JPS6321318Y2 - - Google Patents

Info

Publication number
JPS6321318Y2
JPS6321318Y2 JP1981174175U JP17417581U JPS6321318Y2 JP S6321318 Y2 JPS6321318 Y2 JP S6321318Y2 JP 1981174175 U JP1981174175 U JP 1981174175U JP 17417581 U JP17417581 U JP 17417581U JP S6321318 Y2 JPS6321318 Y2 JP S6321318Y2
Authority
JP
Japan
Prior art keywords
gas
flow rate
carrier gas
pressure
pressure vessel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1981174175U
Other languages
Japanese (ja)
Other versions
JPS5882843U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP17417581U priority Critical patent/JPS5882843U/en
Publication of JPS5882843U publication Critical patent/JPS5882843U/en
Application granted granted Critical
Publication of JPS6321318Y2 publication Critical patent/JPS6321318Y2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Sampling And Sample Adjustment (AREA)
  • Feeding, Discharge, Calcimining, Fusing, And Gas-Generation Devices (AREA)

Description

【考案の詳細な説明】 本考案は標準ガス発生装置に係り、殊に常温に
おいて液状を呈している純物質を担体ガスに同伴
させ、純物質の濃度が一定のガスになし、且つこ
の純物質濃度を適宜に変化せしめ得る標準ガス発
生装置に係る。
[Detailed description of the invention] The present invention relates to a standard gas generator, in particular, which entrains a pure substance that is in a liquid state at room temperature to a carrier gas to form a gas with a constant concentration of the pure substance, and This invention relates to a standard gas generator that can change the concentration as appropriate.

純物質、例えば各種の有機溶剤や精製水をガス
化する装置としては、担体ガスと液状純物質とを
大気圧下で気液接触させ、純物質を担体ガスに同
伴させる装置が従来から知られている。
As an apparatus for gasifying pure substances, such as various organic solvents and purified water, there have been conventionally known apparatuses in which a carrier gas and a liquid pure substance are brought into gas-liquid contact under atmospheric pressure, and the pure substance is entrained in the carrier gas. ing.

この種型式のガス化装置を利用する従来の標準
ガス発生装置においては、担体ガスと液状純物質
とを気液接触させる容器を恒温槽内に配置し、濃
度が異なる標準ガスの調製は、この恒温槽内の温
度を変化させることにより行つている。従つて、
濃度変動のない一定のガスを連続して発生させる
ためには、恒温槽が高性能なものであること、即
ち厳密な温度制御及び管理の可能なものであるこ
とを必要とし、その結果装置コストの上昇を招く
点、濃度調整が専ら恒温槽の温度制御に依存して
いるために、濃度の調整幅が比較的狭い点に問題
を有している。
In conventional standard gas generators using this type of gasifier, a container for bringing carrier gas and liquid pure substance into gas-liquid contact is placed in a thermostatic chamber, and standard gases with different concentrations are prepared using this method. This is done by changing the temperature inside a constant temperature bath. Therefore,
In order to continuously generate a constant gas with no concentration fluctuations, the constant temperature chamber must be of high performance, that is, it must be capable of strict temperature control and management, resulting in lower equipment costs. There are problems in that the range of concentration adjustment is relatively narrow because the concentration adjustment depends exclusively on temperature control of the thermostatic chamber.

従つて、本考案の目的は、常温において液状の
純物質を対象として標準ガス化するものであつ
て、装置コストが比較的廉価であり、純物質濃度
の調整幅が広汎な標準ガス発生装置を提供するこ
とにある。
Therefore, the purpose of the present invention is to create a standard gas generation device for standard gasification of liquid pure substances at room temperature, which is relatively inexpensive, and has a wide adjustment range for the concentration of pure substances. It is about providing.

これらの目的を達成するための本考案による標
準ガス発生装置は、基本的には、恒温槽の温度は
一定として温度調整を行わず、これによつて高級
な恒温槽の必要性を廃し、又発生させる標準ガス
の濃度調整は担体ガスと液状純物質とが気液接触
する部位における圧力制御や、稀釈により行い、
これによつて濃度の調整幅を拡大させるのであ
る。
In order to achieve these objectives, the standard gas generator of the present invention basically maintains a constant temperature in the thermostatic chamber without adjusting the temperature, thereby eliminating the need for a high-grade thermostatic chamber, and The concentration of the standard gas to be generated is adjusted by pressure control and dilution at the part where the carrier gas and the liquid pure substance come into contact with each other.
This expands the density adjustment range.

即ち、本考案による標準ガス発生装置は加圧下
に担体ガスを収容している担体ガス源と、該担体
ガス源に接続されたレギユレータと、該レギユレ
ータを介して導入される所定圧に調整された上記
担体ガスと気液接触する液状の純物質を収容した
圧力容器と、該圧力容器を収容している恒温槽
と、上記圧力容器から流出する純物質を飽和状態
に含有した純物質飽和担体ガスの流量を調整する
流量調整弁と、該流量調整弁を流過した純物質飽
和担体ガスの流量を測定する流量計と、加圧下に
稀釈ガスを収容している稀釈ガス源と、該稀釈ガ
ス源からの稀釈ガスの流量を調整する流量調整弁
と、該流量調整弁を流過する稀釈ガスの流量を測
定する流量計と、該流量計を流過した稀釈ガスを
純物質飽和担体ガス用の上記流量計を通過したガ
スに混合させる混合機とを備えていることを特徴
としている。
That is, the standard gas generator according to the present invention includes a carrier gas source containing a carrier gas under pressure, a regulator connected to the carrier gas source, and a predetermined pressure introduced through the regulator. A pressure vessel containing a liquid pure substance in gas-liquid contact with the carrier gas, a thermostatic chamber containing the pressure vessel, and a pure substance saturated carrier gas containing the pure substance in a saturated state flowing out from the pressure vessel. a flow meter for measuring the flow rate of the pure saturated carrier gas passing through the flow control valve; a dilution gas source containing a dilution gas under pressure; and a dilution gas source containing a dilution gas under pressure. A flow rate adjustment valve that adjusts the flow rate of the dilution gas from a source, a flow meter that measures the flow rate of the dilution gas that passes through the flow rate adjustment valve, and a flow meter that measures the flow rate of the dilution gas that has passed through the flow meter, and a flow meter that measures the flow rate of the dilution gas that has passed through the flow meter for use as a pure substance saturated carrier gas. The present invention is characterized by comprising a mixer for mixing the gas that has passed through the flowmeter.

本考案による標準ガス発生装置において、担体
ガスと稀釈ガスとは同一種類のものであることが
でき、この場合には担体ガス源と稀釈ガス源とが
共通のものであつても差支えない。
In the standard gas generator according to the present invention, the carrier gas and the diluent gas may be of the same type, and in this case, the carrier gas source and the diluent gas source may be the same.

本考案による標準ガス発生装置によれば、レギ
ユレータは単なる圧力制御を行うためのみなら
ず、調製すべき標準ガスの濃度を可変的に制御す
るガス濃度コントローラとしての役目を果たすの
で、濃度の調整幅が拡大し、場合によつては稀釈
ガスを混合し得るので調整幅が更に拡大するので
ある。
According to the standard gas generator of the present invention, the regulator not only performs simple pressure control but also serves as a gas concentration controller that variably controls the concentration of the standard gas to be prepared, so the concentration adjustment range is In some cases, diluent gas can be mixed in, which further expands the adjustment range.

次に、本考案による標準ガス発生装置の一実施
形について添付図面を参照しつつ説明する。
Next, an embodiment of the standard gas generator according to the present invention will be described with reference to the accompanying drawings.

図面において、参照数字1にて示されているの
は本考案による標準ガス発生装置であり、2は担
体ガス源であつて窒素ガス、空気等を加圧下に収
容しているボンベであることができる。3は上記
の担体ガス源2に接続されたレギユレータであ
り、例えば2次側における担体ガスの圧力を一定
に保持する圧力制御弁から構成されている。この
レギユレータ3の2次側は圧力計4を介して、恒
温槽5内に収容された圧力容器6の内部と連通し
ている。
In the drawings, reference numeral 1 indicates a standard gas generator according to the present invention, and 2 indicates a carrier gas source, which is a cylinder containing nitrogen gas, air, etc. under pressure. can. Reference numeral 3 denotes a regulator connected to the carrier gas source 2, and is composed of, for example, a pressure control valve that maintains the pressure of the carrier gas on the secondary side at a constant level. The secondary side of the regulator 3 communicates with the inside of a pressure vessel 6 housed in a constant temperature bath 5 via a pressure gauge 4.

この圧力容器6はガラス球7及び標準ガス化さ
れるべき物質であり常温で液状の純物質8を収容
している。この純物質としては精製水、有機溶
剤、有機酸等であることができる。純物質が精製
水であつて標準水蒸気を発生させる場合には、圧
力容器6はアクリル樹脂製の本体とアルミニウム
製の蓋体とで構成されることができ、又各種の有
機溶剤を標準ガス化する場合には全体が耐圧ガラ
スで構成される。圧力容器6に収容されている上
記のガラス球7は担体ガス源2からの担体ガスと
純物質8との気液接触率を向上させるためのもの
であり、ガラス球に限定されるべきものではな
く、他の適宜の充填物に代替することができる。
担体ガス源2からの担体ガスと純物質8との気液
接触により圧力容器6内に発生した純物質飽和担
体ガスは流量調整弁9及び流量計10を通過して
混合機11に至る。この混合機は3ポート弁のよ
うな部材であることができる。
This pressure vessel 6 contains a glass bulb 7 and a pure substance 8 which is a standard substance to be gasified and is liquid at room temperature. This pure substance can be purified water, organic solvents, organic acids, etc. When the pure substance is purified water and standard steam is to be generated, the pressure vessel 6 can be constructed of an acrylic resin main body and an aluminum lid, and can also be used to convert various organic solvents into standard gases. In this case, the entire structure is made of pressure-resistant glass. The above glass bulb 7 housed in the pressure vessel 6 is intended to improve the gas-liquid contact ratio between the carrier gas from the carrier gas source 2 and the pure substance 8, and should not be limited to glass bulbs. Instead, it can be replaced with other suitable fillers.
The pure substance saturated carrier gas generated in the pressure vessel 6 by the gas-liquid contact between the carrier gas from the carrier gas source 2 and the pure substance 8 passes through the flow rate regulating valve 9 and the flow meter 10 and reaches the mixer 11 . This mixer can be a 3-port valve-like element.

一方、加圧下に稀釈ガスを収容しているボンベ
としての稀釈ガス源12が設けられており、この
稀釈ガス源は流量調整弁13及び流量計14を介
して上記の混合機11に接続されている。稀釈ガ
スは担体ガス源2における担体ガスと同種又は異
種のものであることができ、同種の場合には稀釈
ガス源12を設ける必要性は必ずしもなく、流量
調整弁13が配管を介して担体ガス源2に接続さ
れていることもできる。
On the other hand, a dilution gas source 12 is provided as a cylinder containing dilution gas under pressure, and this dilution gas source is connected to the mixer 11 through a flow rate regulating valve 13 and a flow meter 14. There is. The diluent gas can be of the same type or different type from the carrier gas in the carrier gas source 2, and in the case of the same type, it is not necessarily necessary to provide the dilution gas source 12, and the flow rate regulating valve 13 is connected to the carrier gas through piping. It can also be connected to source 2.

本考案による標準ガス発生装置1は上記のよう
に構成されており、圧力計4を見ながらレギユレ
ータ3を調整することにより担体ガス源2から圧
力容器6に流入する担体ガスの圧力が変化し、延
いては圧力容器6内における担体ガスと純物質8
との気液接触率が変化して圧力容器6内で発生す
る純物質飽和担体ガス中における純物質の濃度が
変化する。即ち、レギユレータ3を或る設定位置
にセツトして圧力容器6に送られる担体ガスの圧
力を或る特定値になせば、或る一定濃度の純物質
飽和担体ガスが圧力容器6内に発生し、又レギユ
レータ3を別の或る設定位置にセツトすれば、別
の或る一定濃度の純物質飽和担体ガスが圧力容器
6内に発生することになり、各種濃度の標準ガス
を調整することができる。このようにして調製さ
れたガスであつて、純物質を一定濃度で含有して
いる純物質飽和担体ガスは、これを配管15を経
て導出させることにより、標準ガスとして、その
まま用いることができる。しかしながら、本考案
による標準ガス発生装置においては、稀釈機構が
付設されているので混合機11により純物質飽和
担体ガスを更に稀釈した上で配管15を経て導出
させ、標準ガスとして用いることができ、従つて
標準ガスの濃度調整幅を著しく拡大することがで
きる。尚、流量調整弁9及び13が配置されてい
るので、標準ガスの濃度制御を行う場合にも、流
量を一定に制御することが可能となつている。
The standard gas generator 1 according to the present invention is constructed as described above, and by adjusting the regulator 3 while watching the pressure gauge 4, the pressure of the carrier gas flowing from the carrier gas source 2 into the pressure vessel 6 is changed. In turn, the carrier gas and pure substance 8 in the pressure vessel 6
The concentration of the pure substance in the pure substance-saturated carrier gas generated in the pressure vessel 6 changes as the gas-liquid contact rate with the carrier gas changes. That is, if the regulator 3 is set at a certain setting position and the pressure of the carrier gas sent to the pressure vessel 6 is made to a certain specific value, a carrier gas saturated with a pure substance at a certain concentration will be generated in the pressure vessel 6. If the regulator 3 is set to another set position, another constant concentration of pure substance saturated carrier gas will be generated in the pressure vessel 6, and standard gases of various concentrations can be adjusted. can. The pure substance saturated carrier gas, which is a gas prepared in this manner and contains a pure substance at a constant concentration, can be used as it is as a standard gas by leading it out through the pipe 15. However, in the standard gas generator according to the present invention, since a dilution mechanism is attached, the pure substance saturated carrier gas can be further diluted by the mixer 11 and then led out through the pipe 15 to be used as the standard gas. Therefore, the standard gas concentration adjustment range can be significantly expanded. In addition, since the flow rate adjustment valves 9 and 13 are arranged, it is possible to control the flow rate to be constant even when controlling the concentration of the standard gas.

次に、本考案による標準ガス発生装置1の操作
について説明する、但しこの場合には担体ガス及
び稀釈ガスとして窒素ガスが、純物質として試薬
等級の四塩化炭素が選択され、又恒温槽5が、延
いては圧力容器5内の温度がt℃に保たれている
ものとする。
Next, the operation of the standard gas generator 1 according to the present invention will be described, in which nitrogen gas is selected as the carrier gas and diluent gas, reagent grade carbon tetrachloride is selected as the pure substance, and the constant temperature bath 5 is selected. Assume that the temperature inside the pressure vessel 5 is maintained at t°C.

この状態において、流量調整弁9を閉じてお
き、レギユレータ3を調整して担体ガス源2から
窒素ガスをP気圧で圧力容器6内に導入させる。
圧力容器6の底部に導かれた窒素ガスは四塩化炭
素8と気液接触しつつ圧力容器6内を上昇する。
圧力容器6内に存在するガラス球7は窒素ガスと
四塩化炭素8との気液接触に際して接触時間及び
接触面積を大になし、接触効率を向上させる。
In this state, the flow rate regulating valve 9 is closed and the regulator 3 is adjusted to introduce nitrogen gas from the carrier gas source 2 into the pressure vessel 6 at P atmospheric pressure.
The nitrogen gas introduced to the bottom of the pressure vessel 6 rises within the pressure vessel 6 while coming into gas-liquid contact with carbon tetrachloride 8 .
The glass bulb 7 present in the pressure vessel 6 increases the contact time and contact area during the gas-liquid contact between the nitrogen gas and the carbon tetrachloride 8, thereby improving the contact efficiency.

窒素ガスと四塩化炭素8との気液接触により、
圧力容器6内の上部には、該圧力容器内の圧力に
応じた飽和濃度の四塩化炭素を同伴した窒素ガス
が貯留する。ここで、t℃における四塩化炭素の
飽和蒸気圧をP(mmHg)、レギユレータ3により
設定される圧力計4のゲージ圧をPo(Kg/cm2)と
すれば、圧力容器6内の上部に存在する四塩化炭
素飽和窒素ガス中の四塩化炭素濃度Coは次式に
より表すことができる。
Through gas-liquid contact between nitrogen gas and carbon tetrachloride 8,
Nitrogen gas containing carbon tetrachloride at a saturation concentration corresponding to the pressure within the pressure vessel 6 is stored in the upper part of the pressure vessel 6 . Here, if the saturated vapor pressure of carbon tetrachloride at t°C is P (mmHg) and the gauge pressure of the pressure gauge 4 set by the regulator 3 is Po (Kg/cm 2 ), then The carbon tetrachloride concentration Co in the carbon tetrachloride-saturated nitrogen gas present can be expressed by the following formula.

Co(%)=(P/大気圧)×(大気圧/大気圧+
Po×100 (1) この式(1)に関して、具体的に数値を代入して説
明するに、例えば恒温槽5が、延いては圧力容器
6内の温度が20℃と仮定すれば、この温度におけ
る四塩化炭素の飽和蒸気圧は87mmHgであり、又
圧力計4のゲージ圧(Po)が0.5Kg/cm2に設定さ
れれば、生成する飽和ガス中の四塩化炭素濃度
(Co1)は Co1=(87/760)×(1.04/1.04+0.5)×100=
7.73(%) となる。一方、ゲージ圧(Po)が10.0Kg/cm2に設
定されれば、四塩化炭素濃度(Co2)は Co2=(87/760)×(1.04/1.04+10)×100=
1.08(%) となる。
Co (%) = (P/atmospheric pressure) x (atmospheric pressure/atmospheric pressure +
Po×100 (1) To specifically explain this formula (1) by substituting numerical values, for example, assuming that the temperature in the constant temperature bath 5 and, by extension, the pressure vessel 6 is 20°C, then this temperature The saturated vapor pressure of carbon tetrachloride is 87 mmHg in Co 1 = (87/760) x (1.04/1.04 + 0.5) x 100 =
7.73 (%). On the other hand, if the gauge pressure (Po) is set to 10.0Kg/cm 2 , the carbon tetrachloride concentration (Co 2 ) is Co 2 = (87/760) x (1.04/1.04 + 10) x 100 =
It becomes 1.08 (%).

従つて、圧力容器6内に発生する四塩化炭素飽
和窒素ガスにおける四塩化炭素濃度は、レギユレ
ータ3を調整して担体ガス源2から圧力容器6に
送られる窒素ガス(担体ガス)の圧力を変化させ
るだけでも比較的大幅に制御できることが明らか
である。
Therefore, the carbon tetrachloride concentration in the carbon tetrachloride-saturated nitrogen gas generated in the pressure vessel 6 can be adjusted by adjusting the regulator 3 to change the pressure of the nitrogen gas (carrier gas) sent from the carrier gas source 2 to the pressure vessel 6. It is clear that a relatively large amount of control can be achieved by simply controlling the

次に、流量調整弁9を開き、圧力容器6内に発
生した四塩化炭素飽和窒素ガスを流量計10を経
て混合機11に導くと共に、流量調整弁13を開
いて稀釈ガス源12から流量計14を経て窒素ガ
スを上記の混合機11に導き上記の四塩化炭素飽
和窒素ガスを稀釈して所望濃度の標準ガスとな
し、配管15を経て導出させる。
Next, the flow rate adjustment valve 9 is opened to guide the carbon tetrachloride saturated nitrogen gas generated in the pressure vessel 6 to the mixer 11 via the flow meter 10, and the flow rate adjustment valve 13 is opened to direct the carbon tetrachloride saturated nitrogen gas generated in the pressure vessel 6 to the flow meter 11. Nitrogen gas is introduced into the mixer 11 through a pipe 14, and the carbon tetrachloride saturated nitrogen gas is diluted into a standard gas having a desired concentration, which is then led out through a pipe 15.

この場合に四塩化炭素飽和窒素ガスの流量を
Q1(/min)とし、稀釈後の流量をQ2(/
min)とすると、稀釈後のガス中の四塩化炭素濃
度C1は下記の式で表される。
In this case, the flow rate of carbon tetrachloride saturated nitrogen gas is
Let Q 1 (/min) and the flow rate after dilution be Q 2 (/min).
min), the carbon tetrachloride concentration C 1 in the diluted gas is expressed by the following formula.

C1(ppm)=(P/大気圧)×(大気圧/大気圧
+Po)×(Q1/Q2)×106 (2) この式(2)に関して、式(1)と同様に具体的に数値
を代入して説明するに、例えば恒温槽5が、延い
ては圧力容器6内の温度が20℃と仮定すれば、こ
の温度における四塩化炭素の飽和蒸気圧は87mm
Hgであり、又圧力計4のゲージ圧(Po)が0.5
Kg/cm2に設定され、更に四塩化炭素飽和窒素ガス
の流量をQ1=400(ml/min)とし、稀釈後の流量
をQ2=30(/min)とすれば、稀釈後のガス中
の四塩化炭素濃度(C1a)は C1a=(87/760)×(1.04/1.04+0.5)×(0.4/
30)×106=1031(ppm) となる。一方、ゲージ圧(Po)が10.0Kg/cm2に設
定され、Q1=200(ml/min)とし、稀釈後の流量
をQ2=30(/min)とすれば、四塩化炭素濃度
(C1b)は C1b=(87/760)×(1.40/1.04+10)×(0.2/
30)×106=71.9(ppm) となる。
C 1 (ppm) = (P/atmospheric pressure) x (atmospheric pressure/atmospheric pressure + Po) x (Q 1 /Q 2 ) x 10 6 (2) Regarding this equation (2), as with equation (1), To explain this by substituting numerical values, for example, assuming that the temperature in the constant temperature bath 5 and, by extension, the pressure vessel 6 is 20°C, the saturated vapor pressure of carbon tetrachloride at this temperature is 87 mm.
Hg, and the gauge pressure (Po) of pressure gauge 4 is 0.5
Kg/cm 2 , and if the flow rate of carbon tetrachloride saturated nitrogen gas is Q 1 = 400 (ml/min) and the flow rate after dilution is Q 2 = 30 (/min), the gas after dilution is The carbon tetrachloride concentration (C 1 a) in
30) × 10 6 = 1031 (ppm). On the other hand, if the gauge pressure (Po) is set to 10.0 Kg/cm 2 , Q 1 = 200 (ml/min), and the flow rate after dilution is Q 2 = 30 (/min), then the carbon tetrachloride concentration ( C 1 b) is C 1 b = (87/760) x (1.40/1.04 + 10) x (0.2/
30) × 10 6 = 71.9 (ppm).

叙上のように、本考案による標準ガス発生装置
を用いれば、圧力容器6への担体ガスの導入圧力
をレギユレータ3で調整することによつて生成す
る純物質飽和担体ガス中の純物質濃度を大幅に変
化させることができ、稀釈ガスを用いることによ
り濃度の調整幅を更に拡大させることができ、稀
釈ガスを用いる場合にも、稀釈後の純物質濃度の
設定は純物質飽和担体ガスの流量調整弁9及び稀
釈ガスの流量調整弁13を操作することにより実
施できるので、極めて簡単である。
As mentioned above, if the standard gas generator according to the present invention is used, the concentration of pure substances in the pure substance-saturated carrier gas produced can be controlled by adjusting the pressure at which the carrier gas is introduced into the pressure vessel 6 using the regulator 3. By using a dilution gas, the range of concentration adjustment can be further expanded. Even when using a dilution gas, the pure substance concentration after dilution can be set by changing the flow rate of the pure substance saturated carrier gas. This is extremely simple since it can be carried out by operating the adjustment valve 9 and the dilution gas flow rate adjustment valve 13.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本考案による標準ガス発生装置を略示す
るブロツク図である。 1……標準ガス発生装置、2……担体ガス源、
3……レギユレータ、5……恒温槽、6……圧力
容器、8……純物質(標準ガス化用の物質)、9,
13……流量調整弁、10,14……流量計、1
1……混合機、12……稀釈ガス源。
The drawing is a block diagram schematically illustrating a standard gas generator according to the present invention. 1...Standard gas generator, 2...Carrier gas source,
3... Regulator, 5... Constant temperature chamber, 6... Pressure vessel, 8... Pure substance (standard gasification substance), 9,
13...Flow rate adjustment valve, 10, 14...Flowmeter, 1
1... mixer, 12... dilution gas source.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 加圧下に担体ガスを収容している担体ガス源
と、該担体ガス源に接続されたレギユレータと、
該レギユレータを介して導入される所定圧に調整
された上記担体ガスと気液接触する液状の純物質
を収容した圧力容器と、該圧力容器を収容してい
る恒温槽と、上記圧力容器から流出する純物質を
飽和状態に含有した純物質飽和担体ガスの流量を
調整する流量調整弁と、該流量調整弁を流過した
純物質飽和担体ガスの流量を測定する流量計と、
加圧下に稀釈ガスを収容している稀釈ガス源と、
該稀釈ガス源からの稀釈ガスの流量を調整する流
量調整弁と、該流量調整弁を流過する稀釈ガスの
流量を測定する流量計と、該流量計を流過した稀
釈ガスを純物質飽和担体ガス用の上記流量計を通
過したガスに混合させる混合機とを備えているこ
とを特徴とする、標準ガス発生装置。
a carrier gas source containing a carrier gas under pressure; and a regulator connected to the carrier gas source;
A pressure vessel containing a liquid pure substance that comes into gas-liquid contact with the carrier gas introduced through the regulator and adjusted to a predetermined pressure, a constant temperature bath housing the pressure vessel, and a pressure vessel flowing out from the pressure vessel. a flow rate adjustment valve that adjusts the flow rate of the pure substance saturated carrier gas containing the pure substance in a saturated state; a flow meter that measures the flow rate of the pure substance saturated carrier gas that has passed through the flow rate adjustment valve;
a diluent gas source containing a diluent gas under pressure;
a flow rate adjustment valve that adjusts the flow rate of the dilution gas from the dilution gas source; a flow meter that measures the flow rate of the dilution gas that passes through the flow rate adjustment valve; and a flow meter that measures the flow rate of the dilution gas that passes through the flow meter; A standard gas generator, characterized in that it is equipped with a mixer that mixes the gas that has passed through the flow meter for carrier gas.
JP17417581U 1981-11-25 1981-11-25 Standard gas generator Granted JPS5882843U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17417581U JPS5882843U (en) 1981-11-25 1981-11-25 Standard gas generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17417581U JPS5882843U (en) 1981-11-25 1981-11-25 Standard gas generator

Publications (2)

Publication Number Publication Date
JPS5882843U JPS5882843U (en) 1983-06-04
JPS6321318Y2 true JPS6321318Y2 (en) 1988-06-13

Family

ID=29966137

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17417581U Granted JPS5882843U (en) 1981-11-25 1981-11-25 Standard gas generator

Country Status (1)

Country Link
JP (1) JPS5882843U (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004309497A (en) * 2004-06-04 2004-11-04 Nippon Api Corp Liquid sample container for producing standard gas and standard gas producer

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7342607B2 (en) * 2019-10-24 2023-09-12 株式会社島津製作所 Gas generator and gas generation method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5317385A (en) * 1976-07-31 1978-02-17 Agency Of Ind Science & Technol Preparation of standard gas
JPS54128974A (en) * 1978-03-31 1979-10-05 Yokogawa Electric Works Ltd Standard gas generator

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5317385A (en) * 1976-07-31 1978-02-17 Agency Of Ind Science & Technol Preparation of standard gas
JPS54128974A (en) * 1978-03-31 1979-10-05 Yokogawa Electric Works Ltd Standard gas generator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004309497A (en) * 2004-06-04 2004-11-04 Nippon Api Corp Liquid sample container for producing standard gas and standard gas producer

Also Published As

Publication number Publication date
JPS5882843U (en) 1983-06-04

Similar Documents

Publication Publication Date Title
JPH05180733A (en) Method and apparatus for supplying gas into superhigh-accuracy analyzer
KR920701036A (en) Gas mixing device
JPS6321318Y2 (en)
US5213769A (en) Mixture forming method and apparatus
Ippen et al. Basic factors of oxygen transfer in aeration systems [with Discussion]
GB1143548A (en) Improvements in or relating to apparatus for administering anaesthetics
JPS57104664A (en) Gasification method for liquid source
US2121196A (en) Anesthetizing apparatus
CN100453480C (en) Inner aeration type aeration method and device
US1414762A (en) Method of making hydrochloric acid
JPH04114728A (en) Liquid source supplying apparatus
Daniels et al. An apparatus for aeration of tissue cells in suspended culture with controlled gas mixtures
JPH05221610A (en) Ozonizer
SU764697A1 (en) Mass-exchange apparatus
GB729352A (en) Apparatus for the insufflation of gases or gaseous medicaments
SU534240A1 (en) Pressure chamber
JPS598740Y2 (en) Constant concentration gas generation and supply equipment
SU545360A1 (en) Pressure chamber
SU981863A1 (en) Plant for producing reference gases
US705661A (en) Carbonator.
JP2718737B2 (en) Concentration control method
GB1428943A (en) Method of and apparatus for dissolving gases in liquids
JPS5247763A (en) Device for controlling the specific gravity of a liquid
US354067A (en) Egbert s
GB712689A (en) Process for producing combustible gas enriched with methane