JPH08219415A - Burner for solid fuel and pulverized coal firing equipment - Google Patents
Burner for solid fuel and pulverized coal firing equipmentInfo
- Publication number
- JPH08219415A JPH08219415A JP2912095A JP2912095A JPH08219415A JP H08219415 A JPH08219415 A JP H08219415A JP 2912095 A JP2912095 A JP 2912095A JP 2912095 A JP2912095 A JP 2912095A JP H08219415 A JPH08219415 A JP H08219415A
- Authority
- JP
- Japan
- Prior art keywords
- solid
- gas
- burner
- flame stabilizer
- phase flow
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は微粉炭燃焼装置に係り、
特に低NOx燃焼でかつ安定に燃焼するのに好適な固体
燃料用バーナに関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a pulverized coal combustion device,
Particularly, the present invention relates to a solid fuel burner suitable for stable combustion with low NOx combustion.
【0002】[0002]
【従来の技術】従来のボイラ等に用いられる微粉炭燃焼
システムには、分級機を内蔵した微粉炭機(以下ミルと
称す)で石炭を粉砕し、分級により所定の大きさ以下の
微粉を搬送用空気でバーナ部へ直接供給する燃焼システ
ムが実用化されている。2. Description of the Related Art In a pulverized coal combustion system used in a conventional boiler or the like, a pulverized coal machine (hereinafter referred to as a mill) having a classifier built therein is used to pulverize coal and convey fine powder of a predetermined size or smaller by classification. A combustion system that directly supplies the burner section with commercial air has been put to practical use.
【0003】この微粉炭燃焼システムの低NOx化技術
としては、2段燃焼法が代表的である。この2段燃焼法
には外部式と内部式があり、外部式は燃焼炉のバーナゾ
ーンでの空気比(燃料に対する必要空気の割合で1が量
論的当量)を1以下の燃料リッチな条件に保つことで生
成NOxを還元して低NOx化を図り、未燃焼燃料につ
いては、バーナゾーン後流に設置されている空気挿入口
から空気を投入し、完全に燃焼させる方式である。また
内部式2段燃焼法とは、2次、3次空気に旋回をかけ
て、1次空気のみで着火燃焼している微粉炭流との混合
を遅らせ、バーナゾーンでの2段燃焼を行う方法であ
り、NR、NR2等の微粉炭低NOxバーナで実用化さ
れている。A two-stage combustion method is typical as a technique for reducing NOx in the pulverized coal combustion system. This two-stage combustion method has an external type and an internal type. The external type is a fuel-rich condition in which the air ratio in the burner zone of the combustion furnace (the ratio of required air to fuel is 1 is a stoichiometric equivalent) is 1 or less. The NOx produced is reduced by reducing the generated NOx by keeping the above value, and the unburned fuel is completely burned by injecting air from the air inlet provided in the downstream of the burner zone. The internal two-stage combustion method swirls the secondary and tertiary air to delay mixing with the pulverized coal flow that is ignited and burned only by the primary air to perform two-stage combustion in the burner zone. It is a method, and it is put to practical use in pulverized coal low NOx burners such as NR and NR2.
【0004】[0004]
【発明が解決しようとする課題】上述の外部および内部
2段燃焼法の併用による低NOx技術により、ボイラ出
口でのNOx排出量が100〜150ppm前後(燃料
比=固定炭素/揮発分の値が2、石炭中N分1.5%の
基準炭で、灰中未燃分5%以下)まで下げられる様にな
った。しかしながら、環境対策としての燃焼排ガスに含
まれるNOx排出量の規制は厳しくなる一方で、ボイラ
出口NOx排出濃度も100ppm以下の低い値が要求
される。これに加えて、石炭の輸入依存度が100%に
近い日本では炭種に依らず安定した低NOx化の技術の
確立は必要不可欠である。Due to the low NOx technology using both the external and internal two-stage combustion methods mentioned above, the NOx emission amount at the boiler outlet is around 100 to 150 ppm (fuel ratio = fixed carbon / volatile matter value). 2. Standard coal with N content of 1.5% in coal can reduce unburned content in ash to 5% or less). However, while the regulation of the NOx emission amount contained in the combustion exhaust gas becomes strict as an environmental measure, the NOx emission concentration at the boiler outlet is required to be a low value of 100 ppm or less. In addition to this, in Japan, where the dependence on coal imports is close to 100%, it is essential to establish stable NOx reduction technology regardless of coal type.
【0005】NOx排出量100ppm以下にする低N
Ox対策として種々の方法が提案されている。しかし、
例えば低NOx化のために保炎強化を行うことによって
バーナ出口のガス温度はより高温になり、従来の微粉炭
バーナにない新たな問題点も生ずる。すなわち、バーナ
出口雰囲気温度がより高温になることで、放射による内
部保炎器への熱のフィードバックも大きく、内部保炎器
が焼損の危険性が生ずる。しかも、濃縮機構を持ったバ
ーナの濃縮流側に内部保炎器を設置した場合、微粉炭の
巻き込みも多く、スラグ付着の可能性も大きくなる。ま
た、外周保炎器として燃料流れに直交する方向に平板を
有する平板型ブラフボディ形状のものを用いると、外周
保炎器は高温スラグの付着によるエロージョンなどが生
じやすく、耐久性が劣り、保炎板前流側の淀み点形成に
よる冷却不足により、焼損するおそれがある。Low N for NOx emissions of 100 ppm or less
Various methods have been proposed as measures against Ox. But,
For example, the gas temperature at the burner outlet becomes higher by strengthening the flame holding for lowering NOx, which causes a new problem that the conventional pulverized coal burner does not have. That is, when the burner outlet atmosphere temperature becomes higher, the feedback of heat to the internal flame stabilizer due to radiation is also large, and there is a risk of burning the internal flame stabilizer. Moreover, when the internal flame stabilizer is installed on the concentrated flow side of the burner having a concentrating mechanism, pulverized coal is often entrained and the possibility of slag adhesion increases. If a flat bluff body shape having a flat plate in the direction orthogonal to the fuel flow is used as the outer peripheral flame stabilizer, the outer peripheral flame stabilizer is liable to suffer from erosion due to adhesion of high temperature slag, resulting in poor durability. There is a risk of burning due to insufficient cooling due to the formation of a stagnation point on the upstream side of the flame plate.
【0006】本発明の目的は、保炎器に対するスラグ付
着防止と冷却が有効に行える固体燃料用バーナを提供す
ることである。また、本発明の目的はバーナ近傍での燃
焼灰の付着除去あるいは炉壁の広範囲にわたってスラグ
付着を防止しながら、NOxの排出濃度が少ない微粉炭
燃焼装置を提供することである。An object of the present invention is to provide a solid fuel burner capable of effectively preventing slag from adhering to a flame stabilizer and cooling it. Another object of the present invention is to provide a pulverized coal combustion apparatus which has a low NOx emission concentration while preventing the removal of combustion ash near the burner or the slag adhesion over a wide area of the furnace wall.
【0007】[0007]
【課題を解決するための手段】本発明の上記目的は次の
構成によって達成される。すなわち、石炭などの固体燃
料と輸送用気体からなる固気二相流が流れる流路と該固
気二相流流路の火炉側の出口部分に保炎器を有する固体
燃料用バーナにおいて、固気二相流の流路内に設けられ
る保炎器の形状を固気二相流の流路の上流側から下流側
に向けて末広がり状にした固体燃料用バーナである。The above objects of the present invention can be achieved by the following constitutions. That is, in a solid fuel burner having a flow path through which a solid-gas two-phase flow composed of a solid fuel such as coal and a transport gas flows and a flame stabilizer at the furnace-side outlet of the solid-gas two-phase flow path, It is a burner for solid fuel in which the shape of a flame stabilizer provided in a gas-two-phase flow channel is widened toward the downstream side from the upstream side of the gas-two-phase flow channel.
【0008】また、本発明は石炭などの固体燃料と輸送
用気体からなる固気二相流が流れる流路を有する固体燃
料用バーナにおいて、前記固気二相流の流路内に固気二
相流の固体濃度の濃縮装置を設け、固気二相流の流路を
構成する壁面の火炉側の出口部分の外周部に外周保炎器
を、前記壁面内側の固気二相流の流路内に形成される固
気二相流の固体濃度の濃縮流側に内部保炎器をそれぞれ
設け、該内部保炎器の形状を固気二相流の流路の上流側
から下流側に向けて末広がり状にした固体燃料用バーナ
である。Further, according to the present invention, there is provided a burner for a solid fuel having a flow path through which a solid-gas two-phase flow composed of a solid fuel such as coal and a transport gas flows. A solid-state solid concentration concentrator is provided, and an outer peripheral flame stabilizer is provided at the outer peripheral portion of the outlet side on the furnace side of the wall surface forming the solid-gas two-phase flow passage, and the solid-gas two-phase flow inside the wall surface. An internal flame stabilizer is provided on each of the solid-concentration concentrated flow sides of the solid-gas two-phase flow formed in the passage, and the shape of the internal flame stabilizer is changed from the upstream side to the downstream side of the flow path of the solid-gas two-phase flow. It is a burner for solid fuel that is widened toward the end.
【0009】さらに、本発明は石炭などの固体燃料と輸
送用気体からなる固気二相流が流れる流路を有する固体
燃料用バーナにおいて、前記固気二相流の流路内に固気
二相流の固体濃度の濃縮装置と固気二相流の流路を固体
濃度の濃縮流と希薄流とに分離する仕切部を設け、該仕
切部の火炉側の出口部分に保炎器を設け、該保炎器の形
状を固気二相流の流路の上流側から下流側に向けて末広
がり状にした固体燃料用バーナである。Furthermore, the present invention provides a solid fuel burner having a flow path through which a solid-gas two-phase flow composed of a solid fuel such as coal and a transport gas flows. A solid concentration concentrating device for the phase flow and a solid-gas two-phase flow channel are provided with a partition part for separating the solid concentration concentrated flow and the dilute flow, and a flame stabilizer is provided at the exit side of the partition part on the furnace side. A burner for a solid fuel, in which the flame stabilizer has a shape widening toward the downstream side from the upstream side of the flow path of the solid-gas two-phase flow.
【0010】また、本発明は石炭などの固体燃料と輸送
用気体からなる固気二相流が流れる流路を有する固体燃
料用バーナにおいて、前記固気二相流の流路内に固気二
相流の固体濃度の濃縮装置と固気二相流の流路を固体濃
度の濃縮流と希薄流とに分離する仕切部を設け、該前記
固気二相流の流路内の固体濃度の濃縮流が形成される固
気二相流の流路の火炉側の出口部分に保炎器を設け、該
保炎器の形状を固気二相流の流路の上流側から下流側に
向けて末広がり状にした固体燃料用バーナである。Further, according to the present invention, there is provided a burner for a solid fuel having a flow path through which a solid-gas two-phase flow composed of a solid fuel such as coal and a transportation gas flows. A partitioning section for separating the solid-flow solid concentration concentrator and the solid-gas two-phase flow channel into a concentrated solid-concentration flow and a dilute flow is provided. A flame stabilizer is provided at the furnace-side outlet of the solid-gas two-phase flow channel in which the concentrated flow is formed, and the shape of the flame stabilizer is directed from the upstream side to the downstream side of the solid-gas two-phase flow channel. It is a burner for solid fuel that is spread out toward the end.
【0011】さらに、本発明はミルで粉砕された石炭な
どの固体燃料を微粉炭と粗粉炭にそれぞれ粉砕して、各
々の粉状の固体燃料と輸送用気体とからなる固気二相流
が流れる流路を有する固体燃料用バーナにおいて、固気
二相流の流路内に微粉炭を含有する流路と粗粉炭を含有
する流路に二分する仕切部を設け、該仕切部の火炉側の
出口部分に保炎器を設け、該保炎器の形状を固気二相流
の流路の上流側から下流側に向けて末広がり状にした固
体燃料用バーナである。Further, according to the present invention, solid fuel such as coal pulverized by a mill is pulverized into pulverized coal and coarse coal, respectively, and a solid-gas two-phase flow composed of each pulverized solid fuel and transportation gas is produced. In a solid fuel burner having a flow passage, a partition portion that divides into a flow passage containing pulverized coal and a flow passage containing coarse coal is provided in the solid-gas two-phase flow passage, and the furnace side of the partition portion. Is a burner for solid fuel in which a flame stabilizer is provided at an outlet portion of the flame retarder, and the shape of the flame stabilizer is widened toward the downstream side from the upstream side of the flow path of the solid-gas two-phase flow.
【0012】上記本発明の保炎器の末広がり形状は断面
がU型、V型、コの字型形状または半円形状などの形状
とすることができる。The flared shape of the flame stabilizer of the present invention may be U-shaped, V-shaped, U-shaped or semicircular in cross section.
【0013】また、上記いずれかの固体燃料用バーナを
備えた微粉炭燃焼装置も本発明の範囲内のものである。A pulverized coal combustion apparatus equipped with any one of the above solid fuel burners is also within the scope of the present invention.
【0014】[0014]
【作用】本発明の課題は保炎器に対していかにスラグ付
着防止と冷却を行うかということである。本発明の固体
燃料用バーナの保炎器の形状は火炎側(炉内側)におい
て、平板型内部保炎器より懐が深くなっていて、溶融ス
ラグが保炎器面へ到達しにくく、スラグ付着防止がで
き、エロージョン対策に役立つ。The object of the present invention is to prevent the slag from adhering and cool the flame stabilizer. The shape of the flame stabilizer of the burner for solid fuel of the present invention is deeper than that of the flat plate type internal flame stabilizer on the flame side (inside the furnace), and it is difficult for molten slag to reach the flame stabilizer surface, resulting in slag adhesion. It can prevent and is useful for erosion countermeasures.
【0015】次に、保炎器の冷却は約80℃の一次空気
で行うわけであるが、平板型のものでは流れの前流側に
淀み点を形成し、冷却不十分となって焼損する可能性が
ある。しかし保炎器を固体燃料と一次空気の混合流に対
して上流側から下流側にV型などの末広がり形状にすれ
ば、淀み点形成を防ぐと同時に、V型などの斜面がある
ことにより保炎器表面積(投影面積は同じ)も大きく、
冷却を促進する作用がある。相乗効果として、保炎器の
冷却が進めば、当然スラグの付着抑制にも役立つ。Next, the flame stabilizer is cooled with primary air at about 80 ° C. However, in the flat plate type, a stagnation point is formed on the upstream side of the flow, and the cooling becomes insufficient and burns out. there is a possibility. However, if the flame stabilizer has a V-shaped divergent shape from the upstream side to the downstream side with respect to the mixed flow of solid fuel and primary air, the formation of a stagnation point can be prevented and at the same time, the sloped surface of the V-shaped type can prevent The flame surface area (projected area is the same) is also large,
It has the effect of promoting cooling. As a synergistic effect, if the flame stabilizer cools, it naturally helps prevent slag from adhering.
【0016】ここで本発明の保炎器をV型保炎器とし
て、V型形状の開き角度の決定法を述べる。一般に、バ
ーナ出口燃焼ガスから保炎器への放射熱量(ガス温度T
gの4乗に比例)と一次空気への損失熱量とは定常では
バランスしていて比例関係があり、一次空気への損失熱
量は保炎器の温度Tsと一次空気温度Toとの差、保炎器
の面積Aおよび熱伝達係数hの積に相当するので、次式
(1)が成立する。 Tg 4∝Ah(Ts−To) (1) 平板型保炎器において、ガス温度がTgがTg1で保炎器
温度TsはTs1となり、この温度では焼損の心配はない
とする。Here, the method for determining the opening angle of the V-shaped configuration will be described, assuming that the flame stabilizer of the present invention is a V-shaped flame stabilizer. In general, the amount of radiant heat from the burner outlet combustion gas to the flame stabilizer (gas temperature T
( proportional to the fourth power of g ) and the heat loss to the primary air are in a steady state and have a proportional relationship, and the heat loss to the primary air is the difference between the flame stabilizer temperature T s and the primary air temperature T o. , Which corresponds to the product of the area A of the flame stabilizer and the heat transfer coefficient h, the following equation (1) is established. T g 4 ∝Ah (T s −T o ) (1) In the flat flame stabilizer, the gas temperature T g is T g1 and the flame stabilizer temperature T s is T s1 , and there is no risk of burnout at this temperature. And
【0017】いま、保炎強化によってガス温度がTg2に
なり、保炎器温度はTs2まで上昇したとすると、そのと
きの関係は次式(2)で表される。 (Ts2−To)/(Ts1−To)=(Tg2/Tg1)4 (2) このTs2の温度では保炎器が焼損する心配があり、保炎
器をV型にして面積を大きくしてTs1の安全温度まで下
げる必要がある。Now, assuming that the gas temperature becomes T g2 and the flame stabilizer temperature rises to T s2 by strengthening the flame stabilizer , the relationship at that time is expressed by the following equation (2). (T s2 −T o ) / (T s1 −T o ) = (T g2 / T g1 ) 4 (2) At this temperature of T s2 , there is a concern that the flame stabilizer will burn out. It is necessary to increase the area and lower it to the safe temperature of T s1 .
【0018】焼損の心配のない保炎器面積A2(または
V型の開き角度θ)は次式(3)で求められる。 A1/A2=sinθ/2=(Ts1−To)/(Ts2−To) (3) ただし、簡単化のために熱伝達係数hは一定とした。式
(3)の右辺(Ts1−To)/(Ts2−To)は冷却の程
度を表し、保炎器のV型の開き角度θに対する関係を図
9に示した。縦軸の数値が小さいほど冷却効果は高く、
平板(θ=180)に対し、θを小さくすると冷却効果
は大きくなる。具体的にθを求める一例を示す。保炎器
焼損に対する安全温度Ts1(材質に依存)と平板保炎器
の到達温度Ts2が分かれば、開き角度θは式(3)から
求められる。もし、Ts1=900℃、Ts2=1000℃
ならば、 θ=2sin-1[(900−80)/(1000−8
0)]=126度 として求められる。The flame stabilizer area A 2 (or the opening angle θ of the V type) free from the risk of burning is calculated by the following equation (3). A 1 / A 2 = sinθ / 2 = (T s1 -T o) / (T s2 -T o) (3) where the heat transfer coefficient h for simplification was constant. The right side (T s1 −T o ) / (T s2 −T o ) of the equation (3) represents the degree of cooling, and the relationship with the V-shaped opening angle θ of the flame stabilizer is shown in FIG. The smaller the value on the vertical axis, the higher the cooling effect,
The cooling effect becomes larger when θ is smaller than that of the flat plate (θ = 180). An example of specifically obtaining θ will be shown. If the safe temperature T s1 (depending on the material) against the flame stabilizer burnout and the ultimate temperature T s2 of the flat flame stabilizer are known, the opening angle θ can be obtained from the equation (3). If T s1 = 900 ° C, T s2 = 1000 ° C
Then, θ = 2 sin −1 [(900-80) / (1000-8
0)] = 126 degrees.
【0019】[0019]
【実施例】本発明の一実施例を図面と共に説明する。図
4に本実施例のバーナが適用される微粉炭焚きボイラの
系統図を示す。燃料の石炭は石炭バンカ1に一時貯蔵さ
れた後にミル2で微粉炭に加工される。一方、この微粉
炭を風箱3内のバーナ4まで搬送する一次空気はPAF
(Primary Air Fan)5によって加圧された後に、ボイ
ラ出口部分に設けられた熱交換器6で高温のボイラ燃焼
排ガスと熱交換されて、約300℃まで昇温された後に
ミル2に送られる。昇温空気はミル2内部で石炭の付着
水分を蒸発させた後に、微粉炭とともにバーナ4まで送
られる。バーナ4入口部分における一次空気温度は約8
0℃まで低下する。DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described with reference to the drawings. FIG. 4 shows a system diagram of a pulverized coal burning boiler to which the burner of this embodiment is applied. Fuel coal is temporarily stored in a coal bunker 1 and then processed into pulverized coal by a mill 2. On the other hand, the primary air that conveys this pulverized coal to the burner 4 in the wind box 3 is PAF.
After being pressurized by the (Primary Air Fan) 5, it is heat-exchanged with the high temperature boiler combustion exhaust gas by the heat exchanger 6 provided at the boiler outlet portion, heated to about 300 ° C., and then sent to the mill 2. . The temperature-elevating air is sent to the burner 4 together with the pulverized coal after evaporating the water adhering to the coal inside the mill 2. The primary air temperature at the burner 4 inlet is about 8
It drops to 0 ° C.
【0020】また、比較的粗い粒度の微粉炭と比較的微
細な粒度の微粉炭を併用する場合は、ミル2で比較的粗
い粒度の微粉炭に加工し、昇温空気でバーナ4に搬送す
ると同時に比較的微細な粒度に粉砕された石炭は微粉炭
ミル9からビン10とフィーダ11および微粉炭同伴装
置12を経てバーナ4に供給される。この比較的微細な
粒度に粉砕された微粉炭も熱交換器6で約300℃まで
昇温された空気によりにバーナ4に搬送される。When pulverized coal having a relatively coarse grain size and pulverized coal having a relatively fine grain size are used in combination, the pulverized coal is processed into a relatively coarse grain size in the mill 2 and conveyed to the burner 4 by heated air. At the same time, the coal pulverized into a relatively fine particle size is supplied from the pulverized coal mill 9 to the burner 4 via the bottle 10, the feeder 11 and the pulverized coal entraining device 12. The pulverized coal pulverized to have a relatively fine particle size is also conveyed to the burner 4 by the air whose temperature is raised to about 300 ° C. by the heat exchanger 6.
【0021】また、二次空気、三次空気などの燃焼用空
気はFDF(Forced Draft Fan)14により熱交換器1
5を経由してバーナ4の配置される風箱3に供給され
る。また、ボイラ排ガスの一部には燃焼用の高温空気が
残っており、GRF(排ガス混合ファン)16によりボ
イラ火炉17の底部に供給され、また排ガス混合装置1
9で前記熱交換器6で昇温された一次空気と混合され微
粉炭同伴装置12にも供給される。Combustion air such as secondary air and tertiary air is heated by a heat exchanger 1 by an FDF (Forced Draft Fan) 14.
It is supplied to the wind box 3 in which the burner 4 is arranged via 5 Further, high temperature air for combustion remains in a part of the boiler exhaust gas and is supplied to the bottom of the boiler furnace 17 by a GRF (exhaust gas mixing fan) 16 and also the exhaust gas mixing device 1
It is mixed with the primary air whose temperature is raised in the heat exchanger 6 in 9 and is also supplied to the pulverized coal entraining device 12.
【0022】図1に本実施例の低NOxバーナ(NRバ
ーナ)にリング状のV型内部保炎器を追設したバーナの
断面図(図1(a))と正面図(図1(b))を示して
おり、その上半分は図示を省いたものである。バーナ中
心部分には、重油を燃料とする起動用バーナ21が設置
してあり、その周囲に一次空気と微粉炭の混合流22が
流れる一次流路23が設けられている。さらにその周囲
に二次空気25の流路26、三次空気28の流路29と
いう順に環状の流路を有する。二次空気流路26と三次
空気流路29内での空気流の旋回は各々の流路26、2
9に設けた旋回器としての機能を持つレジスタダンパ3
0、31で行う。したがって、二次空気25と三次空気
28はレジスタダンパ30、31で旋回がかけられて、
火炉の壁面32内に送り込まれる。また、二次空気流路
26の炉内出口部には旋回流形成用の二次空気旋回ベー
ン34を設けている。FIG. 1 is a sectional view (FIG. 1 (a)) and a front view (FIG. 1 (b) of a burner in which a ring-shaped V-type internal flame stabilizer is additionally provided to the low NOx burner (NR burner) of this embodiment. )) Is shown, the upper half of which is not shown. A starter burner 21 that uses heavy oil as a fuel is installed in the central portion of the burner, and a primary flow path 23 through which a mixed flow 22 of primary air and pulverized coal flows is provided around it. Further, a circular flow path is provided around the flow path 26 for the secondary air 25 and a flow path 29 for the tertiary air 28 in that order. The swirling of the air flow in the secondary air flow path 26 and the tertiary air flow path 29 depends on the flow paths 26, 2 respectively.
Register damper 3 provided as a swivel function in 9
Perform at 0 and 31. Therefore, the secondary air 25 and the tertiary air 28 are swirled by the register dampers 30 and 31,
It is fed into the wall 32 of the furnace. A secondary air swirl vane 34 for swirling flow formation is provided at the outlet of the secondary air flow path 26 in the furnace.
【0023】図1に示すバーナの特徴は、バーナ出口の
一次空気と微粉炭の混合一次流路23の外周に外周保炎
器35を設けた以外にV型内部保炎器36を一次流路2
3内に持っている点であり、V型内部保炎器36でバー
ナ出口において、保炎強化するとともに、二次空気25
と三次空気28の強旋回による外周空気の混合遅延によ
る還元領域拡大を図り低NOx化が達成できるものであ
る。The burner shown in FIG. 1 is characterized in that a V-type internal flame stabilizer 36 is provided in addition to the outer peripheral flame stabilizer 35 provided on the outer periphery of the primary air passage 23 for mixing primary air and pulverized coal at the burner outlet. Two
This is a point that the internal combustion chamber 3 has inside, and the V-type internal flame stabilizer 36 strengthens flame holding at the burner outlet, and the secondary air 25
The NOx can be reduced by expanding the reduction region by delaying the mixing of the peripheral air due to the strong swirling of the tertiary air 28.
【0024】また、ミル2、9(図4)から燃焼用の一
次空気で搬送される一次空気と微粉炭の混合流22は一
次流路23に送られるが、この時の一次空気の温度は約
80℃であり、内部保炎器36の冷却にも寄与する。The mixed flow 22 of primary air and pulverized coal, which is conveyed by the primary air for combustion from the mills 2 and 9 (FIG. 4), is sent to the primary flow path 23, and the temperature of the primary air at this time is The temperature is about 80 ° C., which also contributes to cooling the internal flame stabilizer 36.
【0025】図2には本発明の第二の実施例の低NOx
バーナを示し、濃縮機能を備えた低NOxバーナ(NR
2バーナ)にV型保炎器36が設置されている。なお、
その他の部材については図1に示したものと同一機能を
有する部材は同一番号を付してその説明は省略する。本
実施例の特徴は一次空気と微粉炭の混合流22が流れる
一次流路23に内部濃縮器37が該一次流路23の断面
積を狭めるように設けたことである。また、V型保炎器
36の設置位置は、内部濃縮器37によって形成される
一次流路23の外周部側の濃縮流に包み込まれる位置で
あり、その形状については、図1のものと同様のV型の
リング状のものである。FIG. 2 shows the low NOx of the second embodiment of the present invention.
Shows a burner and has a low NOx burner (NR
V-type flame stabilizer 36 is installed in the 2 burners). In addition,
Regarding other members, members having the same functions as those shown in FIG. 1 are designated by the same reference numerals, and the description thereof will be omitted. The feature of this embodiment is that the internal concentrator 37 is provided in the primary passage 23 through which the mixed flow 22 of primary air and pulverized coal flows so as to narrow the cross-sectional area of the primary passage 23. The V-shaped flame stabilizer 36 is installed at a position surrounded by the concentrated flow on the outer peripheral side of the primary flow path 23 formed by the internal concentrator 37, and its shape is the same as that of FIG. It is a V-shaped ring.
【0026】図3には、本発明の第三の実施例の低NO
xバーナの断面図を示し、微粒粉と粗粒粉に分割供給す
る低NOxバーナにV型内部保炎器を設けた一例を示
す。図3において、図1に示した部材と同一機能を有す
る部材は同一番号を付してその説明は省略する。図4で
説明した比較的粒度の細かい微粉炭と空気混合流22a
を搬送する配管38とその配管38の外周に比較的粒度
の粗い微粉炭と空気混合流22bが通る配管39が設置
されている。配管38のボイラ火炉側の先端にはリング
状のV型内部保炎器36が設置されている。FIG. 3 shows the low NO of the third embodiment of the present invention.
A cross-sectional view of an x burner is shown, showing an example in which a V-type internal flame stabilizer is provided in a low NOx burner that is dividedly supplied into fine powder and coarse powder. In FIG. 3, members having the same functions as those shown in FIG. 1 are designated by the same reference numerals and the description thereof will be omitted. The pulverized coal having a relatively small particle size and the air mixed flow 22a described in FIG.
A pipe 38 that conveys the air and a pipe 39 through which the pulverized coal having a relatively coarse grain size and the air mixed flow 22b pass are installed around the pipe 38. A ring-shaped V-shaped internal flame stabilizer 36 is installed at the end of the pipe 38 on the boiler furnace side.
【0027】図3では、微粉炭を微粒炭(内側)と粗粒
炭(外側)に分離供給するバーナを示したが、図示して
いないが、逆に微粒炭がバーナの外側、粗粒炭がバーナ
の内側でその分離仕切部のバーナ出口にV型保炎器を設
置したバーナとしても良い。In FIG. 3, a burner for separately supplying pulverized coal to pulverized coal (inner side) and coarse grained coal (outer side) is shown. However, although not shown, pulverized coal is the outside of the burner and the coarse grained coal. May be a burner in which a V-type flame stabilizer is installed inside the burner at the burner outlet of the separating partition.
【0028】図4で説明したようにミル2(図1)を出
た時の一次空気温度は約80℃になっており、一次流路
23内へ微粉炭と共に送り込まれ、上記本発明の各実施
例のV型内部保炎器36の冷却に役立つ。As described with reference to FIG. 4, the primary air temperature when it exits the mill 2 (FIG. 1) is about 80 ° C., and it is sent into the primary flow path 23 together with the pulverized coal, and each of the above-mentioned present inventions. Useful for cooling the V-shaped internal flame stabilizer 36 of the embodiment.
【0029】図4に示す微粉炭バーナに従来技術の平板
型内部保炎器を追設すると、バーナ出口雰囲気温度がよ
り高温になる。そのため、放射による平板型内部保炎器
への熱のフィードバックも大きく、平板型内部保炎器が
焼損する危険性が生ずる。しかも、図3の内部濃縮器3
7のような濃縮機構を持ったバーナの濃縮流側に内部保
炎器を設置した場合、微粉炭の巻き込みも多く、スラグ
付着の危険性も大きくなる。従って、外周保炎器として
用いられる微粉炭と空気混合流22に直交する方向に平
面を有する平板型ブラフボディ形状よりV型形状の保炎
器の方が、接触面積が増え、冷却効果を高めることがで
きる。When the flat type internal flame stabilizer of the prior art is added to the pulverized coal burner shown in FIG. 4, the burner outlet atmosphere temperature becomes higher. Therefore, the feedback of heat to the flat plate internal flame stabilizer due to radiation is also large, and there is a risk of burning the flat plate internal flame stabilizer. Moreover, the internal concentrator 3 of FIG.
When an internal flame stabilizer is installed on the concentrated flow side of a burner having a concentrating mechanism such as No. 7, pulverized coal is often entrained and the risk of slag adhesion increases. Therefore, the contact area of the V-shaped flame stabilizer is larger than that of the flat-plate bluff body shape having a plane in a direction orthogonal to the pulverized coal and air mixed flow 22 used as the outer peripheral flame stabilizer, and the cooling effect is enhanced. be able to.
【0030】以上の図1〜図3に示す本発明の実施例で
は、一次流路23にV型外周保炎器36を有しているバ
ーナを例に挙げたが、図5では、本発明のその他の実施
例として、図1〜図3に示す外周保炎器35のない内部
保炎器36のみを一次流路23内に設けたバーナを示
す。図5(図5(a)は断面図、図5(b)は火炉側か
ら見た正面図)に示すバーナは一次流路23内にV型リ
ング状の内部保炎器36を有するもので、ミル2から燃
焼用空気で搬送されてきた微粉炭流(微粉炭と空気の混
合流22)は一次流路23に送られる。この時の搬送空
気(一次空気)の温度は約80℃であり、V型内部保炎
器36を冷却する作用がある。In the embodiment of the present invention shown in FIGS. 1 to 3, the burner having the V-shaped outer peripheral flame stabilizer 36 in the primary flow path 23 is taken as an example, but in FIG. Another example of the burner is shown in FIGS. 1 to 3 in which only the internal flame stabilizer 36 without the outer flame stabilizer 35 is provided in the primary flow path 23. The burner shown in FIG. 5 (FIG. 5A is a cross-sectional view and FIG. 5B is a front view seen from the furnace side) has a V-shaped ring-shaped internal flame stabilizer 36 in the primary flow path 23. The pulverized coal stream (mixed stream 22 of pulverized coal and air) conveyed by combustion air from the mill 2 is sent to the primary flow path 23. At this time, the temperature of the carrier air (primary air) is about 80 ° C., which has the function of cooling the V-shaped internal flame stabilizer 36.
【0031】図2に示した実施例は、濃縮機能を有する
バーナにV型内部保炎器36を設置するものであった
が、図示していないが、バーナ部分へ旋回しながら搬送
され、そのときの固体粒子とガスの慣性力の差を利用し
た濃縮機能を有するバーナで、その濃縮流に包み込まれ
る位置、または濃縮流と希薄流の境界の位置にV型保炎
器を設置したものも本発明の範囲内のものである。In the embodiment shown in FIG. 2, the V-shaped internal flame stabilizer 36 is installed in the burner having a concentrating function, but although not shown, the V-shaped internal flame stabilizer 36 is conveyed while swirling to the burner portion. A burner having a concentrating function that utilizes the difference in inertial force between the solid particles and the gas, with a V-type flame stabilizer installed at the position where it is surrounded by the concentrated flow or at the boundary between the concentrated flow and the lean flow. It is within the scope of the present invention.
【0032】さらに、濃縮機能付きバーナのその他の実
施例として、ボイラ火炉への円筒形以外の微粉炭バーナ
も本発明の範囲内のものであり、そのバーナの火炉出口
に設置されたブラフボディ形状の保炎器でも焼損、高温
スラグ付着の問題がある。図6および図7に示す実施例
は、断面四角形の濃縮機能を有する固体燃料バーナを示
すが、そこに設置されたブラフボディ形状の保炎器も、
V型のものを使用して焼損、高温スラグ付着の問題の解
決を図ることができる。図6には一次流路23に微粉炭
と空気の混合流22の濃縮流22cと希薄流22dを仕
切る仕切板41を設置し、その仕切板41上にV型保炎
器40を設置した一例を示し(図6(a))はバーナの
一次流路23の断面図、図6(b)はバーナの一次流路
23をボイラ火炉側から見た図)、図7には一次流路2
3に微粉炭と空気の混合流22の濃縮流22cと希薄流
22dを仕切る仕切板41を設置し、その濃縮流22c
側にのみV型保炎器40を設置した一例を示す(図7
(a)はバーナの一次流路23の断面図、図7(b)は
バーナの一次流路23をボイラ火炉側から見た図、図7
(c)は図7(a)のA−A線の矢視図)。また、V型
保炎器36、40のV型形状の他に図8に示したように
断面コの字型、U型形状、半円形状のものなどを用いて
も良い。Further, as another embodiment of the burner with a concentrating function, a pulverized coal burner other than a cylindrical type for a boiler furnace is also within the scope of the present invention, and the shape of the bluff body installed at the furnace outlet of the burner. There is a problem of burnout and adhesion of high temperature slag even with the flame stabilizer. Although the embodiment shown in FIGS. 6 and 7 shows a solid fuel burner having a square section cross-section and having a concentration function, a bluff body-shaped flame stabilizer installed therein also
The V type can be used to solve the problems of burnout and high temperature slag adhesion. FIG. 6 shows an example in which a partition plate 41 for partitioning the concentrated flow 22c and the lean flow 22d of the mixed flow 22 of pulverized coal and air is installed in the primary flow path 23, and the V-shaped flame stabilizer 40 is installed on the partition plate 41. (FIG. 6 (a) is a cross-sectional view of the primary flow path 23 of the burner, FIG. 6 (b) is a view of the primary flow path 23 of the burner as seen from the boiler furnace side), and FIG.
3 is provided with a partition plate 41 for partitioning the concentrated flow 22c of the pulverized coal / air mixed flow 22 and the lean flow 22d.
An example in which the V-type flame stabilizer 40 is installed only on the side is shown (FIG. 7).
7A is a cross-sectional view of the primary flow passage 23 of the burner, FIG. 7B is a view of the primary flow passage 23 of the burner seen from the boiler furnace side, FIG.
(C) is a view taken along the line AA of FIG. 7 (a). Further, in addition to the V-shaped V-shaped flame stabilizers 36 and 40, a V-shaped flame stabilizer 36, 40 having a U-shaped cross section, a U-shaped shape, a semi-circular shape, or the like may be used as shown in FIG.
【0033】[0033]
【発明の効果】本発明の超低NOx微粉炭燃焼装置によ
れば、通常の微粉炭バーナで成し得なかったバーナ部で
の超低NOx化が内部保炎器の焼損、該内部保炎器への
スラグ付着無しに可能となり、脱硝装置におけるアンモ
ニア消費量を削減できる。According to the ultra-low NOx pulverized coal combustion apparatus of the present invention, the ultra-low NOx reduction in the burner portion, which cannot be achieved by the ordinary pulverized coal burner, causes burnout of the internal flame stabilizer and the internal flame holding. It is possible without adhering slag to the vessel, and it is possible to reduce the ammonia consumption in the denitration device.
【図1】 本発明の一実施例のV型内部保炎器を追設し
た超低NOxバーナ断面図と正面図である。FIG. 1 is a sectional view and a front view of an ultra-low NOx burner additionally provided with a V-type internal flame stabilizer according to an embodiment of the present invention.
【図2】 本発明の一実施例のV型内部保炎器を追設し
た濃縮型機能型低NOxバーナ断面図である。FIG. 2 is a sectional view of a concentrated functional low NOx burner additionally provided with a V-type internal flame stabilizer according to an embodiment of the present invention.
【図3】 本発明の一実施例のV型内部保炎器付き微粒
粉搬送配管を設置したバーナ断面図である。FIG. 3 is a sectional view of a burner in which a V-shaped internal flame stabilizer-equipped fine powder conveying pipe according to an embodiment of the present invention is installed.
【図4】 本発明の一実施例の微粉炭燃焼装置の系統図
である。FIG. 4 is a system diagram of a pulverized coal combustion apparatus according to an embodiment of the present invention.
【図5】 本発明の一実施例のV型内部保炎器付き低N
Oxバーナの断面図と正面図である。FIG. 5: Low N with V-type internal flame stabilizer according to one embodiment of the present invention
It is sectional drawing and front view of an Ox burner.
【図6】 本発明の一実施例の濃縮機能付きバーナを濃
縮流と希薄流に仕切った断面図と正面図である。6A and 6B are a sectional view and a front view in which the burner with a concentrating function of one embodiment of the present invention is divided into a concentrated flow and a lean flow.
【図7】 本発明の一実施例の濃縮機能付きバーナの濃
縮流側にV型保炎器を設置したバーナ断面図と正面図と
一部切断視図である。FIG. 7 is a sectional view, a front view, and a partial cutaway view of a burner in which a V-type flame stabilizer is installed on the concentrate flow side of a burner with a concentration function according to an embodiment of the present invention.
【図8】 本発明の一実施例の保炎器の断面形状を示す
図である。FIG. 8 is a view showing a sectional shape of a flame stabilizer according to an embodiment of the present invention.
【図9】 本発明の一実施例の保炎器のV型形状の開き
角度の冷却効果を示す図である。FIG. 9 is a diagram showing a cooling effect of a V-shaped opening angle of a flame stabilizer according to an embodiment of the present invention.
21…起動用バーナ、22…一次空気と微粉炭の混合
流、23…一次流路、25…二次空気、26…二次空気
流路、28…三次空気、29…三次空気流路、30、3
1…レジスタダンパ、32…火炉壁面、34…二次空気
旋回ベーン、35…外周保炎器、36、40…V型内部
保炎器、37…内部濃縮器、38、39…微粉炭と空気
混合流の搬送用配管、41…仕切板21 ... Start-up burner, 22 ... Mixed flow of primary air and pulverized coal, 23 ... Primary flow path, 25 ... Secondary air, 26 ... Secondary air flow path, 28 ... Tertiary air, 29 ... Tertiary air flow path, 30 Three
DESCRIPTION OF SYMBOLS 1 ... Register damper, 32 ... Furnace wall surface, 34 ... Secondary air swirling vane, 35 ... Peripheral flame stabilizer, 36, 40 ... V type internal flame stabilizer, 37 ... Internal concentrator, 38, 39 ... Pulverized coal and air Mixed flow transport pipe, 41 ... Partition plate
───────────────────────────────────────────────────── フロントページの続き (72)発明者 寳山 登 広島県呉市宝町3番36号 バブコック日立 株式会社呉研究所内 (72)発明者 森田 茂樹 広島県呉市宝町6番9号 バブコック日立 株式会社呉工場内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Noboru Miyama, No. 36 Takaracho, Kure City, Hiroshima Prefecture Babcock-Hitachi Co., Ltd., Kure Research Institute (72) Shigeki Morita, 6-9 Takaramachi, Kure City, Hiroshima Prefecture Babcock-Hitachi Stock Company Kure Factory
Claims (7)
る固気二相流が流れる流路と該固気二相流流路の火炉側
の出口部分に保炎器を有する固体燃料用バーナにおい
て、 固気二相流の流路内に設けられる保炎器の形状を固気二
相流の流路の上流側から下流側に向けて末広がり状にし
たことを特徴とする固体燃料用バーナ。1. A burner for solid fuel having a flow path through which a solid-gas two-phase flow composed of a solid fuel such as coal and a transport gas flows, and a flame stabilizer at the furnace-side outlet of the solid-gas two-phase flow path. In the above, the burner for solid fuel is characterized in that the shape of the flame stabilizer provided in the flow path of the solid-gas two-phase flow is widened toward the downstream side from the upstream side of the flow path of the solid-gas two-phase flow. .
る固気二相流が流れる流路を有する固体燃料用バーナに
おいて、 前記固気二相流の流路内に固気二相流の固体濃度の濃縮
装置を設け、固気二相流の流路を構成する壁面の火炉側
の出口部分の外周部に外周保炎器を、前記壁面内側の固
気二相流の流路内に形成される固気二相流の固体濃度の
濃縮流側に内部保炎器をそれぞれ設け、該内部保炎器の
形状を固気二相流の流路の上流側から下流側に向けて末
広がり状にしたことを特徴とする固体燃料用バーナ。2. A solid fuel burner having a flow path in which a solid-gas two-phase flow composed of a solid fuel such as coal and a transport gas flows, wherein a solid-gas two-phase flow is formed in the solid-gas two-phase flow path. A solid concentration concentrator is provided, and an outer peripheral flame stabilizer is provided at the outer peripheral portion of the outlet portion on the furnace side of the wall surface forming the solid-gas two-phase flow passage, and the solid-gas two-phase flow passage is formed inside the wall surface. Internal flame stabilizers are respectively provided on the solid-concentration-concentrated streams side of the solid-gas two-phase flow to be formed, and the shapes of the internal flame stabilizers spread from the upstream side to the downstream side of the flow path of the solid-gas two-phase flow. A burner for a solid fuel, which is characterized by being formed into a shape.
る固気二相流が流れる流路を有する固体燃料用バーナに
おいて、 前記固気二相流の流路内に固気二相流の固体濃度の濃縮
装置と固気二相流の流路を固体濃度の濃縮流と希薄流と
に分離する仕切部を設け、該仕切部の火炉側の出口部分
に保炎器を設け、該保炎器の形状を固気二相流の流路の
上流側から下流側に向けて末広がり状にしたことを特徴
とする固体燃料用バーナ。3. A solid fuel burner having a flow path through which a solid-gas two-phase flow composed of a solid fuel such as coal and a transport gas flows, wherein a solid-gas two-phase flow is formed in the solid-gas two-phase flow path. A solid concentration concentrator and a solid-gas two-phase flow channel are provided with a partition for separating the solid concentration concentrated flow and the dilute flow, and a flame stabilizer is provided at the furnace-side outlet of the partition. A burner for a solid fuel, characterized in that the shape of the flame is expanded toward the downstream side from the upstream side of the flow path of the solid-gas two-phase flow.
る固気二相流が流れる流路を有する固体燃料用バーナに
おいて、 前記固気二相流の流路内に固気二相流の固体濃度の濃縮
装置と固気二相流の流路を固体濃度の濃縮流と希薄流と
に分離する仕切部を設け、該前記固気二相流の流路内の
固体濃度の濃縮流が形成される固気二相流の流路の火炉
側の出口部分に保炎器を設け、該保炎器の形状を固気二
相流の流路の上流側から下流側に向けて末広がり状にし
たことを特徴とする固体燃料用バーナ。4. A solid fuel burner having a flow path through which a solid-gas two-phase flow composed of a solid fuel such as coal and a transport gas flows, wherein a solid-gas two-phase flow of the solid-gas two-phase flow is formed in the flow path of the solid-gas two-phase flow. A partitioning portion for separating the solid concentration concentrating device and the solid-gas two-phase flow channel into a solid concentration concentrated flow and a dilute flow is provided, and the solid concentration concentrated flow in the solid-gas two-phase flow channel is A flame stabilizer is provided at the furnace-side outlet of the solid-gas two-phase flow channel to be formed, and the shape of the flame stabilizer is widened from the upstream side to the downstream side of the solid-gas two-phase flow channel. A burner for solid fuel, characterized in that
微粉炭と粗粉炭にそれぞれ粉砕して、各々の粉状の固体
燃料と輸送用気体とからなる固気二相流が流れる流路を
有する固体燃料用バーナにおいて、 固気二相流の流路内に微粉炭を含有する流路と粗粉炭を
含有する流路に二分する仕切部を設け、該仕切部の火炉
側の出口部分に保炎器を設け、該保炎器の形状を固気二
相流の流路の上流側から下流側に向けて末広がり状にし
たことを特徴とする固体燃料用バーナ。5. A flow path through which a solid fuel such as coal pulverized by a mill is pulverized into pulverized coal and pulverized coal, respectively, and a solid-gas two-phase flow composed of the pulverized solid fuel and the transport gas flows. In a burner for solid fuel having a solid-gas two-phase flow channel, a partition section that divides into a channel containing pulverized coal and a channel containing coarse coal is provided at the furnace-side outlet of the partition section. A burner for a solid fuel, wherein a flame stabilizer is provided in the burner, and the shape of the flame stabilizer is widened toward the downstream side from the upstream side of the flow path of the solid-gas two-phase flow.
型、コの字型形状または半円形状であることを特徴とす
る請求項1ないし5のいずれかに記載の固体燃料用バー
ナ。6. The flame spreader has a U-shaped cross section and a V-shaped cross section.
The burner for solid fuel according to any one of claims 1 to 5, which has a mold shape, a U-shape, or a semicircular shape.
た固体燃料用バーナを備えたことを特徴とする微粉炭燃
焼装置。7. A pulverized coal combustion apparatus comprising the burner for solid fuel according to any one of claims 1 to 6.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2912095A JPH08219415A (en) | 1995-02-17 | 1995-02-17 | Burner for solid fuel and pulverized coal firing equipment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2912095A JPH08219415A (en) | 1995-02-17 | 1995-02-17 | Burner for solid fuel and pulverized coal firing equipment |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH08219415A true JPH08219415A (en) | 1996-08-30 |
Family
ID=12267456
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2912095A Pending JPH08219415A (en) | 1995-02-17 | 1995-02-17 | Burner for solid fuel and pulverized coal firing equipment |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH08219415A (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009192204A (en) * | 2008-02-18 | 2009-08-27 | Mitsubishi Heavy Ind Ltd | Burner structure |
JP2009299977A (en) * | 2008-06-12 | 2009-12-24 | Ihi Corp | Burner for pulverized fuel |
WO2011074281A1 (en) * | 2009-12-17 | 2011-06-23 | 三菱重工業株式会社 | Solid fuel burner and solid fuel boiler |
WO2011077762A1 (en) * | 2009-12-22 | 2011-06-30 | 三菱重工業株式会社 | Combustion burner and boiler provided with combustion burner |
CN103868098A (en) * | 2012-12-12 | 2014-06-18 | 中国人民解放军国防科学技术大学 | Film cooled flame stabilizer |
WO2016158473A1 (en) * | 2015-03-31 | 2016-10-06 | 三菱日立パワーシステムズ株式会社 | Combustion burner and boiler |
US20160356490A1 (en) * | 2011-04-01 | 2016-12-08 | Mitsubishi Heavy Industries, Ltd. | Combustion burner, solid-fuel-combustion burner, solid-fuel-combustion boiler, boiler, and method for operating boiler |
CN108302525A (en) * | 2018-03-09 | 2018-07-20 | 山西大学 | A kind of flow area adjustable DC coal burner |
-
1995
- 1995-02-17 JP JP2912095A patent/JPH08219415A/en active Pending
Cited By (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009192204A (en) * | 2008-02-18 | 2009-08-27 | Mitsubishi Heavy Ind Ltd | Burner structure |
JP2009299977A (en) * | 2008-06-12 | 2009-12-24 | Ihi Corp | Burner for pulverized fuel |
TWI449867B (en) * | 2009-12-17 | 2014-08-21 | Mitsubishi Heavy Ind Ltd | A solid fuel burner and a method of operating the same, and a solid fuel combustion boiler |
WO2011074281A1 (en) * | 2009-12-17 | 2011-06-23 | 三菱重工業株式会社 | Solid fuel burner and solid fuel boiler |
US10281142B2 (en) | 2009-12-17 | 2019-05-07 | Mitsubishi Heavy Industries, Ltd. | Solid-fuel-fired burner and solid-fuel-fired boiler |
US9869469B2 (en) | 2009-12-22 | 2018-01-16 | Mitsubishi Heavy Industries, Ltd. | Combustion burner and boiler including the same |
JP2011149676A (en) * | 2009-12-22 | 2011-08-04 | Mitsubishi Heavy Ind Ltd | Combustion burner and boiler with the combustion burner |
WO2011077762A1 (en) * | 2009-12-22 | 2011-06-30 | 三菱重工業株式会社 | Combustion burner and boiler provided with combustion burner |
CN102414512A (en) * | 2009-12-22 | 2012-04-11 | 三菱重工业株式会社 | Combustion burner and boiler provided with combustion burner |
US9127836B2 (en) | 2009-12-22 | 2015-09-08 | Mitsubishi Heavy Industries, Ltd. | Combustion burner and boiler including the same |
CN103644565A (en) * | 2009-12-22 | 2014-03-19 | 三菱重工业株式会社 | Combustion burner and boiler including the same |
US20160356490A1 (en) * | 2011-04-01 | 2016-12-08 | Mitsubishi Heavy Industries, Ltd. | Combustion burner, solid-fuel-combustion burner, solid-fuel-combustion boiler, boiler, and method for operating boiler |
US20160356489A1 (en) * | 2011-04-01 | 2016-12-08 | Mitsubishi Heavy Industries, Ltd. | Combustion burner, solid-fuel-combustion burner, solid-fuel-combustion boiler, boiler, and method for operating boiler |
CN103868098B (en) * | 2012-12-12 | 2017-02-08 | 中国人民解放军国防科学技术大学 | Film cooled flame stabilizer |
CN103868098A (en) * | 2012-12-12 | 2014-06-18 | 中国人民解放军国防科学技术大学 | Film cooled flame stabilizer |
JP2016194379A (en) * | 2015-03-31 | 2016-11-17 | 三菱日立パワーシステムズ株式会社 | Combustion burner and boiler |
WO2016158473A1 (en) * | 2015-03-31 | 2016-10-06 | 三菱日立パワーシステムズ株式会社 | Combustion burner and boiler |
US10605455B2 (en) | 2015-03-31 | 2020-03-31 | Mitsubishi Hitachi Power Systems, Ltd. | Combustion burner and boiler |
CN108302525A (en) * | 2018-03-09 | 2018-07-20 | 山西大学 | A kind of flow area adjustable DC coal burner |
CN108302525B (en) * | 2018-03-09 | 2023-09-22 | 山西大学 | Flow area adjustable direct-current pulverized coal burner |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5685242A (en) | Pulverized coal combustion burner | |
FI98658C (en) | Burner for pulverized carbon, boiler for pulverized carbon and method for combustion of pulverized carbon | |
CA2231403C (en) | Combustion burner and combustion apparatus with the same | |
JP5897363B2 (en) | Pulverized coal biomass mixed burner | |
JP5386230B2 (en) | Fuel burner and swirl combustion boiler | |
US5429060A (en) | Apparatus for use in burning pulverized fuel | |
JPH08219415A (en) | Burner for solid fuel and pulverized coal firing equipment | |
JPH11281010A (en) | Solid fuel combustion burner and solid fuel combustor | |
JPH09203505A (en) | Burner for solid fuel, and solid combustion system | |
JPH10220707A (en) | Burner for powdery solid fuel and combustion apparatus therewith | |
JPH08135919A (en) | Combustion device | |
JP3830582B2 (en) | Pulverized coal combustion burner | |
JPH08110014A (en) | Fine powder coal combustor | |
JP2010270990A (en) | Fuel burner and turning combustion boiler | |
JP3765429B2 (en) | Pulverized coal burner | |
JP2954628B2 (en) | Pulverized coal burner | |
JPH11148610A (en) | Solid fuel combustion burner and solid fuel combustion apparatus | |
JP2740201B2 (en) | Pulverized coal burner | |
GB2600186A (en) | Reverse-jet pulverized coal burner with preheating on annular wall | |
JP2002048306A (en) | Combustion burner and combustion device having the burner | |
JP2654386B2 (en) | Combustion equipment | |
JPH08285231A (en) | Low nox pulverized coal burner and pulverized coal combustion device | |
JP3784587B2 (en) | Solid fuel combustion burner with low NOx and combustion accelerator | |
JPH0451724B2 (en) | ||
JPH0375403A (en) | Pulverized coal burner |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050816 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20060110 |