
り、その使用比率は低いものの、近年、発電用ボイラは
中間負荷運用が多く、点火、起動の頻度も以前と比較し
て高くなってきており、そのために補助燃料費用の主燃
料に対する比率も増加している。
In recent years, demand for pulverized coal-fired boilers has been rapidly increasing due to instability of oil fuel prices. In a pulverized coal-fired boiler, three types of fuels are generally used, such as heavy oil as an auxiliary fuel for starting and light oil for ignition, in addition to pulverized coal as a main fuel. Auxiliary fuels used at low loads of pulverized coal-fired boilers are mainly light oil and heavy oil with good ignitability, and their usage ratio is low. The frequency is also higher than before, and the ratio of supplementary fuel costs to main fuel is also increasing.

第3図に従来の微粉炭焚ボイラの概略系統図を示す。 FIG. 3 shows a schematic system diagram of a conventional pulverized coal-fired boiler.

石炭バンカ1からの石炭は石炭供給管2、石炭フィー
ダ3、石炭供給管4を経てミル5へ供給され、ミル5で
微粉炭に粉砕される。この微粉炭は、微粉炭供給管6、
微粉炭濃縮器7、微粉炭希薄側配管8、微粉炭濃縮側配
管9より微粉炭バーナ10を経てボイラ11に供給される。
Coal from the coal bunker 1 is supplied to a mill 5 via a coal supply pipe 2, a coal feeder 3, and a coal supply pipe 4, and is pulverized by the mill 5 into pulverized coal. This pulverized coal is supplied to the pulverized coal supply pipe 6,
Pulverized coal is supplied to a boiler 11 from a pulverized coal concentrator 7, a pulverized coal lean side pipe 8, and a pulverized coal concentrated side pipe 9 via a pulverized coal burner 10.

一方、ボイラ11の排ガスは熱交換器12で空気と熱交換
し、系外へ排出される。他方、燃料用空気は燃料用空気
フアン13によって燃料用空気配管14より流量制御弁15を
経てボイラ11へ供給される。
On the other hand, the exhaust gas from the boiler 11 exchanges heat with air in the heat exchanger 12, and is discharged outside the system. On the other hand, the fuel air is supplied from the fuel air pipe 14 to the boiler 11 via the flow control valve 15 by the fuel air fan 13.

また、燃料用空気の一部は燃料用空気フアン13から1
次空気フアン16によって1次空気配管18より流量制御弁
17を経てミル5へ供給され、微粉炭搬送用空気としてボ
イラ11に供給される。
A part of the fuel air is supplied from the fuel air fan 13 to 1.
Flow control valve from primary air piping 18 by primary air fan 16
The mixture is supplied to the mill 5 via the pipe 17 and supplied to the boiler 11 as pulverized coal transport air.

以上の説明は石炭、排ガス、燃料用空気の一般的な流
れの説明であるが、従来、ボイラ11に用いられている微
粉炭燃焼システムには、分級機が内蔵されている微粉砕
機5(ミル)を用いて粉砕された石炭を微粉炭バーナ10
に直接供給する燃焼システムが採用されている。この燃
焼システムでは、ミル5に供給される原炭の乾燥、ミル
5の内部における分級及び微粉炭バーナ10への微粉炭の
搬送用として加熱された1次空気を導入する。したがっ
て、原炭の水分、粉砕性、燃焼性に応じた1次空気量及
び空気温度が決定される。
Although the above description is about the general flow of coal, exhaust gas, and fuel air, the pulverized coal combustion system conventionally used in the boiler 11 has a pulverizer 5 ( Mill) pulverized coal into pulverized coal burner 10
A combustion system that feeds directly to In this combustion system, heated primary air is introduced for drying raw coal supplied to the mill 5, classifying inside the mill 5, and transporting the pulverized coal to the pulverized coal burner 10. Therefore, the primary air amount and the air temperature are determined according to the moisture, crushability, and combustibility of the raw coal.

第4図にミル負荷に対するミルから微粉炭バーナに供
給される微粉炭(C)と空気(A)の重量比(以下C/A
と称す)を示す。この図から、ミル負荷の低下に従って
C/Aが低くなることが分かる。これは微粉炭の搬送、分
級のためのミル特有の現象である。
Fig. 4 shows the weight ratio of pulverized coal (C) and air (A) supplied from the mill to the pulverized coal burner with respect to the mill load (hereinafter C / A).
). From this figure, as the mill load decreases
It turns out that C / A becomes low. This is a phenomenon peculiar to a mill for conveying and classifying pulverized coal.

第5図に石炭の着火安定性に関するデータを示す。同
図の横軸は、石炭中の固定炭素と揮発分との重量比であ
る燃料比(以下FRと称す)を示している。微粉炭焚ボイ
ラ等に一般的に使用されている石炭のFRは、0.8〜2.5程
度であり、FRが2.5以上の高燃料比炭及びFRが4以上の
無煙炭のようにFRが高い石炭は、C/Aを高くしないと安
定に着火できない。このため第4図に示す特性を持つミ
ルを使用すると、FRが高い微粉炭を使用する場合や低負
荷域でC/Aの低い希薄状態では、着火が不安定になり、
ボイラの安全運転上問題がある。
FIG. 5 shows data on the ignition stability of coal. The horizontal axis of the figure shows the fuel ratio (hereinafter referred to as FR), which is the weight ratio between fixed carbon and volatile matter in coal. The FR of coal generally used in pulverized coal-fired boilers is about 0.8 to 2.5, and coal with high FR such as high fuel ratio coal with FR of 2.5 or more and anthracite with FR of 4 or more is: Unless C / A is high, stable ignition cannot be achieved. Therefore, when a mill having the characteristics shown in Fig. 4 is used, ignition becomes unstable when pulverized coal with a high FR is used or in a lean state with a low C / A in a low load range.
There is a problem in safe driving of the boiler.

この対策として、ミルからの低C/A流体を、慣性力等
を利用することで高C/A流体(高微粉濃度)と低C/A流体
(低微粉濃度)に分岐し、このうち高C/A流体を微粉炭
バーナでの安定燃焼に用いる構成とすることが有効であ
る。
As a countermeasure, the low C / A fluid from the mill is branched into a high C / A fluid (high fine powder concentration) and a low C / A fluid (low fine powder concentration) by using inertia force, etc. It is effective to adopt a configuration in which C / A fluid is used for stable combustion in a pulverized coal burner.

第6図は、この考え方に基づく従来例を示したもの
で、石炭供給管4と1次空気配管18はミル5に接続さ
れ、さらにミル5からの微粉炭供給管6にサイクロン分
離器7が接続されている。サイクロン分離器7におい
て、慣性力で高C/Aになった側の流体を高濃度側配管9
より図示していない濃厚バーナに供給し、一方、低C/A
側の流体を低濃度側配管8より図示していない希薄側バ
ーナに供給する。
FIG. 6 shows a conventional example based on this concept. The coal supply pipe 4 and the primary air pipe 18 are connected to the mill 5, and the cyclone separator 7 is further connected to the pulverized coal supply pipe 6 from the mill 5. It is connected. In the cyclone separator 7, the fluid on the side with high C / A due to inertia force is transferred to the high concentration side pipe 9.
Supply to a thicker burner not shown, while low C / A
Is supplied to the lean burner (not shown) from the low concentration pipe 8.

ここで第7図(a),(b)は、第6図のサイクロン
分離器7における出口管径と限界粒子径及び、捕集効率
の関係を標準型サイクロンの寸法及び操作条件を基に算
出したものである。例えば、実機の微粉炭バーナとして
5t/hの微粉炭量を考えると、サイクロン分離器7の出口
管径は670mm程度となり、第7図(a)より限界粒子径
が約25μmとなる。微粉炭の粒径分布を200メツシユパ
ス90wt%で分布指数n=2とすると捕集効率は第7図
(b)中の部分分級効率曲線より55%にも低下する。
Here, FIGS. 7 (a) and 7 (b) show the relationship between the outlet pipe diameter, the critical particle diameter, and the collection efficiency in the cyclone separator 7 of FIG. 6, based on the dimensions and operating conditions of the standard cyclone. It was done. For example, as an actual pulverized coal burner
Considering the pulverized coal amount of 5 t / h, the outlet pipe diameter of the cyclone separator 7 is about 670 mm, and the limit particle diameter is about 25 μm from FIG. 7 (a). When the particle size distribution of the pulverized coal is 200 wt% and the distribution index is n = 2, the trapping efficiency is reduced to 55% from the partial classification efficiency curve in FIG. 7 (b).

したがって、このサイクロン分離器によっては単に気
流が2分割されるだけとなり、濃縮することはできな
い。
Therefore, this cyclone separator merely divides the gas stream into two and cannot concentrate the gas stream.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

従来技術としてサイクロン方式を使用した場合には、
サイクロン分離器7の捕集効率が高いときには効果があ
るが、難燃性の高燃料比炭を使用した場合や、C/Aが低
下する低負荷時の対策や、装置の大型化等による効率の
低下については考慮されておらず、実用に際してはC/A
が低下した場合には、火炎の安定化が保てず、火炎の吹
き飛びにより未燃分が増加する等の問題があった。
When using the cyclone method as a conventional technology,
This is effective when the collection efficiency of the cyclone separator 7 is high. However, when using high-fuel-grade coal with flame retardancy, measures at low load where C / A is reduced, and efficiency due to upsizing of the equipment, etc. Is not considered, and in practical use C / A
In the case where the temperature decreases, there is a problem that the flame cannot be stabilized and the unburned portion increases due to the blow-off of the flame.

また既設の微粉炭焚ボイラを高燃料比炭を主燃料とす
る微粉炭焚ボイラに改造する場合は困難なことが多い。
In addition, it is often difficult to convert an existing pulverized coal-fired boiler to a pulverized coal-fired boiler that uses high-fuel-ratio coal as its main fuel.

本発明はかかる従来の欠点を解消しようとするもの
で、その目的とするところは、低負荷時から高負荷時ま
で安定燃焼させることができる微粉炭バーナを提供する
にある。
An object of the present invention is to provide a pulverized coal burner capable of stably burning from a low load to a high load.

〔課題を解決するための手段〕[Means for solving the problem]

本発明は前述の目的を達成すめために、 微粉炭と搬送用気体との混合流を流通する微粉炭供給
管と、 その微粉炭供給管内に配置され、前記混合流の流れ方
向と鎖交する方向に延びるとともに、混合流の流れ方向
に沿って所定の間隔をおいて設けられた複数の例えばル
ーバなどの分流部材とを有し、 その分流部材と前記間隔とにより微粉炭供給管内に微
粉炭の高濃度流れ領域と低濃度流れ領域を形成する微粉
炭バーナにおいて、 前記分流部材と分流部材の間に形成されている間隔の
開口面積を調節する、例えば後述の可動シリンダなどの
開口面積調節手段を設けたことを特徴とするものであ
る。
In order to achieve the above-mentioned object, the present invention provides a pulverized coal supply pipe through which a mixed flow of pulverized coal and a carrier gas flows, and is disposed in the pulverized coal supply pipe and interlinks with the flow direction of the mixed flow. And a plurality of flow dividing members, such as louvers, provided at predetermined intervals along the flow direction of the mixed flow, and the pulverized coal is supplied into the pulverized coal supply pipe by the flow dividing members and the intervals. In a pulverized coal burner forming a high-concentration flow region and a low-concentration flow region, an opening area adjusting means, such as a movable cylinder described later, for adjusting an opening area of a space formed between the flow dividing members. Is provided.

〔作用〕[Action]

前記開口面積調節手段で分流部材と分流部材の間に形
成されている間隔の開口面積を調節するより、その間隔
を通って分流される搬送用気体の量を変えることができ
るから、結局、高濃度流れ領域の微粉炭濃度を確実にコ
ントロールできるので、低負荷時から高負荷時に至るま
で安定燃焼させることができる。
By adjusting the opening area of the space formed between the flow dividing member and the flow dividing member by the opening area adjusting means, the amount of the carrier gas diverted through the space can be changed. Since the pulverized coal concentration in the concentration flow region can be reliably controlled, stable combustion can be performed from a low load to a high load.

〔実施例〕〔Example〕

以下本発明の実施例を図面を用いて説明するが、その
前に発明者等の実験データを説明する。
Hereinafter, embodiments of the present invention will be described with reference to the drawings, but before that, experimental data of the inventors will be described.

サイクロンを用いても装置の大型化にともない捕集効
率が低下することが予測されると述べたが、これらの予
測は、微粉炭の濃度が低い場合に適合されることを実験
的に確認した。微粉炭の搬送においては、一般に微粉炭
の濃度が高く、粒子の凝集が起こり易く、見掛けの粒径
は、粉砕時の1次粒度と比較してかなり大きくなってい
る。
Although it was predicted that the collection efficiency would decrease as the size of the equipment increased even with the use of cyclones, it was experimentally confirmed that these predictions were adapted to low pulverized coal concentrations. . In the transport of pulverized coal, the concentration of pulverized coal is generally high, particles are likely to aggregate, and the apparent particle size is considerably larger than the primary particle size at the time of pulverization.

第8図に、サイクロンを使用した場合のサイクロン入
口のC/Aと捕集効率(η)との関係について示した。C/A
が大きくなる(微粉炭濃度が高くなる)と捕集効率も増
加することがこの図から分かる。微粉炭バーナにおける
C/Aは安定燃焼からは0.8以上が望ましい。1次空気を50
%ずつ高濃度側と低濃度側に分岐するとすれば、サイク
ロンでの捕集効率は90%以上あればよい。従って、サイ
クロン入口でのC/Aは0.15以上あればこの条件を満足で
きる。しかし、実際のミルからのC/Aは0.3以下になるこ
とはなく、サイクロンを濃縮機として選定するのは過剰
仕様となる。
FIG. 8 shows the relationship between the C / A at the cyclone inlet and the collection efficiency (η) when a cyclone was used. C / A
It can be seen from this figure that the trapping efficiency also increases as the value of (pulverized coal concentration increases). In pulverized coal burners
C / A is preferably 0.8 or more for stable combustion. 50 primary air
If the concentration is branched to the high concentration side and the low concentration side by%, the collection efficiency in the cyclone may be 90% or more. Therefore, if the C / A at the cyclone inlet is 0.15 or more, this condition can be satisfied. However, the C / A from the actual mill will not be less than 0.3, and it will be overspecified to select a cyclone as a concentrator.

第9図によって分岐管を使用した場合の微粉炭の濃縮
について説明する。微粉炭供給管6に対して角度θをも
つT字配管を配置すると、微粉炭は慣性力によりまっす
ぐに進むので、高濃度側配管9の微粉炭濃度は濃厚にな
り、角度を持つ低濃度側配管8の微粉炭濃度は希薄にな
る。
The concentration of pulverized coal when a branch pipe is used will be described with reference to FIG. When a T-shaped pipe having an angle θ with respect to the pulverized coal supply pipe 6 is arranged, the pulverized coal proceeds straight due to inertial force, so that the pulverized coal concentration in the high-concentration side pipe 9 becomes rich and the low-concentration side having an angle is formed. The pulverized coal concentration in the pipe 8 becomes lean.

すなわち、単純なT字の分岐構造においても微粉炭の
分離が可能であるが好ましくない。
That is, pulverized coal can be separated even with a simple T-shaped branch structure, but is not preferred.

第10図に、分岐管のなす角度θと捕集効率の関係につ
いて示した。この実験条件では、分岐部入口を100%と
した場合、分岐管9内の流量を50%に設定した。捕集効
率が50%というのは、全く粒子の分離がなされていない
ことを示す。この第10図から、捕集効率は角度θが45度
付近から増加しているのが分かる。
FIG. 10 shows the relationship between the angle θ formed by the branch pipe and the collection efficiency. Under these experimental conditions, the flow rate in the branch pipe 9 was set to 50% when the branch entrance was 100%. A collection efficiency of 50% indicates that no particles have been separated. From FIG. 10, it can be seen that the trapping efficiency increases from an angle θ of around 45 degrees.

第11図にはルーバを用いた粒子の濃縮実験装置の基本
的な流れを示す。同図において、微粉炭と1次空気の混
合流19は微粉炭バーナ10の軸方向に流れ、ルーバ20に衝
突する。1次空気流はルーバ20に衝突した後にルーバ20
の半径方向に広がり、実線の矢印で示すように微粉炭バ
ーナ10の側壁に沿って流れる。しかし、抵抗板22によっ
て流れは妨げられるために、ルーバ20,21の間にも破線
で示す流れが生じる。微粉炭バーナ10の側壁に沿って流
れる粒子群には慣性があるので高濃度側流れ23、ルーバ
21に沿って中心部に流れる粒子群は、低濃度側流れ24と
なる。
FIG. 11 shows a basic flow of a particle concentration experiment apparatus using a louver. In the figure, a mixed flow 19 of pulverized coal and primary air flows in the axial direction of the pulverized coal burner 10 and collides with a louver 20. The primary air flow collides with the louver 20 and then
And flows along the side wall of the pulverized coal burner 10 as indicated by the solid arrow. However, since the flow is obstructed by the resistance plate 22, a flow indicated by a broken line also occurs between the louvers 20, 21. Particles flowing along the side wall of the pulverized coal burner 10 have inertia, so the high concentration side flow 23, louver
The group of particles flowing to the center along 21 becomes the low concentration side flow 24.

第12図にルーバ20,21の角度θと捕集効率との関係で
示した。この実験条件もT字管の場合と同様、ルーバ内
部を流れる空気量は入口の50%に設定した。この図から
角度θが大きくなるにつれて、捕集効率が増加している
ことが分かり、特に90度を超えると急速に捕集効率が増
加していることが分かる。この特性は第10図に示したT
字管における特性と類似しているが、捕集効率はルーバ
20,21による方がより高い値を示し、本実施例において
はルーバ20,21を用いた。
FIG. 12 shows the relationship between the angle θ of the louvers 20 and 21 and the collection efficiency. In this experimental condition, as in the case of the T-tube, the amount of air flowing inside the louver was set to 50% of the inlet. From this figure, it can be seen that the trapping efficiency increases as the angle θ increases, and that the trapping efficiency increases rapidly when the angle θ exceeds 90 degrees. This characteristic corresponds to the T value shown in FIG.
Similar to the characteristics of a pipe, but the collection efficiency is
20 and 21 show higher values, and in this example, louvers 20 and 21 were used.

第1図は本発明の実施例に係る微粉炭バーナの側断面
図、第2図は第1図のA−A線側面図である。本発明の
微粉炭バーナは、微粉炭濃縮器を微粉炭バーナに組み込
んだことを特徴としている。
FIG. 1 is a side sectional view of a pulverized coal burner according to an embodiment of the present invention, and FIG. 2 is a side view taken along line AA of FIG. The pulverized coal burner of the present invention is characterized in that the pulverized coal concentrator is incorporated in the pulverized coal burner.

第1図,第2図において、1次空気で搬送される微粉
炭との混合流19は、その混合流19の流れ方向と鎖交する
方向に延びるとともに、混合流の流れ方向に沿って所定
の間隔Gをおいて設けられた複数のルーバ20によって高
濃度粒子側流れ23と低濃度側流れ24に分割される。微粉
炭燃焼において保炎を安定化するためには、微粉炭粒子
の高濃度化と粒子の低速化が必要である。通常、ミル5
を用いた微粉炭燃焼バーナ10においては、負荷が低下す
ると、微粉炭バーナ10の入口において微粉炭濃度が低下
する。このために微粉炭バーナ10の負荷に応じて濃度と
流速の調整が必要となる。ここでは微粉炭バーナ10の中
心部に調節手段として可動シリンダ25を設置し、該可動
シリンダ25の出し入れでルーバ20とルーバ20の間に形成
された間隔Gの開口面積が調節でき、それにより低濃度
側流れ24の量の調整できるようにした。
In FIGS. 1 and 2, a mixed flow 19 with pulverized coal conveyed by primary air extends in a direction intersecting with the flow direction of the mixed flow 19 and at a predetermined rate along the flow direction of the mixed flow. Is divided into a high concentration particle side flow 23 and a low concentration side flow 24 by a plurality of louvers 20 provided at intervals G. In order to stabilize flame holding in pulverized coal combustion, it is necessary to increase the concentration of pulverized coal particles and reduce the speed of the particles. Usually mill 5
In the pulverized coal combustion burner 10 using the pulverized coal, when the load decreases, the pulverized coal concentration at the inlet of the pulverized coal burner 10 decreases. For this reason, it is necessary to adjust the concentration and the flow rate according to the load of the pulverized coal burner 10. Here, a movable cylinder 25 is installed as a control means at the center of the pulverized coal burner 10, and the opening area of the gap G formed between the louvers 20 can be adjusted by taking in and out of the movable cylinder 25, thereby reducing the opening area. The amount of the concentration side stream 24 could be adjusted.

微粉炭バーナ10の内部にルーバ20を備えることによっ
て、高濃度側流れ23は微粉炭バーナ10の内側壁に沿って
流れ、外周保炎器26で保炎する。一方、低濃度側流れ24
は、ルーバ20の間を通って微粉炭バーナ10の中心部を流
れ、内周保炎器27で保炎する。ここで内周保炎器27は、
単に火炎の安定化用ではなく、高濃度側流れ23と低濃度
側流れ24の混合拡散を遅延させるための分離器としても
働く。
By providing the louver 20 inside the pulverized coal burner 10, the high concentration side flow 23 flows along the inner side wall of the pulverized coal burner 10, and the flame is held by the outer flame stabilizer 26. On the other hand, the low concentration side stream 24
Flows through the center of the pulverized coal burner 10 through the space between the louvers 20 and is held by the inner peripheral flame stabilizer 27. Here, the inner flame holder 27 is
It does not merely stabilize the flame, but also acts as a separator to delay mixing and diffusion of the high concentration stream 23 and the low concentration stream 24.

微粉炭バーナ10の負荷が低い場合には微粉炭濃度が低
下するので、微粉炭粒子濃度を向上させる必要がある。
このために、低負荷時には可動シリンダ25を第1図の破
線で示す位置まで引き抜いた状態とする。このように可
動シリンダ25を破線の位置へ後退させることによって、
ルーバ20の微粉炭バーナ10の中心部側が開き、混合流19
のうち、低濃度側流れ24に分離される1次空気の量が増
加するために高濃度側流れ23のC/Aは濃厚になる。一
方、微粉炭バーナ10の負荷が最も高い場合、微粉炭バー
ナ10の入口の微粉炭濃度は最も高くなるために、可動シ
リンダ25を第1図の実線で示す位置まで差し込んだ状態
とし、混合流19のすべてが高濃度側流れ23として流れる
ようにする。このような可動シリンダ25の操作によっ
て、常に高濃度微粉炭流を外周保炎器26に送り込むこと
ができるため、高燃料比炭はもちろん幅広い負荷帯でも
常に安定した燃料が可能となる。なお、第1図,第2図
の28は起動バーナである。
When the load on the pulverized coal burner 10 is low, the pulverized coal concentration decreases, so it is necessary to increase the pulverized coal particle concentration.
For this reason, when the load is low, the movable cylinder 25 is pulled out to the position shown by the broken line in FIG. By retracting the movable cylinder 25 to the position indicated by the broken line in this manner,
The center side of the pulverized coal burner 10 of the louver 20 opens, and the mixed flow 19
Among them, the C / A of the high-concentration stream 23 becomes rich because the amount of primary air separated into the low-concentration stream 24 increases. On the other hand, when the load of the pulverized coal burner 10 is the highest, the pulverized coal concentration at the inlet of the pulverized coal burner 10 is the highest, so that the movable cylinder 25 is inserted to the position shown by the solid line in FIG. All of 19 flows as the high concentration side stream 23. By operating such a movable cylinder 25, a high-concentration pulverized coal stream can always be sent to the outer peripheral flame stabilizer 26, so that a stable fuel can always be obtained not only in a high fuel ratio coal but also in a wide load band. Incidentally, reference numeral 28 in FIGS. 1 and 2 denotes a starting burner.

第13図に他の実施例を示す。第1図のものと異なる点
は、ルーバ2の傾斜角度を平行でなく微粉炭バーナ10の
中心に向かって広げる構造とした。この構造によって低
濃度側流れ24の流路の断面積の均一化が計れ、ルーバ20
の内側における粒子速度を均一化でき、特に分岐部にお
いて流速の向上が計れるとともに、粒子流れを急速に反
転するために分離効率が向上する。
FIG. 13 shows another embodiment. The difference from the one shown in FIG. 1 is that the inclination angle of the louver 2 is not parallel but widened toward the center of the pulverized coal burner 10. With this structure, the cross-sectional area of the flow path of the low concentration side flow 24 can be made uniform, and the louver 20
The particle velocity in the inside can be made uniform, the flow velocity can be improved particularly in the branch portion, and the separation efficiency is improved because the particle flow is rapidly reversed.

第14図には可動シリンダ25をルーバ20の外周に設置し
たものを示す。この方式でも全く同様の濃縮効果を得る
ことができる。
FIG. 14 shows the movable cylinder 25 installed on the outer periphery of the louver 20. With this method, exactly the same concentration effect can be obtained.

〔発明の効果〕〔The invention's effect〕

本発明に係る微粉炭バーナによれば、燃料比が4を超
える高燃料比炭の専焼が可能になる。さらに、瀝青炭の
燃焼においても、ミル出口のC/Aが低下する部分負荷運
用においても、安定した燃焼が可能となり、油、ガス等
の補助燃料の使用頻度が低下することから、経費の大幅
な節減ができる。
ADVANTAGE OF THE INVENTION According to the pulverized coal burner which concerns on this invention, the burning of high fuel ratio coal whose fuel ratio exceeds 4 becomes possible. Furthermore, in the combustion of bituminous coal, even in partial load operation where the C / A at the mill outlet is reduced, stable combustion is possible, and the frequency of using auxiliary fuels such as oil and gas is reduced, resulting in significant costs. You can save money.

さらに、サイクロン等の補機を使用しないために省ス
ペースであり、特に微粉炭バーナの改造に適している。
Furthermore, space is saved because auxiliary equipment such as a cyclone is not used, and it is particularly suitable for remodeling a pulverized coal burner.

【図面の簡単な説明】 第1図は本発明の実施例に係る微粉炭バーナの断面図、
第2図は第1図のA−A線側面図、第3図は従来型高燃
焼比炭燃料用のボイラ及び燃焼系統の概略構成図、第4
図は微粉炭濃縮器を用いない場合のミル負荷とバーナ入
口における微粉炭濃度(C/A)の関係を示す特性曲線
図、第5図はC/Aと燃料比(FR)の関係における安定着
火域着火不安定域を示す特性曲線図、第6図はミルと微
粉炭濃縮器(サイクロン)における流路系統図、第7図
(a),(b)は従来のサイクロンによる捕集特性を示
す特性曲線図、第8図はサイクロン入口のC/Aと全捕集
効率の比較の関係を示した特性曲線図、第9図は分岐管
における微粉炭の濃縮を説明する図、第10図は第9図の
分岐角度と捕集効率との関係を示す特性曲線図、第11図
はルーバを用いた実験装置の断面図、第12図は第11図の
ルーバを用いた場合のルーバ角度と捕集効率との関係を
示す特性曲線図、第13図及び第14図は他の実施例を示す
断面図である。 6……微粉炭供給管、20,21……ルーバ、25……可動シ
リンダ、26……外周保炎器、28……起動バーナ。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a sectional view of a pulverized coal burner according to an embodiment of the present invention,
FIG. 2 is a side view taken along the line AA of FIG. 1, FIG. 3 is a schematic configuration diagram of a conventional boiler and a combustion system for high combustion ratio coal fuel, and FIG.
Fig. 5 is a characteristic curve showing the relationship between mill load and pulverized coal concentration (C / A) at the burner inlet when a pulverized coal concentrator is not used. Fig. 5 shows the stability of the relationship between C / A and fuel ratio (FR). Fig. 6 is a characteristic curve diagram showing the ignition region and the ignition unstable region, Fig. 6 is a flow path diagram in the mill and the pulverized coal concentrator (cyclone), and Figs. 7 (a) and (b) show the trapping characteristics of the conventional cyclone. FIG. 8 is a characteristic curve diagram showing the relationship between the C / A at the cyclone inlet and the total collection efficiency, FIG. 9 is a diagram illustrating the concentration of pulverized coal in the branch pipe, and FIG. Is a characteristic curve diagram showing the relationship between the branching angle and the collection efficiency in FIG. 9, FIG. 11 is a cross-sectional view of an experimental device using a louver, and FIG. 12 is a louver angle when the louver in FIG. 11 is used. 13 and FIG. 14 are cross-sectional views showing another embodiment. 6 ... pulverized coal supply pipe, 20,21 ... louver, 25 ... movable cylinder, 26 ... outer flame holder, 28 ... start-up burner.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】微粉炭と搬送用気体との混合流を流通する
微粉炭供給管と、 その微粉炭供給管内に配置され、前記混合流の流れ方向
と鎖交する方向に延びるとともに、混合流の流れ方向に
沿って所定の間隔をおいて設けられた複数の分流部材と
を有し、 その分流部材と前記間隔とにより微粉炭供給管内に微粉
炭の高濃度流れ領域と低濃度流れ領域を形成する微粉炭
バーナにおいて、 前記分流部材と分流部材の間に形成されている間隔の開
口面積を調節する開口面積調節手段を設けたことを特徴
とする微粉炭バーナ。
1. A pulverized coal supply pipe through which a mixed flow of pulverized coal and a carrier gas flows, and a pulverized coal supply pipe disposed in the pulverized coal supply pipe, extending in a direction intersecting with the flow direction of the mixed flow, and And a plurality of flow dividing members provided at predetermined intervals along the flow direction of the pulverized coal. In the pulverized coal burner to be formed, an opening area adjusting means for adjusting an opening area of an interval formed between the flow dividing member and the flow dividing member is provided.
JP63220461A 1988-09-05 1988-09-05 Pulverized coal burner Expired - Fee Related JP2740201B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63220461A JP2740201B2 (en) 1988-09-05 1988-09-05 Pulverized coal burner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63220461A JP2740201B2 (en) 1988-09-05 1988-09-05 Pulverized coal burner

Publications (2)

Publication Number Publication Date
JPH0268405A JPH0268405A (en) 1990-03-07
JP2740201B2 true JP2740201B2 (en) 1998-04-15

Family

ID=16751481

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63220461A Expired - Fee Related JP2740201B2 (en) 1988-09-05 1988-09-05 Pulverized coal burner

Country Status (1)

Country Link
JP (1) JP2740201B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101285447B1 (en) 2006-09-27 2013-07-12 바브콕-히다찌 가부시끼가이샤 Burner, and combustion equipment and boiler comprising burner

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200523506A (en) * 2003-12-10 2005-07-16 Kiyoharu Michimae A combustion apparatus for disposal of a dry distillation gas
CN110848673A (en) * 2019-09-07 2020-02-28 辽宁大唐国沈东热电有限责任公司 Low NOx combustor of coal fired boiler of thermal power plant
CN112228868B (en) * 2020-08-20 2023-04-28 陕西商洛发电有限公司 Horizontal thick and thin pulverized coal burner capable of simultaneously adjusting flow velocity of primary air and side air

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5533551A (en) * 1978-08-31 1980-03-08 Mitsubishi Heavy Ind Ltd Pulverized-coal burner
JPH0631296Y2 (en) * 1986-02-25 1994-08-22 バブコツク日立株式会社 Density combustion type pulverized coal burner

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101285447B1 (en) 2006-09-27 2013-07-12 바브콕-히다찌 가부시끼가이샤 Burner, and combustion equipment and boiler comprising burner

Also Published As

Publication number Publication date
JPH0268405A (en) 1990-03-07

Similar Documents

Publication Publication Date Title
AU2004229021C1 (en) Solid fuel burner, solid fuel burner combustion method, combustion apparatus and combustion apparatus operation method
KR0171066B1 (en) Integrated low nox tangential firing system
JP2776572B2 (en) Pulverized coal burner
US4274343A (en) Low load coal nozzle
JPWO2003048643A1 (en) Fuel distribution device for fuel supply duct and method of operating the distribution device
JPS5828488B2 (en) pulverized coal burner
JP2002533644A (en) How to operate a giggle combustion system
KR890000326B1 (en) Split nozzle tip for pulverized coal burner
US4448135A (en) Inline air-coal separator
JP2740201B2 (en) Pulverized coal burner
JPH09170714A (en) Fine coal powder burning burner
JP3830582B2 (en) Pulverized coal combustion burner
JPS6021282B2 (en) Powder fuel combustion method
JPH08219415A (en) Burner for solid fuel and pulverized coal firing equipment
JP2954628B2 (en) Pulverized coal burner
JP2954656B2 (en) Pulverized coal burner
JPH08110014A (en) Fine powder coal combustor
EP0017721B1 (en) Low load coal bucket and method of operating a pulverised coal-fired furnace
JP2776575B2 (en) Pulverized coal combustion equipment
EP0156048A1 (en) Coal burner
JP3255651B2 (en) Pulverized coal combustion equipment
JPH02122103A (en) Burner of powder particle fuel
JP2735643B2 (en) Pulverized coal combustion equipment
JPH09250711A (en) Combustion method of burner for solid fuel and solid fuel combustion system
JPH08285231A (en) Low nox pulverized coal burner and pulverized coal combustion device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees